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AbstrAct
The bone marrow (BM) represents a complex microenvironment containing 

stromal cells, immune cells, osteoclasts, osteoblasts, and hematopoietic cells, which 
are crucial for the immune response, bone formation, and hematopoiesis. Apart from 
soluble factors and direct cell-cell contact, extracellular vesicles (EVs), including 
exosomes, were recently identified as a third mediator for cell communication. Solid 
evidence has already demonstrated the involvement of various BM-derived cells and 
soluble factors in the regulation of multiple biological processes whereas the EV-
mediated message delivery system from the BM has just been explored in recent 
decades. These EVs not only perform physiological functions but can also play a role 
in cancer development, including in Multiple Myeloma (MM) which is a plasma cell 
malignancy predominantly localized in the BM. This review will therefore focus on 
the multiple functions of EVs derived from BM cells, the manipulation of the BM by 
cancer-derived EVs, and the role of BM EVs in MM progression.

IntroductIon

The bone marrow (BM) is the source of blood cells 
and immune cells, and contains a complex environment 
composed of a cellular compartment, an extracellular 
matrix, and a liquid compartment [1]. The communication 
between BM-derived cells, mainly mediated by direct 
cell-to-cell contact, soluble molecules, and extracellular 
vesicles (EVs), maintains the physiological functions of 
the BM. Direct contact involves the interaction of a set 
of receptors and ligands on the cell membrane, leading 
to signal transduction and phenotypic changes in BM-
derived cells, followed by the release of intercellular 
molecules [2, 3]. Soluble molecules, such as growth 
factors, cytokines, and chemokines, released from cells 
bind to the cognate receptors on the surface of target cells, 
leading to the activation or suppression of intracellular 
signaling pathways. EVs, a class of membranous vesicles, 
are secreted by various cell types into the extracellular 
microenvironment and mediate short- and long-range 
communication by stimulating target cells with receptors 
or ligands, transferring membrane receptors to target cells, 
delivering functional intracellular molecules, and inducing 

epigenetic changes in recipient cells [4, 5]. 
Based on the origin of the membrane, EVs can 

be classified into two primary types, termed exosomes 
and shedding vesicles [6]. Exosomes are nanometric 
membrane vesicles derived from late endosomes [7] 
and released through the fusion of multivesicular bodies 
(MVBs) with the plasma membrane [6, 8]. The formation 
of these exosomes starts in early endosomes, which are 
generated by invagination and endocytosis of the plasma 
membrane and its receptors. Intraluminal vesicles (ILVs) 
are generated inside the endosomes by inwards budding, 
and the early endosomes are then termed MVBs [9]. 
MVBs can either fuse with lysosomes or the trans-Golgi 
network, resulting in the degradation or recycling of 
the ILVs, or they can fuse with the plasma membrane, 
in which case the ILVs are released as exosomes [10]. 
Two major mechanisms are important in the formation 
and release of exosomes: the Endosomal Sorting 
Complex Required for Transport (ESCRT)-dependent 
mechanisms and the ESCRT-independent mechanisms 
[11]. The ESCRT exists of four different complexes, each 
involved in different steps of the formation of MVBs 
and the exosome release process [12]. Some of the 
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ESCRT complexes used in the assembly and secretion 
of exosomes, such as ESCRT-III, are also important 
in the release of shedding vesicles [13]. Additionally, 
accessory proteins such as Alix, which is associated with 
ESCRT-III and promotes the intraluminal budding of 
vesicles inside the endosomes, are necessary for optimal 
biogenesis of exosomes [14]. Mechanisms independent 
from this ESCRT-complex involve lipids, tetraspanins 
or heat shock proteins. Ceramide has been shown to play 
an important role in exosome formation, loading and 
secretion, and inhibition of neutral sphingomyelinase 
can impair the secretion of exosomes [15, 16]. Shedding 
vesicles generally referred to as microparticles, ectosomes, 
microvesicles (MVs), exovesicles, and apoptotic blebs are 
secreted by direct budding or shedding from the plasma 
membrane [17]. Exosomes and shedding vesicles both 
contain enzymes, nucleic acids, transcription factors 
and proteins, and are enriched in certain lipid contents 
(sphingomyelin, cholesterol, glycerophospholipid 
and ceramide) [18]. Based on the EV types, different 
methods, including differential centrifugation, density 
gradient centrifugation, size exclusion chromatography, 
immune magnetic sorting or precipitation using easy-
to-use precipitation solutions (eg. ExoQuick and Total 
Exosome Isolation) are commonly used. Due to the similar 
characteristics between some EV types (eg. microparticles 
and MVs) and the lack of standardized methods, the EV 
purity used in most of these studies is quite different, not 
unified and short of quality controls. Therefore there is 
an urgent need to establish standardized protocols to be 
able to interpret functional data correctly. Nevertheless, 
numerous functional studies have already been performed 
and will be discussed here.

In recent years, the close association of EVs 
with the immune response [3, 19], antigen presentation 
[17], tumor cell survival [20], cell migration [21-
23], tumor cell invasion [24], cell differentiation [25], 
and angiogenesis [21, 23] has been demonstrated. As 
communicators, EVs are also involved in the regulation 
of the BM microenvironment and the communication 
between BM-derived cells and cells from other tissues. 
Recent evidence shows that tumor cells, such as breast 
cancer cells, melanoma cells, prostate cancer cells, and 
cholangiocarcinoma cells, from outside the BM can 
disturb the balance of the BM microenvironment and 
educate the BM-derived cells toward a pro-angiogenic 
and pro-metastatic phenotype through EV-mediated 
long-range communication [26-29]. Education of the BM 
microenvironment by tumor-derived EVs further support 
tumor growth, vasculogenesis, invasion, metastasis, and 
immune evasion. Thus, in this review we will provide 
a comprehensive overview of the biological functions 
of EVs, in particular exosomes, derived from normal or 
cancer cells in the BM microenvironment with a specific 
emphasis on the role in multiple myeloma (MM), a 
malignancy localized in the BM.

bM cell-derIved evs

The cellular BM compartment consists of the 
hematopoietic cells which contain the intermediates 
of hematopoiesis and thrombopoiesis, plasma cells, 
and myeloid and lymphoid precursor cells, and the BM 
stroma, including adipocytes, BM stromal cells (BMSCs), 
mesenchymal stromal cells (MSC), osteoblasts, osteoclasts 
and endothelial cells. The EVs derived from the 
intermediates or precursor cells of hematopoiesis have not 
been investigated due to the instability of these not fully 
differentiated populations. Thus, studies mainly focused 
on the functions of EVs derived from BM stroma cells 
and fully differentiated hematopoietic cells and showed 
that each of these cell types produces EVs which affect 
homeostasis of the BM microenvironment and biological 
processes outside of the BM.

Msc-derived exosomes

MSCs are multipotent stromal cells that are able 
to differentiate into a variety of cell types including 
osteoblasts, chondrocytes, myocytes, and adipocytes 
[30]. As a carrier of various cargo, the content in MSC-
derived EVs has been investigated. Baglio et al. have 
demonstrated that BM MSC-derived exosomes are highly 
enriched in tRNAs, representing > 35% of total small 
RNAs, while mature microRNAs (miRNA) account for 
only 2-5%, which differ from those in tissue specific 
MSC-derived exosomes [31]. In addition, a select 
pattern of miRNA important for metabolic processes, 
proliferation, differentiation and homing of stem cells 
are present in BM MSC-derived EVs [32]. Tomasoni et 
al. have demonstrated that BM MSC-derived exosomes 
horizontally transferred insulin-like growth factor-1 
receptor (IGF-1R) mRNA to proximal tubular epithelial 
cells and increased their proliferation [33]. By using small 
RNA sequencing, proteomic, lipidomic, and metabolite 
assays, Vallabhaneni et al. have recently determined the 
total cargo of EVs derived from MSCs, and found several 
well-identified tumor supportive miRNAs (miRNA-21 
and -34a) and proteins (PDGFR-β, TIMP-1, and TIMP-2), 
bioactive lipids (sphingomyelin and diacyl-glycerol), and 
metabolites (glutamic and lactic acid) [34].

Multiple functions of BM MSC-derived EVs have 
been revealed in normal biological processes and cancer 
progression. First, MSCs can modulate the immune 
system. Although this is largely mediated by paracrine 
factors, EVs secreted from these cells have also been 
reported to contribute to the regulation of the immune 
system. In a study by Favaro et al., BM MSC-derived 
EVs could be internalized by PBMCs (peripheral blood 
mononuclear cells) obtained from patients with a recent 
diagnosis of diabetes type I and suppressed their response 
to stimulation by suppressing the Th1 and Th17 response, 
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upregulating regulatory T cells, and increasing IL-10, 
TGF-β and PGE2 [35]. In a different study, EVs could 
suppress the T cell response by inducing apoptosis of 
CD3+ and CD4+ cells in PBMCs (rather than inhibiting 
their proliferation) and by stimulating proliferation of 
regulatory T cells, leading to increased IL-10 [36]. In a 
study to reduce GvHD (graft versus host disease), MSC-
derived exosomes were found to decrease the release of 
IL1-β, TNF-α, and IFN-γ from PBMCs and the secretion 
of TNF-α and IFN-γ from natural killer (NK) cells, further 
confirming their immunosuppressive activities [37]. Apart 
from immune effects, proangiogenic roles of MSC-derived 
EVs have been demonstrated as they can be taken up by 
endothelial cells and induce their proliferation, migration 
and tube formation [38, 39]. 

Effects of EVs derived from BM MSCs on cancer 
progression have also been studied in various cancer types. 
Ono et al. have demonstrated that MSC-derived exosomes 
promoted breast cancer cell dormancy in a metastatic 
niche by the transfer of miR-23b, and inhibited the 
proliferation and invasion of cancer cells [40]. An earlier 
study by Lim et al. has similarly determined that BMSC-
derived exosomes favor breast cancer dormancy through 
transfer of miRNAs targeting CXCL12 and reducing cell 
proliferation [41]. Co-injection of MSC-derived exosomes 
with gastric carcinoma cells led to the promotion of both 
tumor incidence and growth in vivo [42]. MSC-derived 
EVs also favor the growth of breast cancer cells in 
vivo, indicating their tumor supportive function [34]. In 
contrast, Bruno et al. have found that EVs derived from 
MSCs inhibited the proliferation of three different tumor 
cell lines in vitro and in vivo, and these tumor cells tend 
to go into apoptosis or necrosis after treatment with EVs 
[43]. In view of the contrasting results in either tumor 
induction or suppression by MSCs and their EVs, it seems 
that the timing of injection is critical. EVs from MSCs co-
injected with tumor cells seem to promote tumor growth, 
whereas they suppress tumor progression when they were 
administered after the tumor had been established [43]. 
Additionally, the source of the obtained MSCs seems to 
be of capital importance as shown by Del Fattore et al., 
who demonstrated that EVs from MSCs derived from 
either BM or the umbilical cord decreased proliferation 
and induced apoptosis of glioblastoma cells in vitro, while 
EVs from MSCs isolated from adipose tissue had opposite 
effects [44].

dendritic cell (dc)-derived evs

DCs are antigen presenting cells originating from 
the myeloid lineage in the bone marrow and can exist 
in either a mature or immature stage. Immature DCs 
specialize in antigen capture, but cannot present them 
efficiently to T cells. They frequently induce immune 
tolerance in T cells due to low expression of MHC class 
I and class II, as well as costimulatory molecules such 

as CD80 and CD86. Activated mature DCs are among 
the most potent antigen presenting cells for activating T 
cells and carry higher levels of MHC and costimulatory 
molecules on their surface. Subsequently, these mature 
DCs efficiently induce the activation of the immune 
response upon stimulation [45]. Immature and mature 
DCs play important roles in initiating and shaping both the 
innate and adaptive immune responses, thereby regulating 
immune microenvironments in the BM or tumor [46]. 

Exosomes derived from DCs, also called 
dexosomes, have recently gained much attention in tumor 
vaccination studies as they express functional MHC class 
I and II and T cell co-stimulatory molecules which are 
essential for activating immunologic effector cells [47-
50]. Exosomes secreted from mouse DCs were shown to 
induce antitumor effects through activating CD4+, CD8+ 
T cells, and invariant NKT cells [48, 51, 52]. Dexosomes 
loaded with antigenic protein or peptide, or exosomes 
derived from antigen-pulsed DCs promoted transgenic 
T cell proliferation in vitro, whereas only protein-loaded 
dexosomes induced T cell response and Th1-type memory 
in vivo in a B cell-dependent manner [53]. Protein-loaded 
dexosomes inhibited tumor growth in mice by inducing 
antitumor immunity in the assistance of proper activation 
of both CD4+ T and B cells [54]. Both murine and human 
dexosomes promoted NK cell proliferation and activation 
in vivo in an IL-15Rα- and NKG2D-dependent manner, 
resulting in tumor regression [49]. 

Because dexosomes reflect the phenotype of the 
parental DC at the time of isolation, dexosomes derived 
from mature DCs activate T cells more efficiently 
than those derived from immature DCs [55]. Indeed, 
dexosomes derived from immature DCs (imDex) have 
more immunosuppressive properties. They can suppress 
the development of myasthenia gravis in mice, by 
lowering both the proliferation of lymphocytes and 
production of antibodies. Lymphocytes from these treated 
mice exhibited lower expression of immune response 
factors such as IFNγ, TNFα and IL-6 [56]. Additionally, 
donor-derived imDex helped to induce immune tolerance 
in murine allograft models by inhibiting T cell activation, 
resulting in less rejection and longer survival of recipient 
mice [57-60]. Also, in sepsis, imDex containing milk fat 
globule epidermal growth factor-VIII (MFG-E8) enhanced 
macrophages-mediated phagocytosis of apoptotic cells and 
therefore decreased the inflammatory response [61, 62]. 

Some researchers have investigated whether changes 
in DCs can influence the dexosomes. Exosomes derived 
from DCs treated with IL-10 had immunosuppressive 
effects and could modulate the T cell response in an 
antigen specific and MHC class II dependent way [63, 64]. 
Exosomes from genetically modified DCs expressing Fas 
ligand (FasL), IL-4 or indoleamine 2,3-dioxygenase (IDO) 
were anti-inflammatory and immunosuppressive [65-67]. 

We can conclude that dexosomes can have 
conflicting functions, and it seems that the regulation of 
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table 1: the functions of evs derived from bM cells
source cell type of evs target cell Functions ref.

MSC EVs Treg , CD3+cell Promote proliferation and apoptosis of Treg; 
induce CD3+ cell apoptosis 36

MSC Exosomes Immune cell Induce immunosuppression 37
MSC Microvesicles PBMC Decrease Th17 cells and increase Treg 35

MSC Microparticles 
and exosomes

Proximal tubular 
epithelial cell Promote cell proliferation 33

MSC EVs Endothelial cell Promote tube formation and proliferation 38
MSC 40-150nm EVs Breast cancer cell Promote tumor growth in vivo 34
BMSC Exosomes Breast cancer cell Reduce CXCL12 and decreased proliferation 41
MSC Exosomes Gastric cancer cells Promote tumor growth in vivo 42

MSC Microvesicles Hepatoma, Kaposi's sarcoma, 
and ovarian tumor cell lines

Inhibit cell cycle progression; induce apoptosis;
inhibit tumor growth in vivo 43

MSC EVs Glioblastoma cell line Decrease cell proliferation, induced apoptosis 44
peptide-pulsed 
DC Exosomes T cell Induce specific cytotoxic T lymphocytes in vivo 

and suppress tumor growth 48

DC Exosomes NK cell Induce NK cell proliferation and activation in 
vivo 49

imDC Exosomes NK cell NK cell activation 50
DC Exosomes CD4+ T cell T cell activation 51

DC Exosomes iNKT cell Activate iNKT cells and induce
cancer-specific adaptive immune response 52

DC Antigen-loaded 
exosomes T cell Induce specific transgenic T cell proliferation 

and response; Th1-type shift 53

DC Antigen-loaded 
exosomes CD8+ T cell Induce cytotoxic T cell response 54

imDC Exosomes Lymphocyte Reduce proliferation 56

imDC Exosomes T cell Suppress T cell response and increase 
IL-10 production 57

imDC Exosomes T cell Immunosuppression 58

DC Exosomes T cell Reduce T cell responses 59

imDC Exosomes T cell Stimulate CD4+ T cells 61
imDC treated 
with IL-10 Exosomes N/A Suppress inflammation and autoimmune 

responses 63

DC over-
expressing FasL Exosomes N/A Induce antigen-specific immune responses in 

vivo 65

DC over-
expressing IL-4 Exosomes DC, macrophage, T cell Suppress inflammatory response 66

Infected 
macrophages 50-300 nm EVs Naive macrophage Induce pro-inflammatory cytokines production 70

Infected 
macrophages Exosomes DC ,T cell Stimulate activation and maturation of DC;

activate antigen-specific CD4+ and CD8+ T cells 71

Infected 
macrophages Exosomes Naive macrophage Recruit and activate macrophage 72

Infected 
macrophage Exosomes Naive macrophage Suppress IFN-γ mediated activation of 

naive macrophages 73

Mast cells Exosomes Spleen cell Promote proliferation, IL-2 and IFN-γ 
production

74, 
75

Adipocytes Exosomes Osteoblast Induce the expression of adipocyte specific 
genes 76

EV, extracellular vesicle, MSC, mesenchymal stromal cells; Treg, regulatory T cells; BMSC, bone marrow stromal cells; 
DC, dendritic cells; iNKT cell: invariant natural killer T cell.
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immune activation and tolerance mediated by dexosomes 
depends on the maturation stage of the originating DCs, 
the microenvironment where the exosome-DC interaction 
takes place, as well as the stimulation of DCs [68, 69]. 

other bM cell-derived evs

Macrophages are derived from the monocyte lineage 
in the BM. EVs released from infected macrophages 
induced immune activation by activation of other naive 
macrophages, maturation of DCs, and activation of CD4+ 

and CD8+ T cells [70-72]. An earlier study by Singh 
et al. however indicated that exosomes from infected 
macrophages could transfer IFN-γ unresponsiveness 
to naive, uninfected macrophages and inhibit their 
activation [73]. Mast cells, derived from myeloid stem 
cells, secreted immunologically active exosomes which 
could induce B and T cell proliferation and promote the 
production of IL-2 and IFN-γ both in vitro and in vivo. 
These exosomes expressed multiple immunologically 
relevant molecules, such as MHC Class II, CD86, CD40, 
CD40L, LFA-1, ICAM-1, and CDC25 [74, 75]. Valadi et 
al. demonstrated that mast cell-derived exosomes contain 
various small RNAs including functional mRNAs and 
miRNAs and thus mediate the genetic exchange between 
cells [18]. In a model of osteoporosis, it was shown that 
EVs released from BM MSC-derived adipocytes could 
transfer adipogenic RNA to osteoblasts, resulting in the 
expression of adipocyte specific genes by osteoblasts, 
which ultimately led to increased marrow adiposity and 
bone loss [76]. 

EVs secreted by the cells in the BM are involved 
in various processes through affecting immune response, 
cell differentiation, angiogenesis, and cancer progression, 
as summarized in Table 1. However, as stated above, 
contradictory results frequently occur, which may be 
caused by the inconformity of target cell types, EV 
types, or the mouse model used in these studies. The 
establishment of unified investigation on the functions 
of EVs derived from the BM cells is needed to better 
understand the EV-mediated communications.

eFFect oF tuMor-derIved evs on 
bM-derIved cells

Intercellular communication between cancer and 
normal cells in the tumor microenvironment plays a pivotal 
role in the development and progression of cancer. The 
various roles of tumor-derived EVs, especially exosomes, 
in the local communication and cancer progression within 
the tumor microenvironment have been well studied 
and discussed in recent years [77-79]. Allopatry of solid 
tumor cells and the BM makes direct contact impossible, 
whereas soluble factors and EVs can bridge the gap and 
facilitate long-range communication. Indeed, tumor-

derived soluble factors promote the mobilization and 
accumulation of BM-derived cells, including endothelial 
progenitor cells, MSCs, and myeloid-derived suppressor 
cells (MDSCs), out of the BM into the circulation and 
tumor microenvironment [80-85]. Numerous studies 
have also shown that tumor-derived EVs may target 
BM-derived cells to modify the BM microenvironment 
which in turn supports the growth of tumor cells through 
modulating angiogenesis, tumor cell migration, immune 
response, drug resistance and metastasis.

It has been shown that microparticles from 
paclitaxel treated breast carcinoma cells contain 
osteopontin by which they induce BM-derived pro-
angiogenic cell mobilization and colonization, leading to 
microvessel sprouting and increased angiogenesis, which 
ultimately accelerates tumor growth [86]. In a different 
study, the anti-VEGF-A antibody B20 reduced the level 
of VEGF-A enclosed in breast cancer cell-secreted 
microparticles and these vesicles were unable to activate 
endothelial cells and could not promote BM-derived pro-
angiogenic cell colonization [87]. In addition, exosomes 
derived from hematological tumor cells such as chronic 
myelogenous leukemia cells and MM cells also contribute 
to angiogenesis [88-91]. Umezu et al. have reported that 
leukemia cell-derived exosomes transfer miR-92a to vein 
endothelial cells and enhance their migration and tube 
formation without affecting their growth [89]. Hypoxia, 
an important element in the cancer microenvironment, 
modulates the release and miRNA profile of exosomes 
from leukemia or myeloma cells, which finally leads to an 
enhancement of angiogenesis [88, 90]. 

Over the entire process of cancer development, 
cancer cells interact intimately with the immune system to 
favor immune evasion. Evasion of the immune response 
involves three major mechanisms: the selection of 
tumor variants resistant to immune effectors, immune-
resistant changes in tumor cells, and formation of an 
immunosuppressive microenvironment [92]. The latter 
involves attracting immune suppressive cells from the 
BM through soluble factors or EVs. The most prominent 
of these immune suppressive cells is the MDSC. This cell 
type of myeloid origin interferes with T cell responses 
in a variety of pathologies, including cancer. It was 
demonstrated that tumor-derived exosomes could be taken 
up by BM MDSCs in vivo and these exosome-activated 
MDSCs not only suppressed T cell activation, they also 
enhanced tumor growth [93, 94]. In addition, tumor-
derived exosomes can increase cytokine production by the 
MDSCs [28]. From a mechanistic point of view it has been 
reported that the STAT3-dependent immunosuppressive 
activity of mouse and human MDSCs is induced by 
membrane-associated Hsp70 on tumor-derived exosomes 
[95]. These findings emphasize the involvement of tumor-
derived exosomes in immunosuppression, leading to an 
acceleration of tumor progression. 

Tumor-derived EVs are also involved in the 



Oncotarget38932www.impactjournals.com/oncotarget

induction of various immunomodulatory effects through 
impacting BM-derived cells. Mammary carcinoma cell-
derived EVs were found to contribute to the enhancement 
of the innate inflammatory response mediated by 
macrophages [96] while melanoma cell-derived exosomes 
could activate macrophages through the NF-κB pathway 
and alter their cytokine/chemokine profile [97]. In 
addition, these exosomes promoted the maturation of 
DCs, leading to an enhanced T cell proliferation [97]. In 
contrast, Yu et al. have shown that mammary tumor cell-
derived exosomes inhibited differentiation of BM DCs and 

monocytes [94]. Finally, body fluid exosomes obtained 
from ovarian cancer patients could enhance the secretion 
of inflammatory factors, such as IL-1β, TNF-α, and IL-
6, in monocytic cells through toll-like receptor signaling 
[98].

In recent years, it has been found that EVs can 
mediate the crosstalk between malignant cells and 
BMSCs or MSCs. One study reported that BMSCs 
pulsed with hepatocellular carcinoma-derived exosomes 
had higher migratory capacities and strong antitumor 
activities [99]. However by contrast, Corrado et al. have 

Figure 1: Interaction between cancer cells and bM-derived cells through extracellular vesicles (evs). A. EVs derived 
from cancer cells outside of the BM induce the mobilization and localization of MDSCs and endothelial progenitor cells from the BM into 
the tumor microenvironment and therefore enhance angiogenesis and immunosuppression. b. EVs derived from metastatic or hematological 
cancer cells induce cell differentiation and maturation, inflammatory response, cytokine secretion, angiogenesis, and immunosuppression 
in the BM microenvironment through affecting BM-derived cells, including monocytes, dendritic cells (DCs), macrophages, mesenchymal 
stromal cells (MSCs), BM stromal cells (BMSCs), endothelial cells, and myeloid-derived suppressor cells (MDSCs). This educated BM 
microenvironment facilitates cancer cell growth. 
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shown protumoral effects of BMSCs treated with chronic 
myelogenous leukemia cell-derived exosomes as these 
BMSCs secreted more IL-8, promoting leukemia cell 
growth in vitro and in vivo [100]. In a different report, 
prostate cancer cell-derived exosomes could trigger MSC 
differentiation into myofibroblasts which ultimately 
promoted angiogenesis, tumor cell proliferation and 
invasion [101]. Similarly, Haga et al. have demonstrated 
that human cholangiocarcinoma cell-derived EVs induced 
fibroblastic differentiation in MSCs and these MSCs in 
turn facilitated tumor cell proliferation and migration 
[102]. Exosomes released by chronic lymphocytic 
leukemia cells induced a phenotype of cancer-associated 
fibroblasts in MSCs and these stromal cells showed 
enhanced proliferation, migration and secretion of 
cytokines, which could further favor tumor cell growth 
[103]. Furthermore, melanoma exosomes educated BM 
progenitor cells through the receptor tyrosine kinase MET 
and reprogrammed them towards a pro-angiogenic and 
pro-metastatic phenotype, which could support tumor 
growth and metastasis [26]. The complex communication 
between cancer cells and BM-derived cells through EVs 
is illustrated in Figure 1.

evs In MM

MM is an often incurable plasma cell neoplasm, 
which accounts for about 10% of all hematological cancers 
and is therefore the second most common hematological 
malignancy [104, 105]. Malignant plasma cells home to 
and are predominantly localized in the BM, since this 
microenvironment is crucial for MM pathogenesis and 
progression. Homeostasis of the BM microenvironment is 
disrupted and modified by the presence of the MM cells, 
leading to angiogenesis, osteolysis, immune suppression 
and anemia. Recent research has demonstrated that 
EVs should also be considered as one of the mediators 
by which MM cells induce BM microenvironmental 
modifications, as well as the involvement of EVs in MM 
development and induction of drug resistance, which will 
be discussed below. 

ev as a biomarker in MM

Elevated levels of total EVs in the body fluids are 
found in cancer patients as compared to healthy donors 
and they are reported to be correlated with cancer 
stages [106, 107]. In MM, it has been shown that serum 
samples from 72 MM patients with immunoglobulin 
light chain amyloidosis contained a higher level of 
MVs and exosomes than healthy donors [108]. Caivano 
et al. have recently studied serum EVs in patients with 
various types of hematological neoplastic disorders and 
demonstrated similarly that the concentration of serum 
EVs is significantly elevated in MM patients [109]. 

In addition, higher level of serum EVs expressing the 
ectoenzyme CD38 [110], a marker of plasma cells and an 
often used MM-related antigen was found, implicating that 
these vesicles originate from MM cells [109]. Similarly, 
Benameur et al. have found an increase of the total 
circulating and BM-derived microparticle (MP) number in 
a mouse model at end stages of MM compared to controls. 
Phenotypic characterization showed that circulating MPs 
originated from platelets, leukocytes, endothelial cells, 
and erythrocytes, while the BM-derived MPs express 
CD138, another marker for plasma cells [111]. The 
amount of serum EVs in MM patients has been evaluated 
by Di Noto et al. through the measurement of their 
acetylcholinesterase activity. The highest EV amount was 
found in MM patients in contrast to healthy donors and 
patients with monoclonal gammopathy of undetermined 
significance (MGUS) [112]. Moreover, exosome secretion 
from MM cells was shown to be dramatically increased by 
heparanase whose expression is up-regulated in aggressive 
cancer cells including MM cells, implying that heparanase 
may be one of the factors causing elevated secretion of 
exosomes [113]. 

A recent study identified 158 differentially expressed 
circulating exosomal miRNAs, including let-7 family 
members, miR-17/92 and miR-99b/125a clusters, in MM 
compared to normal healthy controls and demonstrated 
that the circulating exosomal miRNA signature was an 
independent prognostic marker in MM [114]. Moreover, 
some of these miRNA correspond to those previously 
identified as differentially expressed between MM cells 
and normal PCs [115]. Another similar study demonstrated 
that specific exosomal miRNAs are differentially 
expressed between high and low-risk MM patient, further 
suggesting the potential of exosomal miRNA signatures 
as a prognostic marker [116]. All these findings suggest 
that both total serum and tumor antigen-specific EVs 
including exosomes may represent a novel biomarker in 
MM and can be used for MM prognosis; however, more 
studies containing a large number of clinic samples are 
still needed to further confirm the correlation between EVs 
and MM progression. 

characterization of MM cell-derived evs

The proteomic content of EVs derived from two 
human MM cell lines has been analyzed by Harshman et 
al. [117] and they identified 583 vesicular proteins from 
these vesicles, including antigen presenting molecules, 
adhesion molecules, membrane transport and fusion 
molecules, cytoskeletal proteins, pyruvate kinase, 
histones, and other bioactive proteins involved in multiple 
biological processes [117]. Enriched membrane molecules 
such as CD44, MHC class I, and bone marrow stromal 
antigen 2 (BST-2) were observed in MM cell-derived MVs 
as compared to MM cells [117]. Elevated expression of 
CD147 was also found in human MM cell line-derived 
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MVs, as well as in MVs from MM BM plasma. Ig light 
chain-positive MVs from MM patients express higher 
levels of CD38, CD319, CD44, and CD9 than those from 
MGUS patients [118]. Moreover, it has been shown that 
above 80% of MVs derived from a human MM cell line 
express CD138 [119]. 

Function of MM cell-derived evs

MM cell-derived EVs have been shown to alter 
different processes in the BM, such as angiogenesis and 
osteolysis, to enhance MM growth. Angiogenesis is 
essential for tumor growth, invasion and metastasis as 
tumor cells require more nutrients and oxygen from blood 
vessels. In MM patients, increased angiogenesis has been 
demonstrated in the BM and this higher microvessel 
density is associated with poor prognosis [120-122]. 
Enhancement of angiogenesis is mainly mediated by 
the well-known pro-angiogenic factors such as vascular 
endothelial growth factor (VEGF), basic fibroblast 
growth factor (bFGF), and angiopoietin-1 secreted by 
the MM cells or stromal cells interacting with MM cells 
[123-128]. Two recent studies have demonstrated MVs 
or exosomes derived from MM cells as new inducers of 
angiogenesis [88, 119]. MVs secreted from a human MM 
cell line directly promoted the proliferation and capillary 
structure formation of umbilical vein cells, and induced 
angiogenesis in vivo. These EVs promoted the expression 
and secretion of VEGF in umbilical vein cells, which can 
further enhance angiogenesis [119]. Hypoxia-inducible 
factor (HIF)-1α is often overexpressed by MM cells due 
to the hypoxic BM environment, leading to increased 
secretion of proangiogenic cytokines [129, 130]. Umezu 
et al [88] found that MM cells under hypoxic conditions 
secreted more exosomes with increased levels of miR-
135b which induced increased expression of HIF-1α 
in endothelial cells, leading to enhanced angiogenesis. 
Moreover, serum EVs obtained from MM patients clearly 
promoted the proliferation of human vascular endothelial 
cells as compared to those from healthy donors or MGUS 
patients [112]. A very recent paper has suggested that 
fibronectin on the surface of MM cell-derived exosomes 
binds to heparin sulfate on endothelial cells thereby 
mediating MM exosome-BM cell interactions [131].

In MM, increased osteoclastic activity together 
with suppressed osteoblastic activity is the main cause 
of osteolytic bone disease [132]. The differentiation and 
activation of osteoclasts are mainly mediated by osteoclast 
activating factors secreted by the MM cells or BMSCs 
in the BM [1, 132]. The increased number and activity 
of osteoclasts further enhance MM cell growth and 
survival through cell-cell contact and secretion of IL-6 
and B-cell-activating factor [133-135]. A recent paper has 
demonstrated MM cell-derived exosomes as mediators of 
osteoclast formation and activation [136]. MM-derived 
exosomes supported both survival and migration of 

osteoclast precursors, and induced their differentiation 
to osteoclasts, as well as their bone resorption activity. 
Moreover, exosomes obtained from the plasma of MM 
patients exhibited the same functions in osteoclast 
differentiation [136]. 

Interestingly, EVs can also directly promote MM 
cell proliferation in an autocrine manner. Specifically, EVs 
derived from CD147-overexpressing MM cells or MM 
patients enhance MM cell proliferation, while the growth 
promotion of EVs from CD147-downregulated cells was 
attenuated, suggesting that CD147 is partially involved in 
EV-induced cell proliferation [118]. 

Tumor-derived exosomes generally contain tumor 
antigens and therefore have attracted much attention for 
their potential use as vaccines [137-139]. These exosomes 
still need the host DCs to present tumor antigens for 
the stimulation of antitumor immunity [140-142]. The 
antitumor response mediated by MM cell-derived 
exosomes was examined after engineering modifications. 
Exosomes released by MM cells engineered to express 
TNF-α induced a more efficient tumor antigen-specific 
CD8+ T cell response in mice and protected all the 
experimental mice from tumor growth [143]. Exosomes 
collected from MM cells overexpressing membrane-bound 
Hsp70 stimulated maturation of DCs and upregulated the 
presence of several membrane molecules such as lad, 
CD40, and CD80, as well as the secretion of inflammatory 
cytokines such as IL-1β, IL-12, IFN-γ, and TNF-α [144]. 
Moreover, these engineered MM cell-derived exosomes 
stimulated a type 1 CD4+ T cell response in mice and 
protected tumor-bearing mice from death through 
induction of strong CD8+ cytotoxic T lymphocyte (CTL) 
responses and NK cell-mediated antitumor immunity 
[144].

Taken together, MM cell-derived EVs seem to 
enhance angiogenesis and osteoclastic activity in the BM, 
hereby establishing a favorable microenvironment and 
ultimately favoring MM progression (Figure 2). 

Function of stromal cell-derived evs

BMSCs play crucial roles in MM progression and 
induction of drug resistance through cell-cell contact 
and secretion of cytokines [1, 145, 146]. MM cells 
adhere to BMSCs, stimulating the latter to secrete more 
soluble factors which mediate MM cell growth, survival, 
migration, drug resistance, and BM angiogenesis [145, 
147-151]. Roccaro et al. and our group have demonstrated 
exosomes as novel communicators and regulators in the 
interactions between MM cells and stromal cells [152, 
153]. 

The content of BM-MSC-derived exosomes from 
MM patients was analyzed by miRNA and protein arrays, 
showing a lower level of the tumor suppressor miR-15a 
and higher levels of oncogenic proteins, cytokines, and 
adhesion molecules compared to healthy BM-MSCs 
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[152]. The inability of exosomal miR-15a transfer from 
tumoral BM-MSCs to MM cells partially contributed 
to the increased tumor burden in a murine MM model, 
since low levels of miR-15a were unable to keep MM 
cell proliferation [152]. Many cytokines including IL-1ra, 
interferon-inducible protein 10, monocyte chemoattractant 
protein 1 (MCP-1), macrophage inflammatory protein-
1α (MIP-1α), MIP-1β, and stromal cell-derived factor 
1 (SDF-1) were detected by our group in murine MM 
BMSC-derived exosomes [153]. We found that these 
exosomes carrying functional miRNA or proteins could 
be taken up by MM cells and induce their proliferation, 
survival, and migration, as well as drug resistance to 
bortezomib, a widely used and efficient clinical drug for 
MM treatment [153]. These findings highlight the roles 
of stromal cell-derived exosomes in supporting MM 
pathogenesis and progression. Additionally we identified 
an indirect approach to favor MM progression by stromal 
cell-secreted exosomes [154]. BMSC-derived exosomes 
could be taken up not only by MM cells but also by 
MDSCs in the BM and activate these MDSCs through 

STAT3 and STAT1 pathways. Moreover, these exosomes 
promoted the survival of MDSCs in the BM and enhanced 
their immunosuppressive functions, thus favoring MM 
progression [154].

Overall, exosomes secreted from MM cells and 
BM-derived cells potentially play important roles in 
the modification of the BM microenvironment and 
are involved in the maintenance of a vicious cycle 
between normal BM cells and MM cells (Figure 2). 
However, the cross talks between MM cells and other 
important BM-derived cells such as DCs, macrophages, 
and hematopoietic stem cells through EVs, especially 
exosomes, still need to be elucidated for a better 
understanding of the BM microenvironmental changes 
during MM progression.

Potential therapeutic implications of evs in MM

Despite substantial improvement in survival of 
MM patients over the past decade, innovative therapeutic 

Figure 2: crosstalk between MM cells and bM-derived cells through extracellular vesicles (evs). MM cell-derived 
EVs modify the BM microenvironment through enhancing angiogenesis and promoting osteoclast differentiation and activation. BMSCs 
and MSC-derived EVs directly promote MM cell adhesion, proliferation, and survival, and induce drug resistance. BMSC-derived EVs 
indirectly facilitate MM progression through activating MDSCs and inducing immunosuppression. However, the effects of MM cell-
derived EVs on MSC and BMSC, as well as the EVs-mediated interactions between MM cells and other important BM-derived cells such 
as hematopoietic stem cells (HSCs), macrophages, and dendritic cells (DCs), still need to be investigated.
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strategies are still needed to prolong progression-free and 
overall survival and to potentially increase cure rate. Most 
innovations in drug therapy have been the result of a better 
understanding of MM biology leading to the recognition 
of new drug targets. We believe that knowledge on 
MM associated EVs will be a valuable asset to develop 
new therapies, since they seem to have a wide range of 
biological effects related to the BM micro-environment 
and anti-tumor immunity.

DC based vaccination in relapsed MM is the subject 
of several recent and ongoing clinical trials [155-161]. 
As mentioned above, exosomes are a potential candidate 
for use in these vaccination strategies. Tumor-derived 
exosomes have been shown to be immunogenic and 
contain targets for DC vaccination in lymphoma [162] 
and melanoma [163]. Furthermore dexosomes could in 
theory, be easier to handle than DCs, while retaining the 
same potential for tumor vaccination. This has been the 
subject of various clinical trials [164-166], but the induced 
immune responses seem to be dependent on additional 
factors creating either an immune stimulatory or an 
immune suppressive environment [167].

On the other hand, tumor-derived exosomes can 
be responsible for evading antibody-based therapy. 
It has been shown in lymphoma that CD20-carrying 
exosomes can bind the therapeutic anti-CD20-antibodies 
(Rituximab) [168] and thereby prevent lymphoma cell 
death by both antibody-dependent cell cytotoxicity 
(ADCC) and complement-dependent cytotoxicity (CDC). 
Already three hours after Rituximab infusion in lymphoma 
patients, one third to one half of the Rituximab present 
in the plasma was bound to these lymphoma-derived 
exosomes, and thus deemed ineffective [169]. The same 
protective effect was observed in breast cancer, where 
HER2 positive breast cancer-derived exosomes shield the 
tumor cells from the therapeutic effects of the anti-HER2 
antibody Trastuzumab [170]. One could argue that MM-
derived EVs might be responsible for a reduced effect of 
the new monoclonal antibody therapies eg. Daratumumab, 
Elotuzumab or Indatuximab Ravtansine in a similar way, 
by acting as a decoy for the antibodies. 

Since tumor-derived exosomes can seemingly 
suppress the anti-tumor response and aid in a tumor-
friendly microenvironment, research is ongoing on how 
to block the secretion of these exosomes, or eradicate 
them from the patient. Multiple inhibitors which block the 
release of EVs, such as GW4869, spiroepoxide, dimethyl 
amiloride, and manumycin-A, have been studied in vitro 
[171-173]. However these inhibitors are not specific and 
have too much off-target effects to be therapeutically 
practical. A better option might be to remove tumor-
derived exosomes from the patient by using extracorporal 
hemofiltration [174].

Perspectives

Although compelling studies have focused on the 
targets and functions of EVs secreted by many BM-derived 
cells and on the important role of EVs in the immune 
response, tumor progression, vaccine development, and 
treatment of various diseases, the complete crosstalk 
between these BM cells through EVs is still not fully 
elucidated. This is especially complex as the functions of 
EVs from many other BM cell types including endothelial 
cells, osteoclasts, osteoblasts, hematopoietic stem cells, 
NK cells, and lymphocytes are still not clear. Furthermore, 
other types of EVs such as oncosomes have not been 
studied yet in the BM microenvironment. Oncosomes 
are a subpopulation of membranous large MVs derived 
from cancer cells that are characterized by the ability to 
transfer oncogenic signals and protein complexes [175, 
176]. The transfer of oncogene-containing oncosomes 
results in transformation-like changes in recipient cells 
[175, 177] and can induce phenotypic reprogramming of 
other normal cells [178, 179]. Therefore, further studies 
examining the role of EVs, including oncosomes in the 
BM crosstalk would help increase our understanding of 
the BM involvement in multiple disease types. Moreover, 
finding better ways to block pathological exosome 
secretion would benefit the development of novel therapies 
for cancers such as MM.
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