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Abstract
The field of cancer research and treatment has made significant progress, yet we are far

from having completely safe, efficient and specific therapies that target cancer cells and

spare the healthy tissues. Natural compounds may reduce the problems related to cancer

treatment. Currently, many plant products are being used to treat cancer. In this study, Rohi-

tukine, a natural occurring chromone alkaloid extracted from Dysoxylum binectariferum,

was investigated for cytotoxic properties against budding yeast as well as against lung can-

cer (A549) cells. We endeavored to specifically study Rohitukine in S. cerevisiae in the con-

text of MAPK pathways as yeast probably represents the experimental model where the

organization and regulation of MAPK pathways are best understood. MAPK are evolution-

arily conserved protein kinases that transfer extracellular signals to the machinery control-

ling essential cellular processes like growth, migration, differentiation, cell division and

apoptosis. We aimed at carrying out hypothesis driven studies towards targeting the im-

portant network of cellular communication, a critical process that gets awry in cancer.

Employing mutant strains of genetic model system Saccharomyces cerevisiae. S. cerevisiae
encodes five MAPKs involved in control of distinct cellular responses such as growth, differ-

entiation, migration and apoptosis. Our study involves gene knockouts of Slt2 and Hog1
which are functional homologs of human ERK5 and mammalian p38 MAPK, respectively.

We performed cytotoxicity assay to evaluate the effect of Rohitukine on cell viability and

also determined the effects of drug on generation of reactive oxygen species, induction of

apoptosis and expression of Slt2 and Hog1 gene at mRNA level in the presence of drug.

The results of this study show a differential effect in the activity of drug between the WT,

Slt2 and Hog1 gene deletion strain indicating involvement of MAPK pathway. Further, we

investigated Rohitukine induced cytotoxic effects in lung cancer cells and stimulated the
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productions of ROS after exposure for 24 hrs. Results from western blotting suggest that

Rohitukine triggered apoptosis in A549 cell line through upregulation of p53, caspase9 and

down regulation of Bcl-2 protein. The scope of this study is to understand the mechanism of

anticancer activity of Rohitukine to increase the repertoire of anticancer drugs, so that prob-

lem created by emergence of resistance towards standard anticancer compounds can be

alleviated.

Introduction
The ever evolving affliction of cancer is mounting its challenges on researchers and clinicians
as the disease continues to impose immense amount of health burden on a devastating global
scale. Significant understanding of its mechanistic cues has been achieved through research
efforts that have now proven that this ailment finds a strong cause in altered communication
between and within cells [1]. Thus far, effective non-surgical remedies against the disease
include chemotherapy and radiation based treatment regimens. However, a number of poten-
tial anti-cancer therapies, based on molecules from natural origin, have exhibited promise in
treating cancer while exerting minimal undesired effects (anemia, nausea and hair loss) and
countering the challenge of drug resistance [2]. In addition to side effect and drug resistance,
the cost of chemotherapy drug is also very high as compared to the natural compound from
the medicinal plants.

Rohitukine (C16H19NO5; 5, 7-dihydroxy- 8-(3-hydroxy-1-methyl-4-piperidinyl)-
2-methyl- 4H-chromen-4-one), isolated from Amoora rohituka, Dysoxylum binectariferum
and Schumanniophyton problematicum, is known to possess anti-inflammatory, anti-implanta-
tion, anti-fertility, anti-proliferative and immunomodulatory properties [3]. However antican-
cer mechanism of action of Rohitukine is not known and as per our comprehension for the
first time it has been evaluated in genetic model system of budding yeast as well as in lung can-
cer cells. Hundreds of yeast genes exhibit a link to human disease genes as nearly 30% of noto-
rious genes involved in human diseases have yeast orthologs [4]. It is interesting to note that
47% of the yeast genes could be successfully humanized [5]. S. cerevisiae is also helping in
revealing important aspects of many diseases such as neurofibromatosis type l, colon cancer
[6].

We endeavored to specifically study Rohitukine in S. cerevisiae in the context of MAPK
pathways as yeast represents the experimental model where the organization and regulation of
MAPK pathways are best understood [7]. MAPK are evolutionarily conserved protein kinases
that transfer extracellular signals to the machinery controlling essential cellular processes like
growth, migration, differentiation, cell division and apoptosis. Therefore, mutation in any of
the kinases of these pathways is directly linked to cancer [8]. It is, hence, prudent to focus fur-
ther research efforts towards designing mechanism-based anti-cancer compounds that act on
specific molecular targets linked with the etiology of the disease [9]. Hence kinase cascade pres-
ents novel opportunities for development of new cancer therapies designed to be less toxic
than conventional chemotherapeutic drugs [10]. The studies were conducted employing
genetic model system Saccharomyces cerevisiae as it has been usefully exploited for elucidating
the anticancer therapy in association with exposure to 5-fluorouracil [11]. Yeast is also valued
as a striking model for anticancer drug research [12] as it has proven helpful in uncovering the
cellular targets of different drugs including precious anti-cancer drug KP1019 [13]. The bud-
ding yeast has five types of MAPK including: Fus3, Kss1, Smk1, Hog1 and Slt2. Slt2 is the
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MAPK of the cell wall integrity pathway and functional homolog of human ERK5 that are acti-
vated in response to growth factors and stress conditions [14]. Hog1 is functional homolog of
mammalian p38 MAPK and is chiefly activated in response to osmotic stress [15].

The studies reported herein, make use of the genetic model system S. cerevisiae towards
deciphering the effects of Rohitukine on all important process of cellular communication medi-
ated by MAP kinase pathway, thereby affecting cellular survival and death via apoptosis. The
study also investigates the effect of Rohitukine on apoptosis within human lung cancer cell line
and explores the possible mechanisms involved via studies on important modulators of the
process.

Materials and Methods

Extraction of Rohitukine
Rohitukine was isolated from stem of Dysoxylum binectariferum as described previously [16].
Briefly, air-dried stem bark of the plant was extracted with 95% ethanol and then concentrated
by reduced pressure. It is further fractionated into four fractions (chloroform, soluble n-buta-
nol, n-hexane and insoluble n-butanol fraction). From chloroform fraction, a known alkaloid
rohitukine {5,7-dihydroxy-2-methyl-8- [4-(3-hydroxy-1-methyl)-piperidinyl]-4H-1-benzo-
pyran-4-one)} was isolated by repeated column chromatography over silica gel and further
purification by HPLCLC- 20AD using methanol solvent 55:45 v/v, flow rate 1.0 ml/min. The
characterization of compound was performed using IR, NMR, mass, derivatization, and com-
parison with available literatures. The purity of rohitukine was 99.6% and yield was 1%.

Yeast culture and maintenance
In present study, Wild Type strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) and
knockout strain of Slt2 and Hog1 gene (gift from Dr. A. Chakrabarti and Dr. R. C. Meena from
Defence Institute of Physiology and Allied Sciences, DRDO, India) were employed. The yeast
cells were grown in YPD media (1% yeast extract, 2% bactopeptone, 2% glucose) as per the
method described earlier [17].

Determination of Minimum inhibitory concentration
Minimum inhibitory concentration (MIC) of drug was determined both spectrophotometri-
cally (by measuring O.D. at 600 nm using multiwell microplate reader: Multi Skan, Thermo
Scientific) and visually. Rohitukine was dissolved in Dimethyl sulfoxide. The MIC for Rohitu-
kine was determined by plotting O.D. at 600 nm versus concentrations of drug (20μg/ml to
100μg/ml) [18]. The concentration at MIC of the drug was used in all experiments.

Evaluation of growth inhibition by spotting assay
After the drug treatment growth inhibition of yeast cells was assessed by spotting assay. Cells
were grown on standard yeast extract-peptone-dextrose (YPD) media. For Spotting assays,
5-fold serial dilutions in YPD media were prepared from exponentially growing culture of the
different strains. 2μL of each dilution was then spotted onto YPD plate in absence and presence
of drug [19].The growth differences were recorded following incubation of the plates for 24hrs
at 30°C.

Detection of reactive oxygen species (ROS) in budding yeast
The detection of reactive oxygen species was carried out by employing 2’ 7’Dichlorofluores-
ceindiacetate (H2-DCF-DA; Cat. no.–D399; Invitrogen) staining as previously described with
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some modification [20]. Briefly, levels of ROS were measured after 24 hrs of drug treatment by
adding 0.5μM of H2-DCF-DA to cells for 15 min in dark. Cells were washed thrice with 1X
PBS. Fluorescence microscopy was performed using a Zeiss Axioplan-2 microscope using an
excitation wavelength of 485 nm and an emission wavelength of 520 nm. ROS production was
quantified using image J software (Image J, National Institutes of Health, and Bethesda, MD).
A total of 50 cells from each group were quantified for fluorescence intensity and statistical sig-
nificance was calculated with respect to untreated control group.

Estimation of mitochondrial content employing MitoTracker Deep Red
staining
To check the effect of drug on mitochondrial content, Mito Tracker Deep Red staining (Cat.
no.-22426, Invitrogen) was done as described previously with some modifications [20]. Briefly,
100μl yeast cells were incubated with 100 nMMito Tracker stain for 50 min at 30°C in dark fol-
lowed by three times washing in 1X PBS. Imaging of cells was carried out using fluorescence
microscope with an excitation wavelength of 637 nm and an emission wavelength of 660 nm.
Fluorescence intensity of mitochondrial content was quantified using Image-J software.

Assay for apoptotic cell death using Acridine Orange (AO) staining
Acridine orange staining was done to check the induction of early stage apoptosis. Acridine
orange (Hi-media- 116) was dissolved in PBS (pH = 7). A 100μl volume of yeast cells was
stained with 1μl of 2.5 mg/ml of AO to get the working concentration of 25μg/ml. Staining was
carried out for 30 minutes in dark and the cells were washed with PBS [21]. Imaging of stained
cells was carried out using fluorescence microscope with an excitation wavelength of 502 nm
and an emission wavelength of 520 nm. Fluorescence intensity of stained cells was quantified
by Image J software.

Assay for studying DNA fragmentation
DNA fragmentation was determined by Nuc Blue Live Cell Stain (R37605 Life Technology
Corporation) according to the manufacturer’s instructions. Imaging of stained cells was done
by fluorescence microscope with an excitation wavelength of 352 nm and an emission wave-
length of 460 nm and fluorescence intensity of stained cells was quantified by Image J software.

Semi-Quantitative Reverse transcription PCR for the analysis of mRNA
levels of Slt2 and Hog1 gene in the presence of Rohitukine
Total RNA was extracted and reverse transcribed using Revert Aid™ First Strand cDNA Synthe-
sis Kit (Fermentas Life Sciences, cat- K1622). cDNA was amplified using specific primers listed
in Table 1 and PCR products were separated on 1.5% agarose gel and visualized by ethidium
bromide staining.

Protein-ligand interaction employing computational tools
The 3-dimensional (3D) structure of p38 and ERK5 used for docking study was retrieved from
Protein data bank with PDB IDs: 1WFC and 4IC8 respectively. The structure of ligand (Rohi-
tukine) (CID: 13422573) was accessed from ‘Pubchem compound’. Using the AutoDock tools
Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were
added. Affinity (grid) maps of 60×60×60 Å grid points and 0.375 Å spacing were generated
using the Autogrid program aimed at targeting grid co-ordinates in proximity with the active
site of targets. Accordingly, the values of x, y and z co-ordinates used for targeting the Hog1
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and ERK5 active site were 18.783, 35.698, 30.394 for Hog1 and 15.928, -17.057, 1.101 for ERK5
respectively. Docking simulations were performed using the Lamarckian genetic algorithm
(LGA) and the Solis &Wets local search method. Ten different runs were performed for each
docking. The final figures were generated with the help of Discovery Studio Visualizer
(Accelrys).

Cell Culture
A549 cells (human lung cancer cell line) were obtained from National Centre for Cell Sciences
(NCCS) Pune, India, and cultured in DMEM (Dulbecco’s Modified Eagle Media) F-12 (1:1)
(HiMedia AL187A) supplemented with 10% fetal bovine serum, 0.2% sodium bicarbonate and
1% antibiotic and antimycotic solution. Cultures were maintained at 37°C and 5% CO2 and
95% humid atmosphere.

MTT assay
MTT (HiMedia-TC191) assay is based on the reduction of MTT by mitochondrial dehydroge-
nase to a purple formazan product, gives an indication of mitochondrial integrity, which is
interpreted as assessment of percent cell viability [22]. Briefly, cells were seeded in 96–well tis-
sue culture plates (104 cells/well) in complete DMEM F-12 medium, followed by incubation in
5% CO2, 95% atmosphere for 24hrs at 37°C. After 24hrs exposure of drug (10μM—60 μM),
MTT (5 mg/ml of stock in PBS) was added (10 ml/ well in 100 ml of cell suspension), and plates
were incubated for 4hrs. After incubation, the reaction mixture was carefully taken out and
200 μl of dimethyl sulfoxide (DMSO) was added to each well, the contents were mixed well by
pipetting up and down several times. The plates were kept on rocker shaker for 10 min at room
temperature and then read at 550 nm using multiwell microplate Reader (Multi Skan, Thermo
Scientific). Untreated cells were run under identical conditions and served as basal control.
Each experiment was repeated thrice and standard deviations were derived from three inde-
pendent experiments.

Determination of Reactive Oxygen Species (ROS) in lung cancer cells
ROS generation was estimated by using 2’, 7’-diclorodihydrofluorescein di-acetate
(H2-DCF-DA; Cat. no.–D399; Invitrogen) as described previously [23]. Briefly, cells seeded in
black 96-well plate at a density of 104 cells/well were incubated with 1mMH2-DCF-DA; for
30 min at 37°C followed by incubation with different concentrations of drug for 24hrs. The
measurement of ROS was carried out during the course of the treatment period at 485 nm exci-
tation and 535 nm emission wavelengths. ROS generation was also confirmed by fluorescence
micrograph of cellular ROS. Briefly, cells were plated in 48-well tissue culture plate and treated
with 1mMH2-DCF-DA; for 30 min followed by incubation with different concentrations of

Table 1. Sequence of primers used.

Gene Primer (5’-3’) PCR Product Size (bp) Annealing Temperature (°C)

ACT1 GCCATTTTGAGAATCGATTTG (F) 254 56

TTAGAAACACTTGTGGTGAAC (R)

SLT2 AGCAACAGCAGCCTTCAGA (F) 460 60

GAACGCGAGGAAGTATCCAA (R)

HOG1 ATTTGGGTTGGTTTGCTCAG (F) 254 54

TTTCCAAGGGTCTTGTTTGC (R)

doi:10.1371/journal.pone.0137991.t001
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Rohitukine for 24 hrs at 37°C. Fluorescence images were captured using a Zeiss Axioplan-2
microscope using FITC filter under 20X objective.

Isolation of Total Cellular Protein from A549 cells
Rohitukine treated and untreated cells were pelleted, washed with cold PBS and lysed in RIPA
lysis buffer containing 1 mM EDTA, 50 mM Tris, pH 7.4, 150 mMNaCl, 1% NP-40, 0.25%
sodium deoxycholate, 0.1% SDS, 1 mMNaF, 1 mMNa3VO4, 1 mM PMSF and 1μg/mL leupep-
tin [24]. Cell lysate was gently vortexed for 30 sec after 1 h incubation in lysis buffer. Superna-
tant was collected by centrifugation at 14,000×g for 15 min and stored in aliquots at -20°C.
Protein content was quantified using Bradford protein assay.

Western Blot Analysis Detecting Apoptosis-related proteins
Cell lysates were denatured and twenty microgram of the protein was separated on 12% SDS–
polyacrylamide gel electrophoresis. It was electro-transferred to PVDF membrane. The mem-
branes were blocked at room temperature with 5% skimmed milk in Tris-buffered saline (TBS)
with 0.05% Tween-20 (TBS-T) for 2hrs. After washing with TBS-T membranes were incubated
with the primary antibodies against p53 (1:3000), caspase9 (1:3000), Bcl-2 (1:5000) and β-actin
(1:4000) for overnight at 4°C. After washing, the membrane was incubated with HRP-conju-
gated secondary antibody (anti-rabbit or anti-mouse, 1:10000; Invitrogen, USA) at room tem-
perature for 1h. Western blot bands were detected using chemiluminescent substrate
(Millipore) using Chemidoc (GE). β-actin was used as internal control for equal loading and
normalization of protein. Protein Ladder (3B BlackBio Biotech-3B75) (3.5–245kDa) was used
to determine molecular weight of the protein bands. Densitometry of the bands obtained was
done by NIH software Image J version 1.41 (USA).

Statistical analysis
All results are presented as mean ± SEM Statistical significance between various groups was
carried out employing Student’s t test by using Graph Pad prism 5 software. For in vitro study
data were expressed as mean ±S.D. and statistical significance of the results were determined
using one-way ANOVA by Tukey’s multiple comparison test.

Results and Discussion

ΔSlt2 and ΔHog1 strains are hypersensitive to Rohitukine treatment
In this study, we determined cytotoxicity of Rohitukine in budding yeast and also investigate
whether MAP kinase pathways are involved in the Rohitukine induced cell death, so we deter-
mined the effect of Rohitukine on the cell viability of ΔSlt2 and ΔHog1 strains. Rohitukine
shows cytotoxicity against all type of yeast strains. The MIC50 for Rohitukine was determined
by plotting O.D. at 600 nm versus concentrations of drug. MIC50 value for WT was found to be
80μg/ml and for both gene knock-out strains was found to be 60μg/ml. All experiments were
carried out at dose below the MIC50 value (40μg/ml). Fig 1 shows that Rohitukine exerts cyto-
toxic effects on yeast. Although the concentration of Rohitukine that kills approximately 50%
of yeast cells is higher than the IC50 values reported for cancer cells in vitro [25] this result is
not surprising given that yeast often display higher levels of resistance to antineoplastic agents
[26] It is likely that the presence of yeast cell wall may be the obstruction of drug entry into cell
and lots of export transporter that will interfere with the entry of drug inside the cell and yeast
cells are also very effective at reducing intracellular concentration of toxic small molecules
using a large number of transport proteins [27].
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The results showed that gene knockout strains were more sensitive to the drug as compared
to WT strain at same MIC (40μg/ml) as indicated by density of the spots in spotting assay for
cell viability (Fig 1A) and by O.D at 600 nm (Fig 1B) Result of spotting assay confirmed that
the yeast cells when treated with Rohitukine lost cell viability in dose dependent manner. In
case of WT cells control spot was scored as 0, 40μg/ml of Rohitukine treated cells spot was
scored as 1, cells were scored as 2 at 80μg/ml of drug and at 100μg/ml cells spot scored as 3
after 24 hrs of drug treatment. For both types of gene knockouts (Δslt2, Δhog1) strain control
spot was scored as 0, 40μg/ml of drug treated cells scored as 2, 80μg/ml of drug treated cells
scored as 3 and 100μg/ml of drug treated cells scored as 4 after 24 hrs of drug treatment. ΔSlt2
strain was hypersensitive to various genotoxic agents having different mode of action including
methylmetanosulfonate, UV radiation and phleomycin [28]. Slt2 activation after induction of a
single DSB (double-strand break) in the GAL1: HO strain, which has a specific effect on integ-
rity of DNA, showing a genuine role for Slt2 in the response to genotoxic stress [29]. Conse-
quently, these genes get activated in the presence of drug in WT cells so it could be possible
that ΔSlt2 and ΔHog1 strains showed hypersensitivity to drug [30].

Rohitukine triggers cell death by inducing oxidative stress and reducing
mitochondrial content in ΔSlt2 and ΔHog1 strains
ROS production was measured to analyze the role of ROS in yeast cell death mediated by Rohi-
tukine. We found that Rohitukine induced significant amount of ROS after 24 hrs of drug
treatment in WT and in gene knockout strains (Fig 2A). Quantification of fluorescence inten-
sity of H2-DCF-DA staining(Fig 2B) also showed that Rohitukine treated yeast cells produced

Fig 1. Hypersensitivity ofΔSlt2 and ΔHog1 strains to Rohitukine. (a) Yeast cells viability at different concentration of Rohitukine after 24 hrs of drug
treatment, 5-fold serial dilutions from exponentially growing cultures of WT, ΔSlt2 and ΔHog1 strains were spotted onto YPDmedium containing 40 μg/ml,
80 μg/ml and 100 μg/ml of drug. (b)The percentage of surviving cells relative to untreated controls.

doi:10.1371/journal.pone.0137991.g001
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comparatively increased levels of ROS as compared to untreated cells, increase being 1.3
(P<0.001), 2.0 (P<0.001) and 1.7 (P<0.001) fold for WT, ΔSlt2 and ΔHog1 strains respectively
after Rohitukine treatment as compared to untreated control cells. However ΔSlt2 and ΔHog1
strains produced more ROS as compared to WT cells after treatment and increase being 1.4
(P<0.001) and 1.2 (P<0.001) fold for ΔSlt2 and ΔHog1 strains respectively as compared to
WT after drug treatment, which further reinforces the hypersensitivity of both mutant strains
to drug. This discrepancy may be because of absence of MAPK which is known to be activated
by oxidative stress. Additionally MAPK deficient yeast cells accumulate ROS to a higher extent
than WT cells during stationary phase [31]. MAP kinase pathways are influenced not only by
receptor ligand interactions, but also by different stressors like oxidative stress induced poten-
tial activation of MAPK pathways. Generally, increased ROS production in the cells causes acti-
vation of MAPKs but the mechanisms by which ROS can activate these kinases are unclear

Fig 2. Rohitukine promoted ROS production and loss Mitochondrial content in gene knockout strains of yeast. (a) DCFDA staining (b) Graphical
representation of Relative formation of reactive oxygen species (ROS) measured by H2DCFDA staining in WT and gene knockout strains of yeast as
quantified using Image J software ***p < 0.001.(c) Mitotracker Deep Red staining (d) Graphical representation for fluorescence intensity of mitochondrial
content of the budding yeast as quantified using Image J software ***p <0.001.

doi:10.1371/journal.pone.0137991.g002
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[32]. These mutants may be impaired in autophagy pathway which is required to prevent
excessive ROS accumulation. Inability to increase the expression of respiratory chain compo-
nents and ROS scavengers likely leads to the accumulation of ROS in autophagy-defective cells.
S. cerevisiaeHog1 MAPK is activated in response to high osmolarity and is required for cell
survival under these conditions [33]. In response to several stresses, Hog1p becomes phosphor-
ylated and translocates to the nucleus. Hog1 null mutants were found to be hypersensitive to
those stress conditions, which lead to Hog1p activation, in particular to extracellular oxidizing
agents [34].

We also checked whether Rohitukine exposure affects mitochondrial content. We observed
that mitochondrial content decreased to a greater extent in ΔSlt2 and ΔHog1 strain after 24 hrs
of Rohitukine treatment but WT cells showed increase in mitochondria content after drug treat-
ment (Fig 2C). Quantification of fluorescence intensity of mitochondrial content (Fig 2D)
showed that Rohitukine treatedWT cells showing a 1.6 (P<0.001) fold increase whereas Rohitu-
kine treated ΔSlt2 and ΔHog1 strains exhibiting 1.2 (P<0.001) and 2.0 (P<0.001) fold reduction
respectively as compared to their untreated control. However, ΔSlt2 showed 2.3 (P<0.001) and
ΔHog1 strain exhibited 2.2 (P<0.001) fold reduction as compared toWT in presence of drug.

The mitochondria also play a very important role in regulation of many mechanisms con-
trolling cell survival and death [35]. Changes in mitochondria are related to aging, decreased
synthesis of mitochondrial proteins and reduced activity of oxidative enzymes cause decrease
in mitochondrial ATP synthesis [36]. MAP kinase pathways are involved in intrinsic apoptosis
in the presence of isoorientin in human hepatoblastoma cancer cells [37]. Flavopiridol (Rohitu-
kine derivative) causes cell death by decrease in mitochondrial membrane potential in human
leukemia cells [38]. Flavopiridol also causes STI571 (Bcr/Abl kinase inhibitor) induced apopto-
sis and damage of mitochondria and apoptosis in BCR-ABL-positive human leukemia cells
[39]. Consequently MAPK mutants show the increased production of ROS which maybe the
likely cause leading to mitochondria dysfunction.

Rohitukine causes induction of early stage apoptosis and DNA damage
in yeast
Data of A.O staining showed that Rohitukine causes induction of apoptosis in gene knockout
strains as compared to the WT strain after 24 hrs of drug treatment (Fig 3A). Quantification of
fluorescence intensity of A.O staining (Fig 3B) showed that WT, ΔSlt2 and ΔHog1 stains of
yeast exhibiting a 1.3 (p<0.001), 2.0 (p<0.001) and 1.7 (p<0.001) fold increase respectively
after drug treatment as compared to their untreated control. However, ΔSlt2 strain showed 1.7
(p<0.001) and ΔHog1 strain exhibited 1.2 (p<0.001) fold increase as compared to the WT
strain when treated with Rohitukine.

We also observed DNA fragmentation after 24 hrs of drug treatment at MIC by NucBlue
Live Cell Stain for DNA. Result of DNA staining (Fig 3C) clearly showed DNA fragmentation
in WT as well as in both types of gene knockout strains after drug treatment indicating an apo-
ptotic phenotype. We quantified images for fluorescence intensity of DNA staining (Fig 3D).
There was 1.5 (p<0.001), 3.0 (p<0.001) and 3.9 (p<0.001) fold increase in Rohitukine treated
WT, ΔSlt2 and ΔHog1 strain respectively as compared to untreated control. However, ΔSlt2
showed 1.1 (p<0.001) and ΔHog1 strain exhibited 1.3 (p<0.001) fold increase as compared to
the Rohitukine treated WT cells.

DNA fragmentation, a hallmark of apoptosis [40] was observed in all types of yeast strains
after drug treatment as seen by DAPI staining. Valproic acid induces apoptosis by ROS genera-
tion and DNA fragmentation independent of Yca1p at concentrations that mildly affect the
proliferation of yeast [41].
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Rohitukine interaction affects expression of Slt2 and Hog1 gene in wild
type strain
The mRNA levels of Slt2 and Hog1 were found to be 3.7 and 2.8 fold increased respectively in
WT strain treated with Rohitukine when compared to that of control group (Fig 4A). However
mRNA expression of Slt2 gene in ΔHog1 strain and expression of Hog1 gene in ΔSlt2 strain
remained un-affected after Rohitukine treatment. Fig 4B depicts the fold changes in mRNA
levels within different treatment groups normalized against that of control. The selective
increase of Slt2 and Hog1 in wild type conditions and not in the knockouts of either gene may
be a result of cross-talks between different MAPK pathways which are very common [42]. The
over expression of Hog1 gene after Rohitukine treatment may be dependent on the presence of
Slt2 gene or vice-versa.

Fig 3. Rohitukine causes DNA damage and induction of apoptosis. (a) A.O. staining (b) Graphical representation for fluorescence intensity of apoptotic
death of the Yeast cells as quantified using Image J software ***p < 0.001 (c) DNA damage revealed by Nuc Blue Live Cell Stain (d) Graphical
representation for fluorescence intensity of nucleic acid of the yeast cells as quantified using Image J software ***p < 0.001.

doi:10.1371/journal.pone.0137991.g003
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Zymolyase activates both MAPKs and Slt2 activation depends on the Sho1 branch of the
HOG pathway. Both MAPK pathways are essential for cell survival in presence of stress
because mutant strains deficient in different components of both pathways are hypersensitive
to zymolyase [43]. Thus, a sequential activation of two MAPK pathways may be required for
cellular adaptation to stress condition and cell wall damage after the Rohitukine treatment.

From previous studies it is known that Hydroxyurea treatment increases phosphorylation
of Slt2 MAP kinase [28]. Slt2 is responsible for cell wall integrity and is activated by cell wall
damage, so it might be the possible reason for hypersensitivity of slt2 mutant to drug treatment.
Recent studies have implicated the role of Hog1 MAPK in mediating tolerance to a variety of
stress conditions including osmotic, oxidative, heat, arsenic, and citric acid stress [44]. A study
by Azad et al examined the requirement for a functional HOG pathway to cope with curcumin
(100 μM) induced stress [45].

Our docking studies revealed that catalytic domain of P38 (Hog1) interacts with Rohitukine
through the nine amino acid residues namely VAL89, ARG5, ARG94,VAL345, ILE346,
PHE348, PHE8, PHE90, and ASP88, while in case of ERK5 (Slt2) interaction was found with 4
amino acid residues namely TYR245, VAL200, TYR199 and ASN244 (Fig 4C). The free bind-
ing energy and estimated inhibition constant (ki) for the ‘Rohitukine-P38 domain interaction’
was determined as -6.47 Kcal/mol and 18.18uM respectively; while the same for ‘Rohitukine-
ERK5 domain interaction’ was found to be -6.31 Kcal/mol, 23.6 u Mol respectively.

Rohitukine induced cytotoxic effects by ROS generation in A549 cell line
To examine the cytotoxicity of Rohitukine, A549 cells were treated with different doses of
Rohitukine (10μM to 60μM) for 24 hrs and the viabilities of cells were determined using the

Fig 4. (a) RT-PCR analysis of Slt2 andHog1 gene in budding yeast after drug treatment (i:Untreated control, ii: drug treated) (b) The expression of
Slt2 and Hog1mRNA, expressed as the ratio of densitometric measurement of the sample to the corresponding internal control (β-actin) (i:
Untreated control, ii: drug treated) (c) Docking studies of Rohitukine with human two different type of member of MAPK pathway. (i) p38 (Hog1 in
S. cerevisiae) and (ii) ERK5 (Slt2 in S. cerevisiae).

doi:10.1371/journal.pone.0137991.g004
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MTT assay. As shown in Fig 5A, Rohitukine significantly reduced percentage of viable A549
cells in dose-dependent manner. Among all the tests, cells incubated with 40 μMRohitukine
for 24 hrs showed anti-proliferation effect, with cell viability decreased to 50% of the untreated
control cells. All experiments were carried out at dose below IC50 value.

The crude methanol extract of F. proliferatum that is the source of Rohitukine shows cyto-
toxicity against HCT-116 and MCF-7 human cancer cell lines (IC50 = 10 μg/ml for both cancer
cell lines) [25]. Pure Rohitukine from stem barks of D. binectariferum was subjected for anti-
cancer activity in different lung and ovarian carcinoma cells. IC50 value for ovarian carcinoma
cells SKOV3 was found to be 20μM and for breast cancer cells T47D, MDAMB273, MCF7 was
found to be 50μM, 3μM, 15μM respectively [46].

Fig 5. Rohitukine affected the percentage of viable and induced ROS in A549 cells. (a) Cell viability was determined using the MTT assay. Cells (1 × 104

cells/well; 96 well plates) were plated in DMEM F12 medium + 10% fetal bovine serum (FBS) with 0, 10, 20, 30, 40, 50 and 60 μM for 24 hrs, (b) ROS
generation was assessed in terms of relative fluorescence units using 10 mMDCFH-DA in A549 cells after 24 hrs exposure to Rohitukine in black-bottomed
96-well plates and (c) Fluorescence micrographs of ROS generation at 20μM, 30μM, and 40μMRohitukine concentrations in lung cancer cells obtained at
20X objective after 24 hrs of treatment. The results are represented as means ±S.D of three independent experiments. Nonsignificant (ns), * P < 0.05, **
P < 0.01, *** P < 0.001 versus 0 μM.

doi:10.1371/journal.pone.0137991.g005
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Flavopiridol, a semi synthetic derivative of Rohitukine exhibited anticancer activity by
inhibiting cell cycle dependent kinases (CDKs) [47] Rohitukine possessed anti-estrogenic effect
in female Sprague-Dawley rats [48] and compound that show antiestrogenic activity could also
have antiproliferative effect on breast cancer cell by cell cycle arrest, including decreased cyclin
Dl expression [49].

After determination of cytotoxic effect of Rohitukine in lung cancer cell we checked the
effect of drug on ROS generation as in sight of earlier finding that copious chemical stimuli
prompt apoptosis via ROS generation [50]. We employed H2-DCF-DA (specific fluorescence
probes) staining to examine ROS generation in A549 cells after 24 hrs of Rohitukine (10μM to
40 μM) treatment. Significant elevation in ROS levels could be observed at all the tested doses
(Fig 5B). Fluorescence micrographs of H2-DCF-DA stained cells further confirmed the above
fluorometric findings (Fig 5C). Data from the current study revealed that Rohitukine induces
oxidative stress in A549 cells.

Oxidative stress by ROS is a stimulator of numerous cell responses, such as apoptosis in var-
ious mammalian cells [50]. Flavopiridol have been shown to alter the redox status of leukemic
cells and mediated apoptosis is dependent upon generation of radical oxygen species [51].

This study showed that Rohitukine acts as a ROS generator to trigger cell death in lung can-
cer cells, supporting its utility as a cytotoxic therapeutic agent [52].

Rohitukine altered the apoptosis-associated protein levels in A549 cells
Cells were exposed to 30 μM of Rohitukine for 24 hrs and then the total protein was prepared
and western blot analysis was used to detected protein expression of p53, caspase9 and Bcl-2.
β-actin was used as an internal loading control. These results are presented in Fig 6 which indi-
cated that expression of p53 (Fig 6A) and caspase9 (Fig 6B) was increased, while the expression
of Bcl-2 (Fig 6A) was decreased. The quantitative results showed that Rohitukine increased the
protein levels of p53 and caspase9 by 0.40 folds (Fig 6C) and 0.23 (Fig 6D) folds respectively
where as decreased the protein levels of Bcl-2 by 0.37 folds (Fig 6E) of the control level at
30 μM. Upregulation of proteins like, p53 caspase9 and down regulation of anti-apoptotic pro-
teins like Bcl-2 gives insight into the mechanism of action followed by Rohitukine to induce
the apoptosis.

Tumor suppressor gene TP53 gets activated during genotoxic stress and promotes cell cycle
arrest by the activation of p21 leading to the activation of apoptosis [53]. Caspase-9 activation
leads to apoptosis. The majority of cancer therapy initiate apoptosis through the caspase-9 acti-
vation, the modulation of caspase-9 expression may be exploited in designing new ways to con-
trol apoptosis in neurodegenerative or malignant diseases [54]. Bcl-2, an upstream effector
molecule in the apoptotic pathway, has been recognized to be a potent negative regulator of
apoptosis, and most cancers generally overexpress Bcl-2 [55]. MAPK pathways also regulate
apoptosis and activation of p38 is generally associated with the induction of apoptosis. Berber-
ine (a benzylisoquinoline alkaloid) significantly inhibited growth and induced cell cycle arrest
of NSCLC cells (non small cell lung cancer cells) in a dose-dependent manner. It increased
phosphorylation of p38 MAPK in a time-dependent and induced protein expression of tumor
suppressor p53. The specific inhibitor of p38 MAPK (SB203580), and silencing of p38αMAPK
by siRNAs, blocked the stimulatory effects of Berberine on protein expression of p53 [56].

However some studies suggested that Inhibitor of p38 MAPK suppressed the proliferation
of cancer cells by induction of cell apoptosis through the caspase activation showing the pro-
oncogenic function of p38 in colon cancer, and its inhibition would be a novel strategy for the
prevention and treatment of colon cancer [57]. Map kinase inhibition by map kinase inhibitor
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(SB203580 and U0126) decrease the cell viability and induced apoptosis in human CNE2 cells
(human nasopharyngeal carcinoma cell line) [58].

Induction of apoptosis by flavopiridol in human leukemia cells (U937) proceeds via the
intrinsic, cytochrome c-related pathway (caspase9 activation), and is not dependent upon the
extrinsic, procaspase-8-associated cascade causing caspase activation and initiation of the apo-
ptotic cascade [59]. Further Flavopiridol potently down regulated the levels of several antiapop-
totic proteins in B-CLL cells in vitro, However, expression of the pro-apoptotic proteins Bax
and Bak was not significantly influenced by Flavopiridol [60].

The effect of Rohitukine on regulating the expression of apoptosis-related proteins further
supported the observation that Rohitukine induced apoptosis in A549 cells.

Dysoxylum binactariferum stem bark as well as its major active constituent Rohitukine pos-
sesses diverse biological activities including anti-inflammatory, immunomodulatory, anti leish-
manial and cancer activities. However, for the first time mechanism of action of anticancer
activity of Rohitukine have been evaluated for budding yeast and lung cancer cell line as well.

Our study also used S. cerevisiae which is a powerful tool for studying the effects of drug on
eukaryotic cells. We showed that Rohitukine enhances oxidative stress which leads to induction
of apoptosis. The pattern of apoptosis induction is differential in WT and MAP kinase gene
knockout strains indicating a critical role of MAPK in induction of cell death after Rohitukine
treatment. The results of our study provide first evidence of the role of MAPK pathway in

Fig 6. Rohitukine affected the apoptosis-associated protein levels in A549 cells. Cells were treated with Rohitukine at 30 μM for 24hrs, and then the
total proteins were prepared and determined as described in methods. (a) The levels of proteins expression of p53 and Bcl-2 (b) proteins expression of
caspase9 were estimated byWestern blotting. Band intensities were calculated by densitometry and change in protein expression after Rohitukine treatment
was calculated with respect to controls and expressed as fold change in graph. (c), (d) & (e) densitometry for p53, Bcl-2, and caspase9 blot respectively.
Results were normalized to β-actin. The data are represented as means ±SD of three independent experiments
(** P < 0.01 versus control).

doi:10.1371/journal.pone.0137991.g006
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mediation of anticancer activity of Rohitukine by triggering an apoptotic phenotype in S. cere-
visiae. It is shown to impart its anti-cancer property by induction of ROS which is a key marker
of apoptosis, upregulation of proapoptotic protein (p53) and down regulation of antiapoptotic
protein (Bcl-2). This proposed mechanism might have broad implications in cancer
therapeutics.
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