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Abstract

Several areas, such as physical and health sciences, require the use of matrices as funda-

mental tools for solving various problems. Matrices are used in real-life contexts, such as

control, automation, and optimization, wherein results are expected to improve with increase

of computational precision. However, special attention should be paid to ill-conditioned

matrices, which can produce unstable systems; an inadequate handling of precision might

worsen results since the solution found for data with errors might be too far from the one for

data without errors besides increasing other costs in hardware resources and critical paths.

In this paper, we make a wake-up call, using 2 × 2 matrices to show how ill-conditioning and

precision can affect system design (resources, cost, etc.). We first demonstrate some exam-

ples of real-life problems where ill-conditioning is present in matrices obtained from the dis-

cretization of the operational equations (ill-posed in the sense of Hadamard) that model

these problems. If these matrices are not handled appropriately (i.e., if ill-conditioning is not

considered), large errors can result in the computed solutions to the systems of equations in

the presence of errors. Furthermore, we illustrate the generated effect in the calculation of

the inverse of an ill-conditioned matrix when its elements are approximated by truncation.

We present two case studies to illustrate the effects on calculation errors caused by increas-

ing or reducing precision to s digits. To illustrate the costs, we implemented the adjoint

matrix inversion algorithm on different field-programmable gate arrays (FPGAs), namely,

Spartan-7, Artix-7, Kintex-7, and Virtex-7, using the full-unrolling hardware technique. The

implemented architecture is useful for analyzing trade-offs when precision is increased; this

also helps analyze performance, efficiency, and energy consumption. By means of a

detailed description of the trade-offs among these metrics, concerning precision and ill-con-

ditioning, we conclude that the need for resources seems to grow not linearly when precision

is increased. We also conclude that, if error is to be reduced below a certain threshold, it is

necessary to determine an optimal precision point. Otherwise, the system becomes more

sensitive to measurement errors and a better alternative would be to choose precision
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carefully, and/or to apply regularization or preconditioning methods, which would also

reduce the resources required.

Introduction

Throughout the history of modern society, we can find several examples of critical failures,

which are attributed to errors in calculations due to limited resources.

One representative example of this is the case of the Patriot missile failure, which occurred

in 1991 during the Gulf War when a Patriot Missile launched by the US Army failed in its pur-

pose of intercepting a Scud missile, launched by the Iraqi army. The Scud missile hit an Army

barrack in Saudi Arabia territory and had the consequence of 28 soldiers killed and a much

bigger number of injured people. The failure, according to the official report [1], was due to a

software problem, caused by an inaccurate calculation of time, which was exacerbated by the

fact that the missile battery had been continuously operating for over 100 hours. The accumu-

lated error in the calculation caused the launched Patriot Missile to miss the Scud it was aimed

to. A reboot every few hours was needed to alleviate the problem.

Surprisingly, instances wherein different types of digital devices run out of resources or

miss calculations are still frequent. However, in several of these cases, the problems are caused

by inadequate handling of ill-conditioning which can produce large errors in the solution to

the systems of algebraic equations when there are errors in the input data, rather than by an

inappropriate solution per se.

Matrices are an important tool for solving various mathematical problems. Some types of

problems are modeled directly by systems of linear algebraic equations, which can be large,

whereas some systems of algebraic equations have (ill-conditioned) matrices that can be

obtained when some linear operational equations in infinite dimensions are discretized. These

operational equations can be ill-posed in the sense of Hadamard [2], which leads to ill-condi-

tioned matrices, and can be derived when a problem is modeled by integral or differential

equations. An example in this regard is inverse electroencephalography (inverse EEG), which

is presented in the following section. Electrical activity is generated by the bioelectrical activity

of a large population of neurons working synchronously [3, 4], which is recorded by electrodes

located on the scalp using electroencephalography (EEG). EEG is related to the bioelectrical

sources using a model that considers the head as a conductive inhomogeneous medium of

multiple layers that represent the different regions of the head, i.e., brain, skull, and scalp. This

model, and the quasi-static approximation of the Maxwell equations [3, 5], lead to a boundary

value problem defined in an inhomogeneous medium with appropriate boundary conditions.

It is known that to define an operator we need a domain, a codomain, and a correspondence

rule. In the case of EEG, the operator is defined in the following way:

• The operator has as domain and codomain appropriate Hilbert spaces [5, 6].

• The correspondence rule is given by: this operator associates the bioelectrical source with

the trace of the solution to the boundary value problem (the restriction to the boundary of

the region that represents the head).

Another example is given in electrocardiography (ECG); specifically, inverse ECG consists

of reconstructing cardiac electrical activity from given body surface electrocardiographic mea-

surements (see Fig 1(a)). These measurements are related to the potential using a boundary

value problem defined in an annular region. This region is related to the Cauchy problem for
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the Laplace equation using a boundary value problem, which allows an operational statement

of the form Kφ = V to be made, where K is a linear, injective, and compact operator, while φ
and V belong to appropriate Hilbert spaces [7]. This operational equation, which is ill-posed in

the sense of Hadamard [2], can be discretized, leading to a linear system of equations with an

ill-conditioned matrix that can result in numerical instability in the presence of errors. Nota-

bly, the operator K is linear, compact, and injective, and φ and V belong to appropriate Hilbert

spaces of infinite dimension, which imply that K−1 (the inverse operator of K) is not continu-

ous [2]. Therefore, the matrices obtained when the operational equation Kφ = V is discretized

are ill-conditioned. These operational equations appear in various practical problems, such as

the source and potential identification problems. To handle this numerical instability, regulari-

zation methods can be employed, such as Tikhonov, Lavrentiev, and Landweber. These meth-

ods have been applied to several practical problems, e.g., inverse EEG, ECG, problems in

geophysics, the Cauchy problem, and the Laplace and Helmholtz equations among others [2,

3, 7–12]. Furthermore, these methods allow the numerical instability present in the ill-posed

problems (in the sense of Hadamard) [2] to be addressed. Other applications include photoa-

coustic tomography and tomography imaging. In the former case, the Tikhonov filter uses a

temporal data deconvolution method in the filtered back-projection algorithm [13]. In the lat-

ter, due to the physical conditions of the data acquisition process, it is common to find a noisy,

incomplete set of unequally spaced projections wherein this problem is ill-posed [14]. One

more application in which matrices are used consists of Polynomial probability distribution

estimation based on N statistical moments from each distribution, which is essential in applied

statistical analysis in diverse scientific fields [15].

In this work, several analyses of ill-conditioned matrix inversion are presented in terms of

trade-offs among precision, throughput, efficiency, error, and area, where diverse field-pro-

grammable gate array (FPGA) technologies are evaluated. Specifically, we emphasize that two

important problems may arise when dealing with precision in computations:

• There are several cases (ill-conditioned matrices) where the results will not improve, no mat-

ter how much precision is increased, and increasing precision will make a system more sen-

sitive to measurement or input data errors (this is shown in Fig 2). Furthermore, if the

Fig 1. RegionO = O1 [ S1 [ O2. The source g is defined on the boundary S1 for (a) ECG and (b) EEG.

https://doi.org/10.1371/journal.pone.0234293.g001
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elements of the matrix are approximated to s digits using inadequate precision the computed

solution to the disturbed system can be too far from the exact solution to the undisturbed

system, as shown in Table 3.

• We must consider cases where the solution might require increasing precision to an ade-

quate number of s digits, where embedded systems and mobile devices might have insuffi-

cient available hardware resources, which becomes an infeasible option (as exemplified in

Table 2). In these cases, a limited number of input and output blocks (IOBs) could be used

for implementation.

These problems are the motivation for this study, given the relevance of analyzing the

behavior of a system when precision is increased, along with the different trade-offs related to

this increment, especially when effects such as ill-conditioning cause a system to deliver inade-

quate results. The rest of the work presented in this article is devoted to answering the follow-

ing research question:

• How does the presence of ill-conditioning affect the optimal number of decimal digits used

when calculating an inverse matrix, and what would be the consequences, in terms of

resource consumption, if precision in such calculations was increased?

With respect to the first part of the question, we developed ad hoc examples, covering two

representative case studies for extreme situations: one where truncation is performed with too

few decimal digits, and another where an adequate number of decimal digits is used. These

examples are intended to connect ill-conditioning and precision with consumption of hard-

ware resources. Regarding the second part of the question, different implementations using

several different FPGA technologies are presented to evaluate the impact of the use of different

precision levels. We compared the main characteristics of our implementations, such as matrix

size, solution algorithm, and resource consumption with respect to similar state-of-the-art

solutions.

The main contributions of the results in this study are as follows:

• Two case studies showing an analysis of trade-offs in varying truncation and precision on

calculations of the inverse matrix and the solution to the associated system of equations are

presented. In the first case, using too few decimal digits causes error amplification; in the sec-

ond case, an adequate number of decimal digits produces a more accurate solution.

• The adjoint matrix inversion method was implemented for a 2 × 2 matrix, where different

levels of precision and devices were used, which allowed us to thoroughly analyze trade-offs

Fig 2. Solutions to the system in Eq (8). Approximate solutions without regularization for (a) n = 100 and (b) n = 30. (c) Approximate solution with regularization for

n = 30.

https://doi.org/10.1371/journal.pone.0234293.g002
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at different precision levels. With this, we were able to measure how changing precision

affects the resources needed for calculations, wherein limited resources might constrain

implementation of certain algorithms.

• The most important contribution of this work consists of connecting conclusions from

the ill-conditioning case studies with those derived from hardware implementations. More-

over, we can consider the connection is between real-life problem-solving and hardware

resources. In this work, the effects of precision in the calculations in terms of resource con-

sumption on the algorithms have been clarified through implementation on different hard-

ware technologies; particularly, the demonstration with the calculation of the inverse of a

2 × 2 matrix using the adjoint matrix inversion method. These effects can considerably be

aggravated with erroneous calculation results when the matrix is ill-conditioned and this is

not taken into account in the implementation of the algorithm.

These results, although determined from specific case studies, can be easily extrapolated to

real-life problems.

In the following section, we explain the primary concepts of operational equations of the

first kind. We then proceed to explain the relevance of precision in digital calculations, fol-

lowed by the methods used for the analysis performed. We then present our experimental

results, which is followed by a discussion section. Finally, we present the conclusions drawn

from this work.

Operational equations of the first kind and their discretization

Integral equations of the form

Z b

a
kðt; sÞf ðsÞds ¼ gðtÞ ð1Þ

appear in several applications, where t 2 [c, d] and k(t, s) is called the kernel of the operator.

Some examples are: a) kðt; sÞ ¼ 1

jt� sj, which corresponds to the case of an electric potential, and

b) kðt; sÞ ¼ exp � ðt� sÞ
2

2b2

� �
, which is a kernel that models (in one dimension) the long-time aver-

age effects of atmospheric turbulence on light propagation [16]. In general, Eq (1) can be writ-

ten as follows:

Kðf ÞðtÞ ¼ gðtÞ ð2Þ

where the operator K acts between appropriate spaces. The operational form of Eq (2) is used

to study inverse EEG and ECG, in optics, in inverse geophysical and atmospheric studies, and

in other applications [3, 10–12, 16, 17]. As an example of this, the potential produced in the

head by a bioelectrical source g located on the cerebral cortex of the brain is given by the fol-

lowing boundary value problem: Find u1 and u2 such that

� s1Du1 ¼ 0 in O1; ð3Þ

� s2Du2 ¼ 0 in O2; ð4Þ

u1 ¼ u2 on S1; ð5Þ
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s1

@u1

@n1

¼ s2

@u2

@n2

þ g on S1; ð6Þ

s2

@u2

@n2

¼ 0 on S2; ð7Þ

where O1 [ S1 [ O2�<
d, with d = 2 or 3, is a sufficiently smooth region. The positive con-

stants σ1 and σ2 are the conductivities of regions O1 and O2, respectively (see Fig 1(b)). The

function g represents the source defined on the interface S1, while n1 and n2 are the unit out-

ward normal vectors on the boundary of O1 and O2, respectively. Note that, in particular,

n2 = −n1 on the interface S1. Let u be the solution to problem (3)–(7) inO and define ui ¼ uj
Oi

,

i = 1, 2. Δ represents the Laplace operator, which is also denoted byr2. An operator A is

defined by the following correspondence rule: this operator associates the bioelectrical source

with the trace (the restriction to the boundary of O) of the solution to problem (3)–(7). The

operator has as domain and codomain appropriate Hilbert spaces [5, 6]. Using the previous

correspondence rule, it is possible to define an operational equation, that has the form of (2),

and that allows the problem of identifying sources defined on S1 to be studied. The inverse

operator A−1 is not continuous and leads to numerical instability in the sense of Hadamard of

the problem, which is the cause of ill-posedness [2].

Eq (2) can be discretized in the following form:

Kx ¼ y ð8Þ

where K is a matrix such that Kij = k(ti, sj), ftig
n
i¼1

and fsjg
n
i¼1

are partitions of the intervals [a,

b] and [c, d], x = (f(s1), f(s2), . . ., f(sn))), and y = (g(t1), g(t2), . . ., g(tn))), respectively. To deter-

mine an approximate solution to the operational equation, we must find the solution to the

corresponding system of algebraic equations. As an example, we consider the following inte-

gral operator K: L2(0, 1)! L2(0, 1), such that

Kðf ÞðtÞ ¼ gðtÞ ¼
Z 1

0

ð1þ tsÞetsf ðsÞds; 0 < t < 1 ð9Þ

where L2(0, 1) represents the space of square functions. The operator K is injective [2]. We

consider a regular partition of the interval [0, 1] of length h for both s and t, i.e., the same parti-

tion is used for the integration interval and the evaluation of function g. The matrix of the

system is given by Kij ¼ hð1þ tisjÞe
tisj . The solution to the integral equation in (9) is f(s) = 1

for g(t) = et. Fig 2(a) shows a plot of the solution to (8) for n = 100, and Fig 2(b) shows a plot of

the solution for n = 30. Similar results are obtained for different values of n. Notice that the

approximate solution, which was obtained from the corresponding system of algebraic equa-

tions, is far from the exact solution (f(s) = 1). This numerical instability is a consequence of the

high condition number of the matrix corresponding to the system in (8). For n = 100, the sys-

tem was solved using MATLAB, where cond(A) = 7.0253 × 1018. For n = 30, cond(A) =

2.3896 × 1018 (in both cases, cond(A) was obtained using MATLAB’s cond function). The inte-

gral Eq (9) is ill-posed in the sense of Hadamard because the inverse of the operator is not con-

tinuous, which leads to numerical instability when the right side of the equation has errors.

Numerical instability can be handled using the Tikhonov regularization method, which

consists of minimizing the following functional: JaðxÞ ¼ kKx � yk2
þ akxk2

, where

ky − yδkL2(0,1) < δ, and α> 0 is called the Tikhonov regularization parameter, which must be

chosen in terms of δ. If the regularization parameter is chosen such that d2

aðdÞ
! 0 when δ! 0,

then xα! x, where x is the exact solution for the exact right side y [2]. Fig 2(c) shows the
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regularized solution using the Tikhonov regularization method for δ = 0.1 and α = 10−5. Vec-

tor yδ was obtained by adding a random vector using MATLAB’s rand function.

In the following sections, we present some problems that appear in these systems, which are

related to their numerical instability and create some difficulties in the hardware implementa-

tion, such as, the need to increase precision, and as consequence of this, to require more hard-

ware resources as presented in the discussion section.

Precision

To understand the relevance of precision, it must be distinguished from accuracy. Accuracy

refers to how close a measured value (e.g., an EEG or ECG voltage) is to its true value, while

precision refers to repeatability when a value is measured (how close a new measured value

will be to a previously obtained value). When measuring accuracy, random and systematic

effects cause displacement from the actual value. Precision describes the variability of repeated

measurements when the same measurement method is used. Under these conditions, increas-

ing precision is useful for providing consistency when values are repeatedly measured, as in

the aforementioned cases of EEG or ECG, where voltage data are obtained over time when

measuring the electrical activity of the brain and heart, respectively. Low precision not only

reduces the amount of resources needed significantly, but also tends to generate inadequate

results in certain applications. It is generally thought that, by increasing precision in computa-

tions, results will automatically improve, despite the increase in required hardware resources

or energy consumption.

In several applications and digital systems, such as FPGAs and microcomputers, an impor-

tant numeric representation corresponds to fixed-point notation, where p bits can represent

up to 2p different consecutive integers. To represent negative numbers, the first bit is used to

indicate the sign, and 2p−1 positive and 2p−1 negative integers can be represented. If an integer,

with a corresponding fraction, is to be represented using fixed-point notation, the p bits are

divided into two parts: the one to the left of the implied (fixed) binary point represents the

integer part, while the one to its right represents the fraction.

Floating-point notation, on the other hand, is used to represent rational numbers, with a

mantissa (M) and an exponent (E) (in a similar fashion to scientific notation). Using this nota-

tion, M × 2E is a valid representation of a number; and the number of bits m and e (the preci-

sion of the representation), reserved for the mantissa and exponent, respectively, determines

how many different numbers can be represented. As in the case of fixed-point notation, the

first bit (S) can be used to indicate the sign of the number. In addition, the exponent E is a

signed number where, if E is negative, the represented number is close to 0.

Popular precision levels used for floating point calculations are i) half precision (HP), ii)

single precision (SP), iii) double precision (DP), iv) extra precision (EP), and v) quadruple pre-

cision (QP). Further details are provided in Table 1.

When comparing fixed-point and floating-point representations, the latter is more exact

and allows the representation of bigger and smaller numbers than the former. With the draw-

back that its software and hardware implementations are more complex, which necessitates

the analysis and development of new methods to improve the performance while using float-

ing-point representations.

Methods

The design exploration carried out in this article focuses on analyzing the trade-offs found

when precision should be increased or decreased while calculating the inverse matrix in the
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presence of ill-conditioning. We will observe how truncation affects systems in a different

form when it appears in different precision levels.

Precision is key because it directly affects computation rate in processing, control, automa-

tion, and optimization problems, among others. In addition, one of the current research direc-

tions in embedded systems is the development of applications for Internet of Things (IoT),

domotics, Industrial IoT (IIoT), and Industry 4.0 technologies; therefore, depending on the

particular problem, each architecture must be designed to meet a set of specifications or

requirements.

This emergence of embedded systems and high precision applications is a strong motiva-

tion for analysis of two aspects of matrix calculations: i) the trade-offs that exist when precision

in ill-conditioned matrices is modified; ii) how available hardware resources, such as memory,

number of gates, and power consumption change, and their effects on throughput and

efficiency.

For the analysis developed in this article, the adjoint matrix inversion method is imple-

mented for a matrix A: A� 1 ¼
1

detðAÞ
adjðAÞ ¼

1

ad � bc

d � b

� c a

" #

.

As a matter of fact, there are other alternatives for calculating the inverse of a given matrix,

such as Gauss-Jordan elimination and QR decomposition (where a matrix M is decomposed

into a product M = QR of an orthogonal matrix Q and an upper triangular matrix R). More-

over, some methods are specifically designed for calculating the inverse of ill-conditioned

matrices in an approximate way, as shown in [18]. Nevertheless, using any of such methods

would not allow assessing the effects of ill-conditioning in results as we intend. In particular,

the solutions to the system of linear equations for data with errors and without errors can be

far from each other.

The hardware architecture presented for inversion of a 2 × 2 matrix uses the full unrolling

technique to perform the operations in parallel, as shown in Fig 3. In the diagram, shaded

blocks represent hardware processing modules, and yellow blocks are IOBs, whereas white

blocks are Simulink modules. The first two block types (shaded and yellow) are modules that

constitute the hardware architecture, while the third block type (white blocks) enables signals

that are external to the architecture. This last block type is used to represent the functionality

of the implemented algorithm.

For simplicity, the inverse of a fixed-size matrix (2 × 2) was chosen as an example, and the

adjoint matrix inversion method was used. Our main interest is centered in two aspects: i)

determining the effects of truncation error; ii) how resource requirements grow during com-

putation of the inverse matrix as precision increases. How requirements grow with the matrix

size was not considered. The selected matrix size and the implemented adjoint matrix method

Table 1. Main characteristics of popular precision levels.

Precision Bits for sign (s) Bits for exponent (e) Bits for mantissa (m) Total bits Smallest positive number Largest positive number

Half 1 5 10 16 2−14 � 6.1 × 10−5 (2 − 2−10) × 215 � 6.5 × 104

Single 1 8 23 32 2−126� 1.2 × 10−38 (2 − 2−23) × 2127 � 3.4 × 1038

Double 1 11 52 64 2−1022 � 2.2 × 10−308 (2 − 2−52) × 21023� 1.8 × 10308

Extra 1 15 64 80 2−16382 � 3.4 × 10−4932 (2 − 2−64) × 216383� 1.9 × 104932

Quadruple 1 15 112 128 2−16382 � 3.4 × 10−4932 (2 − 2−112) × 216383� 1.2 × 104932

Bits reserved for the sign, exponent, and mantissa for half, single, double, extra, and quadruple precision. The largest and smallest positive numbers that can be

represented are also shown for reference.

https://doi.org/10.1371/journal.pone.0234293.t001

PLOS ONE Analysis of trade-offs under ill-conditioning with different precision levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0234293 June 19, 2020 8 / 26

https://doi.org/10.1371/journal.pone.0234293.t001
https://doi.org/10.1371/journal.pone.0234293


enable a simple and fast determination of the inverse of the matrix. This prevents the evalua-

tion of required resources depending on the algorithm, which, if scalability to different matrix

sizes is considered, must be suitably modified. Nevertheless, the issues indicated here also arise

in real-life situations, where the matrix size obtained is much larger, which might make it diffi-

cult to perceive these problems, such as in the examples shown in the section devoted to the

operational equations of the first kind and their discretization.

The process for the implementation of the matrix inversion method is divided into three

steps: 1) calculating the determinant, 2) calculating the co-factors and their division to gener-

ate the inverse matrix, and 3) defining control logic to indicate the end of the general calcula-

tion. The architecture is based on the fact that different data bus sizes are explored, and that is

reflected in the use of more bits and interconnection cables. This is precisely the point of

design exploration since it is necessary to know the impact of increasing precision and, conse-

quently, increasing the number of interconnection cables.

The architecture has four input buses (the 4 elements of matrix A) and six output buses (the

4 elements of A−1, and two pines, Ready and ErrorDivBy0, explained next). As we mentioned,

the first step in the implementation of the matrix inversion method is the calculation of the

determinant, which is done using the three upper shaded blocks, i.e., two multipliers and a

subtractor. The second step is the calculation of co-factors (which requires the block for chang-

ing the sign of the determinant) and its division by the determinant (9 divisors). Finally, the

third step is reflected by the modules in the lower part, where the counter is initiated by an

external signal, the counter value is compared with a constant, and the comparator’s signal is

Fig 3. Proposed architecture. Architecture for computation of a 2 × 2 inverse matrix using the full unrolling technique.

https://doi.org/10.1371/journal.pone.0234293.g003
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delayed by four clock cycles to generate flags indicating the process has completed (output

Ready). The output error signal if the determinant is zero is ErrorDivBy0, indicating A does

not have an inverse.

In this work, four designs using the same architecture were evaluated: HP, SP, DP, and EP.

Each design is differentiated by its data buses, as previously mentioned (see Table 2). The stan-

dard for extra precision is defined using 80 bits. However, in this work, the design has a size of

79 bits due to restrictions of the Vivado Design Suite 2019.2 since System Generator, which is a

part of Vivado’s suite, does not allow using more than 79 bits for representing floating-point

numbers. These designs were not implemented on all devices, because the number of IOBs is

insufficient in most of the used FPGA devices: Artix-7 xc7a200tffg1156-1 and Kintex-7
xc7k325tfbg900-1 have 500 IOBs, and Spartan-7 xc7s100fgga676-1 has 400 IOBs. Only Virtex-
7 xc7vx1140tflg1930-1 has sufficient IOBs (1100).

For the proposed hardware architecture, the methodology focuses on four points: a) the

effects of precision with errors in ill-conditioned matrices; b) the effects of architecture design

and different types of precision; c) the effects of the hardware architecture implementation

according to physical requirements of the embedded systems; d) the effects of different FPGA

technologies.

Specifically, the following goals were covered with this work. i) To illustrate the effects of

changes in precision, and to show that not all real numbers can be discretized, yet only a few

that are limited by the number of bits; ii) to show the effects of truncation and ill-conditioning

in matrices; iii) to define metrics and trade-off analysis; iv) to show the effects of ill-condi-

tioned matrices, demonstrating the effect of noise; v) to define and explore trade-offs between

precision and ill-conditioning; vi) to define and explore trade-offs between precision and use

of hardware resources; vii) to define and explore trade-offs between precision and perfor-

mance (throughput and efficiency) of the different FPGA technologies.

The following section shows the effects of different trade-offs: on the one hand, between

truncation and precision; on the other hand, between hardware implementations (evaluated in

terms of used hardware resources, throughput, and efficiency), and precision, where the effect

of precision on ill-conditioned matrices was analyzed using MATLAB R2019a, the hardware

architecture was developed using System Generator 2019.2, and Vivado 2019.2 was used to

implement the hardware architecture on different FPGA devices.

Results

Trade-off analyses were carried out to obtain a 2 × 2 inverse matrix, where MATLAB was used

to truncate to lower or greater precision, and the data bus size was adjusted to accommodate

each precision level.

Table 2. Designs and used devices.

Design (name)—Format (number size) IOBs Spartan-7 Artix-7 Kintex-7 Virtex-7
Half precision (HP)—16 bits 130 x x x x

Simple precision (SP)—32 bits 258 x x x x

Double precision (DP)—64 bits 514 x

Extra precision (EP)—79 bits 634 x

The number of pines is computed using IOBs = 8p + 2, where p is the precision size.

https://doi.org/10.1371/journal.pone.0234293.t002

PLOS ONE Analysis of trade-offs under ill-conditioning with different precision levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0234293 June 19, 2020 10 / 26

https://doi.org/10.1371/journal.pone.0234293.t002
https://doi.org/10.1371/journal.pone.0234293


Trade-off analysis: Truncation and precision

In this section, results from two case studies are used to show the effect of having lower or

greater precision, where the mantissa and exponent in the floating-point representation are

changed. In these analyses, the following matrix is considered: A ¼
1 1

0 ε

 !

where ε takes

different positive small values less than 10−6, where det(A) = ε, and the inverse of matrix A is

A� 1 ¼
1 � 1=ε

0 1=ε

 !

. We consider the linear system AX = B, for the input data B ¼
1

1

 !

,

whose exact solution is
1 � 1=ε

1=ε

 !

, which is denoted by Xexact. In this case, if ε is very small,

A is a nearly singular matrix because det(A) is approximately zero. This produces instability in

solving the system of equations AX = B when ε is truncated (or rounded) to s digits because

the condition number of matrix A is a very large number, as shown in Table 3. For example, if

we consider the system of equations AX = B, with ε = (1/3) × 10−7, and if ε is truncated to 4

digits, there is no solution to the corresponding approximate system using the method pro-

posed here (although there is an infinite number of solutions using the algebraic method). If ε
is truncated to 8 digits, the approximate solution to the system may be far from the exact solu-

tion to the original system, as shown in Table 3. The condition number is used to analyze the

numerical instability that appears when solving the system of equations, which is defined as

follows:

Definition 1. Let ⫴�⫴ be a subordinate norm and A 2Mm�n be an invertible matrix. The
number coad(A) = ⫴A⫴ ⫴A−1⫴ is called the condition number of the matrix associated to the
norm ⫴A⫴. If we consider the Euclidean norm on<d, the subordinate norm ⫴A⫴2 is defined
in the following form: ⫴A⫴2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðAtAÞ

p
where ρ(A) ≔max{|λ|: λ is an eigenvalue of A}

denotes the spectral radius of A, and a subordinate norm ⫴�⫴ for a matrix A is defined as
⫴A⫴ ¼ supx2<d

kAxk
kxk .

Table 3. Numeric results by truncating ε to too few digits.

ε (1/3) × 10−7 (1/3) × 10−15 (1/3) × 10−31

Truncation digits (s) 8 16 32

εapprox 3 × 10−8 3 × 10−16 3 × 10−32

cond(A) 6.0000 × 107 6.0000 × 1015 6.0000 × 1031

cond(Aapprox) 6.6667 × 107 6.6667 × 1015 6.6667 × 1031

A−1
1 � 3:0000� 107

0 3:0000� 107

 !
1 � 3:0000� 1015

0 3:0000� 1015

 !
1 � 3:0000� 1031

0 3:0000� 1031

 !

A� 1
approx 1 � 3:3333� 107

0 3:3333� 107

 !
1 � 3:3333� 1015

0 3:3333� 1015

 !
1 � 3:3333� 1031

0 3:3333� 1031

 !

Xexact (−3.0000 × 107, 3.0000 × 107)t (−3.0000 × 1015, 3.0000 × 1015)t (−3.0000 × 1031, 3.0000 × 1031)t

Xapprox (−3.3333 × 107, 3.3333 × 107)t (−3.3333 × 1015, 3.3333 × 1015)t (−3.3333 × 1031, 3.3333 × 1031)t

AE(Xapprox, Xexact) 4.7140 × 106 4.7140 × 1014 4.7140 × 1030

RE(Xapprox, Xexact) 0.1111 0.1111 0.1111

ε is truncated to 8, 16, and 32 digits.

https://doi.org/10.1371/journal.pone.0234293.t003
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Estimating the condition number is a topic of interest for the scientific community since it

is important when describing the effectiveness of new preconditioners or selecting adequate

preconditioners [19].

For approximate values of ε, we consider solving the previous linear system by approximat-

ing A as follows: Aapprox ¼
1 1

0 εapprox

 !

, where εapprox is a truncation of ε to s digits. In this

case, det(Aapprox) = εapprox.
As a didactic example of the effect of truncation on an inverse matrix calculation, we have:

Example. We consider the matrix A�1
¼

1 1

0 �1

 !

, where �1 = 0.011; and

A�2
¼

2 1

0 �1

 !

, where �2 = 0.01. The inverse matrices are

A� 1
�1
¼ 1

�1

�1 � 1

0 1

 !

�
1 � 90:90

0 90:90

 !

, and A� 1
�1
¼ 1

�1

�2 � 2

0 1

 !

�
2 � 100

0 100

 !

, respec-

tively. We can see that the inverse matrices are significantly different, even if �1 and �2 are simi-

lar. The effect of truncation on the solution to these systems is illustrated as follows: we

consider the system AX = B with matrices given by A�1
and A�2

, where the right side is

B ¼
1

1

 !

. The respective solutions are
x1

1

x1
2

 !

¼
� 89:90

90:90

 !

and
x2

1

x2
2

 !

¼
� 99:90

100

 !

,

and the Euclidean distance between both solutions is 13.52.

In the following, we present two different case studies with respect to truncation of ε. In

Case Study 1, ε is truncated to too few decimal places; in Case Study 2, ε is truncated to an ade-

quate number of decimal places (which is defined in terms of the desired precision, depending

on the value of the smallest input number, in this case, ε).

Case Study 1 (too few decimal digits): Table 3 shows the errors in the solution to the sys-

tem AX = B when ε is truncated to s digits. In this table, the Euclidean distance between X and

Xapprox is 4.7140 × 106 when ε ¼ 1

3
� 10� 7. However, the absolute error (AE) between the exact

and approximate solutions is 4.7140 × 106, which illustrates the level of numerical instability.

The case of ε ¼ 1

3
� 10� 31 is even more dramatic since the Euclidean distance is 4.7140 × 1030,

which presents a great problem for applications, that is, the numerical instability could have

important effects on the solution. Notice that the condition number grows, which shows that

errors can be amplified. Similar results are obtained when ε takes smaller values. For example,

when ε ¼ 1

3
� 10� 63 is truncated to 64 digits, an AE of 4.7140 × 1062 is obtained and the error

in the elements of the approximate inverse of A increases, which could be a very large error for

some applied problems.

As we can observe in this case study and in general, ill-conditioning in a matrix can lead to

a situation wherein the solution to a system with erroneous data can be too far from the solu-

tion with exact data (as shown in Table 3). This fact is independent of the numeric method

used to compute the solution to the system, since similar results are obtained for various

methods.

Remark: The ill-conditioning of a matrix does not depend on errors (e.g., by rounding up

and down, which includes truncation) since it is inherent in the matrix itself. Ill-conditioning

amplifies any errors that appear in the system, such as rounding errors or errors inherent in

the measurement devices. Conversely, truncation is occasionally used for saving hardware or
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software resources, or both. Hence, we analyzed the effects of truncation with ill-conditioned

matrices.

Case Study 2 (adequate number of decimal digits): Table 4 considers the solution to the

system AX = B, when ε = (1/3) × 10−7, whose exact solution is
� 3:0000� 107

3:0000� 107

 !

; in this

case, A� 1 ¼
1 � 3:0000� 107

0 3:0000� 107

 !

. It is observed that, by increasing the precision of ε to s

digits, the approximate solution Xapprox reaches closer to the exact solution Xexact. For example,

when ε = (1/3) × 10−7 is approximated with 8 digits, the AE and relative error (RE) in the

approximate solution xapprox are 4.7140 × 106 and 1.1111, respectively, which are greater than

the AE and RE when ε is approximated with 16 digits, where the AE and RE are 0.0424 and

1.0000 × 10−9, respectively. In this case, we get a good approximation of the inverse matrix

A−1. Moreover, if ε = (1/3) × 10−7 is truncated to 32 digits, both AE and RE are zero (also

shown in Table 4). Observe that precision in the number of digits will depend on the specific

problem to be solved, e.g., in [20], some parameters of the mathematical model are in the inter-

val [10−20, 1020].

From this case study, one finds it is feasible to determine the adequate number of digits s
that can reduce calculation errors. In this case, given that ε = (1/3) × 10−7, the adequate num-

ber is 16 (in terms of precision). Nevertheless, as we will see in the following analysis, there is

an inherent cost in increasing precision that must be considered when determining if such a

solution is viable (e.g., more than 16 digits might consume unnecessary hardware resources).

Trade-off analysis: Hardware implementations and performance

Synthesis results for the proposed hardware architecture are presented in this section. For the

purpose of validation and prototyping, this architecture is synthesized, mapped, placed and

routed using Spartan-7, Artix-7, Kintex-7, and Virtex-7 FPGAs; Vivado 2019.2 was used as the

design tool. The implemented architecture was simulated and verified considering real-time

operation conditions by using design conformance test data.

Several metrics are considered for evaluating these architectures and analyzing different

trade-offs. Some metrics are provided by the tool, such as the number of slices, look-up tables

(LUTs), flip-flops (FFs), block random access memories (BRAMs), digital signal processors

(DSPs), and IOBs, along with the minimum clock period and power consumption. In addition,

Table 4. Numeric results when precision of ε = (1/3) × 10−7 was increased to find an adequate number of decimal digits.

Truncation digits (s) 8 (inadequate) 16 (adequate) 32 (adequate)

εapprox 3 × 10−8 333333333 × 10−16 3333. . .3333 × 10−32

cond(A) 6.0000 × 107 6.0000 × 107 6.0000 × 107

cond(Aapprox) 6.6667 × 107 6.0000 × 107 6.0000 × 107

A� 1
approx 1 � 3:3333� 107

0 3:3333� 107

 !
1 � 3:0000� 107

0 3:0000� 107

 !
1 � 3:0000� 107

0 3:0000� 107

 !

Xapprox (−3.3333 × 107, 3.3333 × 107)t (−3.0000 × 107, 3.0000 × 107)t (−3.0000 × 107, 3.0000 × 107)t

AE(Xapprox, Xexact) 4.7140 × 106 0.0424 0

RE(Xapprox, Xexact) 0.1111 1.0000 × 10−9 0

The number of digits is considered adequate if AE and RE are small enough (although the term ‘small’ depends on the specific problem).

https://doi.org/10.1371/journal.pone.0234293.t004
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other metrics can be obtained by using certain equations; these metrics are throughput and

efficiency.

Throughput depends on the number of bits processed per second (bps), where the clock

frequency is obtained by implementing the architecture on different FPGA technologies (see

Eq (10)). The second metric is implementation efficiency, which is a measure of these types of

hardware implementations and is defined as the ratio between the reached throughput and the

physical area of the device (i.e., amount of hardware resources) used for implementation, such

as the number of LUTs that each implementation consumes (bps/LUT) and the number of

flip-flops (FFs) used (bps/FF) (see Eq (11)).

Throughput ¼ Data input � Clock frequency=Clock cycles; ð10Þ

Efficiency ¼ Throughput=Area: ð11Þ

Considering these metrics, the hardware architecture was implemented using four technol-

ogies (Artix-7, Kintex-7, Spartan-7, and Virtex-7) for the MP and SP versions (see Tables 5 and

6, respectively), and one technology (Virtex-7) for the DP and EP versions (see Tables 7 and 8,

respectively).

Figs 4 and 5 show the results when the hardware architecture was implemented on different

FPGAs. These metrics were obtained from the Vivado 2019.2 tool for each FPGA used. Differ-

ent available numbers of LUTs, look-up table random access memory (LUTRAM), FFs, DSPs

and IOBs are presented. The critical path time is also shown, which defines the minimum

clock period and, consequently, the maximum clock frequency. Next, two different analyses

are considered: 1) horizontal, where the same designs (HP, SP, DP, or EP) are compared using

different devices, and 2) vertical, where different designs are compared, which implies different

required precision levels.

The first analysis shows that the required number of LUTs for each design is highly similar,

regardless of the FPGA being used. The amount of LUTRAM (plot not shown), and the num-

ber of FFs, DSPs, and IOBs are the same for all FPGAs. The clock periods in the Artix-7 and

Spartan-7 FPGAs are similar, while the first clock period is larger for Kintex-7 and Virtex-7.

For example, the HP design requires 28.2 ns (Spartan-7) versus 17.33 ns (Kintex-7). This

Table 5. Implementation results for the MP-based hardware architecture.

MP

Metric (Hw) Artix-7

xc7a200tffg1156-1

Kintex-7

xc7k325tfbg900-1

Spartan-7

xc7s100fgga676-1

Virtex-7

xc7vx1140tflg1930-1

LUT 1045 1031 1044 1030

LUTRAM 2

FF 214

DSP 4

IOB 131

Data size (bits) 64

Latency (clk cycles) 6

Time (ns) 27.346 17.33 28.2 17.275

Throughput (Mbps) 390.06 615.50 378.25 617.46

Efficiency (Mbps/LUT) 0.373266164 0.596996102 0.362308995 0.599478267

Efficiency (Mbps/FF) 1.82272496 2.876182156 1.767526126 2.88533932

Power (W) 0.088 0.087 0.087 0.087

https://doi.org/10.1371/journal.pone.0234293.t005
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Table 6. Implementation results for the SP-based hardware architecture.

SP

Metric (Hw) Artix-7

xc7a200tffg1156-1

Kintex-7

xc7k325tfbg900-1

Spartan-7

xc7s100fgga676-1

Virtex-7

xc7vx1140tflg1930-1

LUT 3478 3456 3476 3456

LUTRAM 2

FF 308

DSP 6

IOB 259

Data size (bits) 128

Latency (clk cycles) 6

Time (ns) 64.204 40.63 66.976 40.231

Throughput (Mbps) 166.14 262.53 159.26 265.14

Efficiency (Mbps/LUT) 0.047768 0.07596406 0.045817327 0.076717451

Efficiency (Mbps/FF) 0.539406184 0.852375945 0.517081262 0.860829575

Power (W) 0.198 0.202 0.193 0.203

https://doi.org/10.1371/journal.pone.0234293.t006

Table 7. Implementation results for the DP-based hardware architecture.

DP

Metric (Hw) Virtex-7

xc7vx1140tflg1930-1

LUT 13381

LUTRAM 2

FF 628

DSP 22

IOB 515

Data size (bits) 256

Latency (clk cycles) 6

Time (ns) 126.047

Throughput (Mbps) 84.62

Efficiency (Mbps/LUT) 0.006

Efficiency (Mbps/FF) 0.135

Power (W) 0.611

https://doi.org/10.1371/journal.pone.0234293.t007

Table 8. Implementation results for the EP-based hardware architecture.

EP

Metric (Hw) Virtex-7

xc7vx1140tflg1930-1

LUT 19168

LUTRAM 2

FF 746

DSP 34

IOB 635

Data size (bits) 512

Latency (clk cycles) 6

Time (ns) 176.846

Throughput (Mbps) 60.32

Efficiency (Mbps/LUT) 0.003

Efficiency (Mbps/FF) 0.081

Power (W) 0.827

https://doi.org/10.1371/journal.pone.0234293.t008
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Fig 4. (left) LUTs, FFs, DSPs, and IOBs used with different FPGA devices and precision levels (these are presented in inverse order for better

visualization); (center) Similar analysis with Virtex-7 FPGA with different precision levels; (right) Similar analysis for the comparison of precision with

HP and SP using different FPGA devices.

https://doi.org/10.1371/journal.pone.0234293.g004
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means that the same design requires longer computation time for the same operations. In the

case of device power consumption, larger devices (Virtex-7) consume more power, although

each design requires a similar amount of hardware resources, which requires highly similar

power (this is called dynamic power consumption). For example, the SP design consumes

from 193 mW (Spartan-7) to 203 mW (Virtex-7).

Fig 5. (left) Time, total power, and dynamic power used with different FPGA devices and precision levels (these are presented in inverse order for better visualization);

(center) Similar analysis with Virtex-7 FPGA with different precision levels; (right) Similar analysis for the comparison of precision with HP and SP using different

FPGA devices.

https://doi.org/10.1371/journal.pone.0234293.g005
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The HP design considers 16-bit numbers, whereas SP, DP, and EP consider 32, 64, and

79-bit numbers (remember that, in this work, EP design is reduced to 79-bit numbers due to

the restrictions in System Generator 2019.2).

With respect to the second analysis, we highlight that the required number of LUTs in the

SP design is approximately a factor 3.3 larger than that in the HP design, whereas data buses

pass from 16 bits in HP to 32 bits in SP. This change in the number of LUTs is a factor 3.87

larger when the DP and SP designs are compared (passing from 32 bits in SP to 64 bits in DP);

the change for the EP design is a factor 1.43 larger compared to the DP design (passing from

64 bits in DP to 79 bits in EP). In a minor proportion, this occurs because the number of

required FFs increased, whereas the amount of LUTRAM is constant (2) for all designs (this is

why its plot is not shown). Regardless of the FPGA device, the number of DSPs increases from

4 for the HP design to 6 for the SP design; however, it increases to 22 for the DP design, and to

34 for the EP design. Likewise, dynamic power consumption increases from 87 mW for the

HP design to 203 mW (SP), 611 mW (DP), and 827 mW (EP). Finally, considering implemen-

tation on Virtex-7 and the corresponding clock period, the SP, DP, and EP designs require fac-

tor 2.33, 7.29, and 10.21 more time than the HP design. This last metric has a direct effect on

performance. The different growth factors in requirements (LUTs, FFs, DSPs, dynamic power,

and time), with the different precision levels (HP, SP DP, and EP) implemented on Virtex-7,

are presented in Table 9.

The trade-off between physical resources and precision shows that increasing the precision

by a factor 2 requires, in certain cases, more than a factor 2 or 3 more hardware resources and

power consumption, which means that their growth seems to be not linear.

Fig 6 shows how the Vivado tool fits the SP design into different devices. These representa-

tions show the proportion of hardware required to implement the design and the remaining

hardware on the device. The Virtex-7 device is the largest, thus it consumes the most total

power.

Regarding the trade-off between performance and precision, it is necessary to know the

data block size and latency. The HP, SP, DP, and EP designs process four 16, 32, 64, and 79 bit

numbers, respectively. Hence, each design processes, respectively, 64, 128, 256, and 316 bits

when computing a 2 × 2 inverse matrix. Moreover, all designs have a latency of 6 clock cycles

because 4 clock cycles are used to compute the determinant (3 clock cycles for two parallel

multipliers and 1 clock cycle for the subtractor) and 2 clock cycles are used to compute the co-

factors and elements of the inverse matrix (1 clock cycle for changing the sign of the determi-

nant and 1 clock cycle for divisors) (remember Fig 3).

Table 9. Growth factor of the SP, DP, and EP designs.

Concept SP DP EP SP DP EP

Growth factor with respect to the

immediate lower precision level

Growth factor with respect to the HP

design

LUTs 3.3 3.8 1.4 3.3 12.9 18.6

FFs 1.4 2.0 1.1 1.4 2.9 3.4

DSPs 1.5 3.6 1.5 1.5 5.5 8.5

Dynamic power 2.2 3.0 1.3 2.2 6.7 9.2

Time 2.3 3.1 1.4 2.3 7.2 10.2

Implementations on the Virtex-7 FPGA.

https://doi.org/10.1371/journal.pone.0234293.t009

PLOS ONE Analysis of trade-offs under ill-conditioning with different precision levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0234293 June 19, 2020 18 / 26

https://doi.org/10.1371/journal.pone.0234293.t009
https://doi.org/10.1371/journal.pone.0234293


A performance evaluation of the hardware architecture on the FPGA devices (shown in Fig

7) considers throughput (Eq (10)) and two efficiencies: a) throughput/(number of LUT) and

b) throughput/(number of FF), both using Eq (11).

Throughput shows the amount of data (bits) a given implementation processes per unit of

time (in our case, per second). The throughput in the HP design is higher on the Kintex-7 and

Virtex-7 devices, improving 1.43 times when Virtex-7 is compared against Spartan-7, which is

achieved because the Virtex-7 technology delivers better conditions. Throughput decreases

when precision increases. For example, the throughput with Virtex-7 was 617.46 Mbps for HP,

265.14 Mbps for SP, 84.62 Mbps for DP, and 60.32 Mbps for EP. This metric indicates which

technology processes the largest amount of data.

Efficiency shows which implementation uses the hardware resources (in our case, LUTs

and FFs) in a better way, while processing a certain amount of data. The HP design requires

practically the same number of LUTs and FFs in the Kintex-7 and Virtex-7 FPGAs, in which

the highest efficiency is seen. However, efficiency decreases when precision increases. For

example, for the Virtex-7 FPGA, efficiency decreases by 87.14% when precision increases from

16 to 32 bits, by another 92.20% when precision increases from 32 to 64 bits, and by another

50.0% when precision increases from 64 to 79 bits.

Trade-off between performance and precision shows that both throughput and efficiency

drastically decrease when precision increases.

The proposed architecture has a parallel and specific structure, which is scalable because it

is based on invertible matrices using the adjoint method. If new mathematical models require

other matrix sizes (in general a size of n × n), more modules are required according to the

operation count, for example, n!þ n2 þ 3
n nþ1ð Þ

2
� 3

� �� �
multipliers, and n!

2
þ

n nþ1ð Þ

2
� 3

� �� �

adders, where n!

2
determinants of size 2 × 2 are calculated. However, there are other hardware-

design techniques that are more suitable for reducing modules, which will be explored in

future works.

Fig 6. Fitting the SP design into the different devices. (a) Spartan-7, (b) Artix-7, (c) Kintex-7, and (d) Virtex-7.

https://doi.org/10.1371/journal.pone.0234293.g006
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Discussion

As was previously mentioned, matrices appear in several problems involving systems of alge-

braic equations with ill-conditioned matrices. Regularization methods are used to handle ill-

conditioning, among which Tikhonov’s is the most famous. The condition number of a matrix

works as a measure of the system’s sensitivity to errors. These matrices can appear when some

Fig 7. Throughput and efficiency (Mbps/LUT and Mbps/FF, respectively). (left) Different FPGA devices and precision levels; (center) Virtex-7 with different

precision levels; (right) comparison of precision in the HP and SP designs with using different FPGAs. Throughput and efficiency were computed using Eqs (10) and

(11), respectively.

https://doi.org/10.1371/journal.pone.0234293.g007
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operational equations are discretized, yielding a system of higher-order equations. This implies

that significant resources can be required for implementation.

Specifically, in this article, we present a hardware architecture with four designs and differ-

ent precision levels (HP, SP, DP, and EP), where each is implemented on four different FPGA

technologies, thus trade-off analysis considers twelve implementations. Each of the four

designs has a fixed type of data, and other types must be cast to the requirements of some

selected design. In this process, rounding and truncation are necessary. However, critical path,

throughput, efficiency, and amount of hardware resources do not change because they are

dependent, fixed, and inherent characteristics of the implementation on some FPGA. Hence,

once the architecture is implemented, the amount of resources needed for calculations

becomes constant and does not depend on the type of the input data (i.e., if the type of the

input data is different from the type implemented in the architecture, the former is converted

through a casting operation, by filling, truncating, or rounding the number, depending on the

case). For example, if the architecture works with 32-bit floating-point numbers, and the

inputs are 16-bit integers, they must be converted through a casting operation to the equivalent

numbers (or the closest to them) before being entered into the FPGA.

Certain aspects of the results presented in this work are straightforward to researchers from

areas such as electronics, mathematics, physics, or computer science, i.e., a mathematician is

conscious that ill-conditioning will certainly provoke a divergence in the calculation results. In

such cases it will be necessary to apply a regularization method (which is not included in the

FPGA implementations presented in this work) or, at least, consider the precision of the data

used in the calculation of the results while accounting for inherent errors in the data [3, 5, 7,

11, 19–21]. On the other hand, a computer or electronic engineer is conscious of the costs

associated with increasing precision in various calculation (or other aspects, such as the matrix

size), such as the changes (not necessarily proportional, as we have shown) in processing time,

energy, hardware resources, and memory space [22–26].

Several works have addressed ill-conditioning using classical or novel techniques to solve

real-life problems [3, 5, 7, 11, 19–21]; however, in several cases, the problems stated here (lim-

ited resources and ill-conditioning) must be considered to avoid the following complications

and/or limitations:

• creating models despite having limited resources where, although ill-conditioning might be

taken into account, the costs associated with the increased precision are not clear and/or are

minimized, making the modeled solution difficult to apply to real-life problems;

• introducing restrictions on the solution, to avoid ill-conditioning at certain processing

stages, also limiting with this the applicability of such a solution; and

• increasing precision, expecting that this will improve calculation results (by reducing error),

ignoring or disregarding ill-conditioning, making the solution more sensitive to errors.

Comparisons

On the topic of FPGAs used for matrix inversion, Karkooti et al [23] presented an FPGA

implementation of the QR decomposition-based recursive least square (RLS) algorithm using

a Xilinx Virtex-4 FPGA, yielding a 4 × 4 matrix of complex numbers. The authors claim their

architecture is easily scalable to other matrix sizes, with the advantages of being less affected by

impulsive noise and making efficient use of bandwidth. They reported a throughput of 0.13M

updates per second on 14 bits for mantissa, 6 bits for the exponent of floating-point numbers,

and 1 sign bit, requiring 9,117 slices, 22 DSP48, 9 BRAMs and 309 IOBs.
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The work on matrix inversion by Irturk et al. [24] is also based on QR decomposition. The

authors used the Virtex-4 FPGA for 4 × 4 matrix inversion and signal equalization, where 19,

26, and 32-bit precision levels were used (fixed-point arithmetic). They reported, for 4 × 4

matrices: 1) 19-bit implementation requires 3,528 LUTs, 1,731 FFs, 1 BRAM, 12 DSP48, and

2,415 slices, presenting a throughput of 0.18 M updates per second; 2) 26-bit implementation

requires 7,486 LUTs, 3,276 FFs, 1 BRAM, 12 DSP48, and 4,656 slices, presenting a throughput

of 0.14 M updates per second; 3) 32-bit implementation requires 8,804 LUTs, 4,208 FFs, 1

BRAM, 12 DSP48, and 5,640 slices, presenting a throughput of 0.11 M updates per second. For

19-bit precision, the authors illustrated the scalability of their method, presenting results for 1)

6 × 6 matrices: 7,820 slices, 2 BRAMs, and 18 DSP48, reporting a throughput of 0.07M; 2)

8 × 8 matrices: 11,761 slices, 4 BRAMs, and 24 DSP48, with a throughput of 0.03M.

Arias-Garcı́a et al. [26] present mean-error analysis for computing n × n matrix inversion,

where n ranged from 5 to 120. They used a Virtex-5 device for matrix inversion with different

precision levels (32, 40 and 64 bits), although they do not present implementation results for

the full architecture, only for the main modules.

Additionally, Kumar et al [22] implemented the adjoint matrix method using very high

speed integrated circuit hardware description language (VHDL) and an Altera DE1 FPGA,

computing a 3 × 3 matrix of real numbers. According to the authors, the major limitations of

their implementation are i) the implemented method is not suitable for higher-order matrices;

ii) inputs and outputs are in a different format; therefore, the property (A−1)−1 = A cannot be

verified. Although authors do not present results on throughput or efficiency, they report

5,501/18,752 (29%) logic elements (LEs), 80/18,752 (<1%) logic registers (LRs), 36/315 (11%)

I/O pins, and 24/52 (46%) embedded multipliers.

Finally, Ruan [25] presents a C-based implementation for generating pipelined architec-

tures in VHDL for a given n × n matrix. He reports implementations for 1) a 32 × 32 matrix:

8,669 LUTs, 9,024 FFs, 60 DSPs, 44 BRAM18K, operating at 351 MHz, and a latency of

203,676 clock cycles; 2) 20 × 20 matrix: 10,159 LUTs, 10,255 FFs, 60 DSPs, 22 BRAM18K,

operating at 330 MHz, and a latency of 66,063 clock cycles; 3) 16 × 16 matrix: 9,033 LUTs,

10,097 FFs, 60 DSPs, 22 BRAM18K, operating at 313 MHz, and a latency of 45,861 clock

cycles; 4) 8 × 8 matrix: 8,889 LUTs, 9,974 FFs, 60 DSPs, 22 BRAM18K, operating at 330 MHz,

and a latency of 10,765 clock cycles.

One can see that, except for the results from [24, 26], most authors compare their results

with those from other authors without performing an in-depth analysis of trade-offs. One of

these prior studies even examines implementations with non-standard precision levels [23].

One can also see that some prior studies focused on scalability (with respect to matrix dimen-

sion), which is a basic attribute of a system applicable to real-life problems. Nevertheless, a

thorough analysis of the variations and effects in hardware with certain precision require-

ments, like that presented in this paper, or in the presence of anomalies, such as ill-condition-

ing, has not been performed previously, to the best of our knowledge. Without this kind of

analysis, neither increasing precision, nor scaling an architecture, might be satisfactory solu-

tions. Conversely, this will likely generate more problems in terms of obtaining inadequate

results and unnecessary consumption of additional resources. A comparison of results from

earlier studies is shown in Table 10.

Conclusions

In this study, the problem of ill-conditioning and the trade-offs involved in increasing compu-

tational precision in hardware or software was investigated from two perspectives. On the one

hand, the analysis of ill-conditioned matrices, using the didactic examples and case studies
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posed, along with their MATLAB implementation, have shown how increasing precision in

the presence of ill-conditioning might affect the obtained results in a negative way (by increas-

ing error). Hence, in the face of an inadequate handling of precision (i.e., neither carefully

selecting precision, nor applying a regularization or preconditioning method), the solution to

a problem with perturbed data can contain large errors, especially if no attention is paid to the

precision of the data used in the calculation.

From the analysis of trade-offs between truncation and precision, we observe larger errors

when ε is truncated to too few digits (Case Study 1). Conversely, errors are smaller when ε is

truncated to an adequate number of digits (Case Study 2).

Case studies 1 and 2 lead us to conclude that, if we aim at reducing error below a certain

acceptable threshold, we need to determine an optimal precision point, which will prevent the

system/model from becoming too sensitive to measurement errors.

On the other hand, the inverse 2 × 2 matrix calculation results with different FPGAs illus-

trate different trade-offs between hardware resources (use of LUTs, BRAMs, FFs, DSPs, critical

paths, and IOBs), efficiency, and energy consumption as a consequence of increasing compu-

tational precision. The minimum clock period is obtained by implementing the architecture

on a given FPGA device and the maximum clock frequency is the inverse of that period.

Implementation results on the same devices are obtained in order to provide a fair comparison

among different designs. These results describe the advantages and disadvantages of the Spar-
tan-7, Artix-7, Kintex-7, and Virtex-7 devices, and they show the benefits of the proposed

architecture using state-of-the-art FPGAs in their different versions. These results show how

most costs (use of LUTs, BRAMs, FFs, DSPs, critical paths, IOBs, efficiency, and energy con-

sumption) more than double when double precision is used. In general, if more hardware

resources are necessary, the critical paths can be larger. Additionally, the fact that not all

devices were able to handle all precision variations shows that increasing precision will not be

feasible in every scenario.

Specifically, we can see that Virtex-7 and Kintex-7 provide higher throughput than Artix-7
and Spartan-7. The key element is full unrolling because it enables a design to increase

Table 10. Comparative table with respect to other FPGA implementations of matrix inversion methods.

Year Reference Algorithm Device Matrix size Details (slices, LUTs, FFs, Mbps, IOBs, etc)

2005 Karkooti et al. [23] QRD-RLS Virtex-4 4 × 4 9117 Slices, 22 DSP48, 9 BRAMs, 309 IOBs, 0.13M updates

2009 Irturk et al. [24] QRD Virtex-4 4 × 4 19-bit numbers, 3,528 LUTs, 1,731 FFs, 1545BRAM, 12 DSP48, 2,415 slices,

0.18 M updates

4 × 4 26-bit numbers, 7,486 LUTs, 3,276 FFs, 1 BRAM, 12 DSP48, 4,656 slices,

0.14 M updates

4 × 4 32-bit numbers, 8,804 LUTs, 4,208 FFs, 1 BRAM, 12 DSP48, 5,640 slices,

0.11 M updates

2012 Arias-Garcı́a et al.

[26]

Gauss-Jordan Virtex-5 5 × 5–120 × 120 Modules are individually implemented

2014 Kumar et al. [22] Adjoint Matrix, Cayley-

Hamilton

Altera

DE1

3 × 3 5501 LEs, 80 LRs, 36 IOBs, 24 multipliers

2017 Ruan [25] QRD-MGS Virtex-4 32 × 32 8,669 LUTs, 9,024 FFs, 60 DSPs, 44 BRAM18K, 351 MHz, 203,676 clock

cycles

20 × 20 10,159 LUTs, 10,255 FFs, 60 DSPs, 22 BRAM18K, 330 MHz, 66,063 clock

cycles

16 × 16 9,033 LUTs, 10,097 FFs, 60 DSPs, 22 BRAM18K, 313 MHz, 45,861 clock

cycles

8 × 8 8,889 LUTs, 9,974 FFs, 60 DSPs, 22 BRAM18K, 330 MHz, 10,765 clock

cycles

https://doi.org/10.1371/journal.pone.0234293.t010
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throughput, although efficiency decreases. Spartan-7 and Artix-7 provide lower efficiency and

lower throughput while using a similar amount of hardware resources. Table 11 summarizes

the main advantages and disadvantages of using lower or higher precision levels.

The results presented here are as one would expect, except changes in the amount of

resources used in calculations, which seem to grow not linearly with respect to changes in pre-

cision (although proving this is not in the scope of this work). In other words, more accurate

results will be obtained when precision is higher, while calculations will require more time,

energy, and hardware space. Nonetheless, one should note that precision should be carefully

selected and/or regularization or preconditioning methods should be applied if non-ideal con-

ditions are present, as in the case of ill-conditioned matrices. As a result, the model/system will

be less sensitive to small errors, and considerable energy, time, and space would be saved.

As part of future work, we intend to optimize the fully unrolled architecture while analyzing

better alternatives for improving the architecture presented in this work. The use of regulariza-

tion methods alongside changes in precision will be explored in future work.
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Formal analysis: Ignacio Algredo-Badillo, José Julio Conde-Mones, Marı́a Monserrat Morı́n-
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