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Abstract: Pharmacological options for neurodevelopmental disorders are limited to symptom sup-
pressing agents that do not target underlying pathophysiological mechanisms. Studies on specific
genetic disorders causing neurodevelopmental disorders have elucidated pathophysiological mech-
anisms to develop more rational treatments. Here, we present our concerted multi-level strategy
‘BRAINMODEL’, focusing on excitation/inhibition ratio homeostasis across different levels of neuro-
scientific interrogation. The aim is to develop personalized treatment strategies by linking iPSC-based
models and novel EEG measurements to patient report outcome measures in individual patients. We
focus our strategy on chromatin- and SNAREopathies as examples of severe genetic neurodevelop-
mental disorders with an unmet need for rational interventions.

Keywords: neurodevelopmental disorders; iPSC-based models; EEG; SNAREopathies; chromatinopathies

1. Introduction

Neurodevelopmental disorders (NDDs) are highly heterogenous in etiology and man-
ifestation, and cause tremendous suffering for patients and caregivers. Current treatments
are limited to generic symptom suppressing medications that do not take heterogeneity
into account. There is a need for mechanism-based therapeutic options to remedy the
life-long suffering of patients and caregivers often associated with NDDs.

The identification of risk genes for NDDs provides new starting points for mechanism-
based therapies. For example, in recent work, 102 risk genes for autism spectrum disorder
(ASD) have been identified [1]. The discovery of NDD-associated de novo variants in genes
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with roles in synaptic plasticity has provided an entry to start developing rational interven-
tions. Indeed, NDDs caused by variations in single genes, so called monogenetic NDDs
(mNDDs), seem to converge on a disturbed balance between excitatory and inhibitory
inputs (E/I) in neuronal networks in the brain [2–8] that occur early (1st/2nd trimester), or
in early postnatal stages [1]. Although the concept is rather generic and applied in many
contexts, it is well established that cortical networks require a finely tuned coordination of
excitatory and inhibitory inputs for normal information processing [9], and that changes
in both directions (increasing or decreasing E/I ratio) may compromise processing and
lead to NDD clinical symptoms. The E/I-balance concept is further supported by NDD
mouse model studies that show E/I ratio disturbances [10] and EEG abnormalities in NDD
patients that suggest E/I ratio imbalances [11–13]. Finally, we have recently reported initial
successes with off-label medication targeting E/I-regulation [14–16]. Thus, influencing
E/I ratios is regarded as a promising target for pharmaceutical interventions, but is com-
plicated by the multifaceted heterogeneity of underlying mechanisms and thus requires
personalized treatment strategies [17].

Here, we first outline the heterogeneous nature and consequences of E/I ratio dis-
turbances observed in NDD model research, which emphasizes the need for personalized
treatment development strategies. We put forward that induced pluripotent stem-cell
(iPSC)-based models provide new opportunities for translatability of E/I ratios to net-
work activity homeostasis as proposed by BRAINMODEL. This project is conducted by a
publicly funded Dutch consortium of neuroscientists and clinicians, and aims to develop
personalized E/I targeting treatments through the linking iPSC-based models, EEG data,
and clinical assessments in patients with two forms of genetic NDDS, chromatin-, and
SNAREopathies (Figure 1).
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Figure 1. BRAINMODEL’s multi-level strategy.

2. Molecular and Physiological Heterogeneity of E/I Ratio Homeostasis in NDDs

Alterations in E/I ratio homeostasis in NDDs can result from aberrations in sev-
eral processes, including synapse development, synaptic transmission, and neuronal ex-
citability [18]. For example, synaptic E/I ratio changes have been described in human
iPSC-derived neurons from Rett-Syndrome patients carrying MECP2 loss-of-function mu-
tations, resulting in decreased excitatory synaptic activity with no change in inhibitory
activity [19]. Likewise, iPSC-derived neurons from individuals with Phelan–McDermid
syndrome (PMDS) and autism showed selective defects in excitatory, but not inhibitory,
synaptic transmission [20], and disruption of the autism-associated gene SYNGAP1 in-
creased excitatory synapse numbers in developing human neurons [21]. Alternatively,
neurological phenotypes associated with E/I ratios changes have been observed as the
broadening of action potentials in neurons derived from individuals with Timothy syn-
drome [22], while the genetic deletion of the Angelman Syndrome-associated gene UBE3A
was shown to increase the excitability of induced human neurons [23]. Similarly, hu-
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man neurons KO for the Fragile X Syndrome-associated gene FMR1 exhibited increased
intrinsic excitability, with no discernible synaptic phenotype [24]. In addition, altered
synaptic E/I ratios and neuronal excitability phenotypes often co-occur. For instance,
NDD-associated variants of the synaptic protein CASK appear to reduce the size of in-
hibitory presynaptic compartments, while simultaneously reducing spiking activity [25].
Likewise, the conditional deletion of the PMDS-associated gene SHANK3 did not only
produce hyperexcitability through modulation of intrinsic membrane properties, but also
produced extensive synaptic impairments [26].

3. The Potential and Pitfalls of E/I Ratio Measurements in iPSC Models

The above findings underline the potential of models consisting of neurons and neu-
ronal networks derived from patient-own tissues using iPSC-technology. These may bridge
the gap between in vitro models and in vivo manifestations [27], and for instance, link
different levels of E/I ratio homeostasis in response to treatment. The generation of glu-
tamatergic and GABAergic neurons from patient-derived iPSCs can be achieved either
using dual-SMAD inhibition [28] or through the ectopic expression of transcription fac-
tors [29–31], of which the latter is better suited to robust high-throughput assays in terms
of both scalability, and cellular and maturational homogeneity [32–34]. The use of single-
neuron (“autapse”) cultures [35,36] generated from induced glutamatergic and GABAergic
neurons (iNeurons) grown in isolation on microdot arrays, allows for robust and standard-
ized analysis of cell-autonomous synaptic functioning and intrinsic excitability without the
interference of homeostatic mechanisms. Conversely, co-culturing patient-derived gluta-
matergic and GABAergic iNeurons on multi-electrode arrays (MEAs) allows for recording
of network activity and analysis of network E/I ratio [37]. Moreover, by recording the
development of neuronal network behavior over time, the interactions between the primary
disfunctions in synaptic activity or excitability and maturation checkpoints can be studied,
such as the development of mature intracellular chloride levels [31].

It is important to note that methodologies to develop human-neurons from IPSCs
are still actively being developed and optimized, and it has become clear that neurons
generated in vitro differ substantially from those found in the human brain [38]. Thus, one
should be aware that while these cells resemble human neurons, they are not necessarily
identical to those found in the human brain. Nevertheless, it is clear that induced neurons
have a clear neuronal morphology, are electrophysiologically active, express markers for
specific neuronal lineages also found in the human brain, and form interconnected networks
able to integrate into the developing brain in mice in vivo [39,40], illustrating its validity as
a model for (developing) human neurons. In addition, in the developing brain, neurons
receive many inputs from many different cell-types, which are under strict spatiotemporal
control. This cannot be accurately modeled in in vitro systems. Thus, readouts obtained
from these systems should always be interpreted in its context as a simplified model.

Furthermore, these methodologies come paired with moral and ethical issues. As
this novel strategy has yet to prove its efficacy as a tool for the selection of therapeutic
interventions, patients and other stakeholders might be reluctant to participate in this study.
Another concern is that cultured human neurons are often portrayed as ‘miniature brains’,
suggesting that there is a possibility that consciousness could be generated in cultured
neurons. This brings forward concerns regarding the moral status of said cultured neuronal
networks. However, its highly improbable that cultured neurons in the methodologies
currently employed could be conscious, as the number of neurons and the complexity of
the networks in these systems are low, even compared to cultured neuronal organoids,
which resemble the human cortex to a greater extent and for which this concern is more
relevant [41,42].

4. Focus on Chromatinopathies and SNAREopathies

In the BRAINMODEL project, we will initially focus our multi-level phenotyping on
two classes of mNDDs. We thereby aim to collect observations from multiple individuals
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with variants in the same gene to identify cellular and network hallmarks and targets
for these disorders, as we have previously done for Kleefstra-syndrome and STXBP1-
encephalopathy, part of the so-called chromatinopathies and SNAREopathies, respec-
tively [43,44]. Indeed, using CRISPR/Cas9-technology, the genotype of the iPSCs can be
altered, inducing disease-associated variants in healthy cells or repairing the variant in
patient-derived cells [45], demonstrating causal relationships between detected phenotypes
and patient genotype. After the identification of cellular and network deficits, therapeutic
strategies to correct these aberrations can be selected and tested in vitro as performed by
Marchetto et al. and Yahata et al. for Rett syndrome and Alzheimer’s disease, respec-
tively [19,46]. In BRAINMODEL, we will expand our expertise on iPSC characterization of
chromatinopathies and SNAREopathies and focus on treatment development for these two
classes of mNDDs.

Chromatinopathies are found to be major contributors to NDDs [1,47]. Chromatin
remodeling determines whether genes are available for transcription and is crucial in active
regulation of gene expression. We focus on four different monogenic disorders caused by a
pathological mutation or deletion in genes (EHMT1, KMT2C, KMT2D and SETD1A) coding
for enzymes which carry out chromatin remodeling (e.g., methylation) (Figure 2). Although
mNDDs caused by mutations in these genes have the same neurobiological etiology (altered
chromatin remodeling), there is a high variability in clinical presentation. Apart from
intellectual disability (ID) and/or developmental delay (DD) presenting in almost 100% of
cases, core symptoms are childhood hypotonia, psychiatric disorders (including autism-
spectrum disorder (ASD), attention-deficit disorder (ADHD), and anxiety), epilepsy, and
sleep disorders. In addition, facial dysmorphisms are present, and anomalies are found in
several organ systems [48–51]. As for the E/I ratio homeostasis, previous studies showed
that the Loss of function (LoF) of EHMT1 results in delayed GABAergic maturation, reduced
inhibition, and hence increased E/I ratio [52–54].
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Figure 2. Transcription regulation is controlled by histone modifications. Schematic representation
of the deposition of histone methylation, performed by histone methyltransferases and histone
demethylases on histone 3 (H3), which have been linked to neurodevelopmental disorders.

SNAREopathies are another group of pathobiological well-defined mNDDs. These
disorders, caused by mutations that disturb SNARE function, are a subset of the previously
defined synaptopathies. The neuronal SNARE complex (soluble NSF attachment protein
receptor complex) is an important molecular machine driving synaptic vesicle exocytosis
and secretion of neuropeptides and neuromodulators from dense core vesicles [55]. We
focus on four of these genes that are associated with NDDs (STXBP1, SYT1, SNAP25, RIMS1)
(Figure 3). Although the pathogenic starting point of these disorders is well defined, clinical
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phenotype and disease severity is very diverse. Moreover, high clinical variety is found in
the same amino acid changes between different individuals [55]. Most common clinical
aspects found in SNAREopathies are ID and/or DD, seizures, ASD, and neurological motor
problems. Even though almost all cases present with ID, the mechanisms through which
mutations in SNARE genes lead to neurodevelopmental impairments remain unexplained.
Additional genetic and/or environmental factors might contribute substantially to disease
presentation and should be considered when studying disease mechanisms [55]. Based
on mouse models, mutations in SNAREopathy genes also create a disturbed E/I ratio
setpoints [55]. However, it is unknown to which extent the different components in the E/I
microcircuits in the brain are susceptible to gene mutations [55].
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5. Connecting the Dots

There is need for caution in interpreting neuronal and network phenotypes, as an
apparent E/I phenotype might be the result of homeostatic compensation mechanisms [6]
rather than a cell-autonomous NDD phenotype [56]. This is illustrated by the find-
ing that the pharmacological induction of hyperexcitability was sufficient to phenocopy
SHANK−/−-associated synaptic defects in wild type neurons [26], similar to findings in
mouse models, where an altered E/I ratio was found to be a compensatory mechanism to
stabilize the circuit [10]. Indeed, the applicability for therapeutic screening in IPSC based
models is limited, as the model does not represent a full organism. Pharmacodynamics and
-kinetics are different, for example, due to the incapacity to model the blood brain barrier.
Thus, whether a potential therapeutic intervention can reach the target cells in vivo cannot
be determined in these models. Furthermore, off-target effects at other areas of the body
cannot be studied. iPSC-based models do, however, provide the opportunity to test novel
compounds in vitro in advance of clinical trials. This enables the identification of more
therapeutic options, either based upon existing or new compounds, where the former has
the advantage of knowledge on pharmacodynamics and -kinetics.

To complement the multi-level strategy on a neurophysiological level, resting state
electroencephalography (rsEEG) recordings can be analyzed in the same patients. We have
put forward that the concept of critical brain dynamics is a steppingstone to derive E/I
ratios from neuronal oscillations measured with conventional EEG [57–60] (represented in
Figure 4B) [58,61]. Our computational modeling [60] (Figure 4A), as well as pharmacologi-
cal challenges [61], have indicated that the so-called ‘critical’ regime between low and high
activity requires balance between excitation and inhibition. Therefore, the basis of the E/I
method is the statistical character of activity in this critical state where long-range temporal
correlations (LRTC) [60] weaken when network E/I is out of balance [61,62] (Figure 4C,D).
Therefore, we could use LRTCs to estimate E/I ratios leading to a functional E/I measure
(fE/I) (Figure 4E–G). We validated this fE/I method at rest (rsEEG) and after GABAergic
treatment. In children with ASD, we corroborated that both increased and decreased E/I
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ratios may contribute to ASD [12]. In BRAINMODEL, we will perform rsEEGs to evaluate
these markers. In addition, we will perform source localization analyses to evaluate the
importance of specific markers in specific brain areas. The use of this multi-level strategy
provides the opportunity to evaluate direct consequences of mutation in patient-derived
IPSCs and long-term (possibly compensatory) mechanisms in the network (EEG).
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Figure 4. E/I estimation—from model to human EEG measurements: (A) The critical oscillations model
simulates excitatory (red) and inhibitory (blue) neurons situated in a network. The E/I ratio can be
regulated by changing the percentages of excitatory and inhibitory neurons that a neuron connects to
within a local range (dashed lines). (B) Increasing excitatory connectivity in model networks (red bars,
top row) leads to increasing amplitude of oscillations (bottom row). (C) The amplitude of oscillations
(purple line) increases with increasing excitation, whereas the temporal complexity as quantified by
the detrended fluctuation analysis (DFA, black line) peaks when excitation and inhibition is balanced.
This relationship implies that a windowed analysis of oscillations reveals either positive, zero, or
negative correlations (top inserts). (D) Hence, we defined a biomarker of E/I ratios as 1 minus the
correlation, r, between windowed power and DFA (E/I = 1 – r), and showed that the structural E/I is
well estimated by the E/I biomarker (fE/I) in simulated oscillations in networks with different structural
E/I ratios. (E) Thus measuring EEG and (F) performing a joint analysis of the power and temporal
structure of oscillations allows estimating individual differences in cortical E/I ratios or how these are
pharmacologically modulated (Adjusted summary Figure of Bruining et al., 2020) [12].

Finally, we developed a set of Patient Reported Outcome Measures (PROMs) that will
be used for clinical endpoint measurement in BRAINMODEL [63]. Indeed, most existing
clinical NDD measures focus on core symptom definition and have been developed for
diagnostic characterization. They have limited utility as read-outs of specific mechanistic
perturbations and are psychometrically often not suitable as outcome measures for interven-
tion studies [64,65]. To overcome this, we have recently investigated how sensory reactivity
problems, recently added as a core domain element for ASD in the DSM, may extend into
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problematic behavior or affective dysregulation and how disturbed E/I ratio homeostasis
may be translated into clinical readout measures [63]. This resulted in the PROM for the
repeated and reliable measurement of patient-relevant consequences of sensory reactivity
alterations [63] that we developed by following the FDA steps for (parent proxy) PROM for
clinical trials [66,67]. According to this protocol, we initiated focus groups and interviews
with caregivers to elicit the most impactful and most relevant symptoms and then sought to
measure these PROs with large item banks of the Patient-Reported Outcomes Measurement
Information System® (PROMIS) [68], initiated by the “NIH Roadmap Initiative”, based on
Item Response Theory (IRT) with the possibility to use Computerized Adaptive Testing
(CAT) [69].

6. Conclusions

Previous research has provided crucial starting points to understand pathophysi-
ological mechanisms in NDDs to develop therapeutic options. IPSC-based models for
mNDDs have unprecedented promise to bridge the gap between well-established animal
and cellular models towards human treatment development. In BRAINMODEL, we will
employ a multi-level strategy in which iPSC based-models, neurophysiological parame-
ters, and PROMs are combined within the framework of chromatin- and SNAREopathies
in order to develop personalized mechanism-based therapeutic strategies targeting E/I
ratio homeostasis.
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