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A B S T R A C T   

Dysregulation of apoptosis occurs in different types of malignant tumors and is likely to influence 
the tumor evolution, as well as clinical prognosis. However, the limited number of studies 
investigating the predictive power of apoptosis-related genes (ARGs) in gastric cancer indicates a 
gap in the current research. 174 ARGs who differentially expressed were screened using public 
databases, including the Gene Expression Omnibus and the Molecular Signatures Database. 
Univariate and LASSO regression analyses were rigorous approaches to recognize the 12 optimal 
genes (CTHRC1, PDGFRL, VCAN, GJA1, LOX, UPP1, ANGPT2, CRIM1, HIF1A, APOD, RNase1, and 
ID1) that make up the prognostic risk model. Molecular mutations, related signaling pathways, 
and immune system characteristics in different subgroups defined by the risk model were 
analyzed using different R packages. Moreover, based on the database of Genomics of Drug 
Sensitivity in Cancer, chemotherapy sensitivity was predicted among the risk subgroups. As a 
result, there were differences in mutation profiles, signaling pathways, and infiltrated immune 
cells between patients in various risk groups. Moreover, the low-risk group displayed greater 
sensitivity to chemotherapy than the high-risk group. Risk model provided a better prognostic 
value than the T, N, and M stages, according to the receiver operating characteristic curve. 
Finally, in a nomogram, the risk model and clinical factors were combined to visualize the sur-
vival rates of patients with GC. In response to the differential expression of apoptosis-related 
genes, a novel model for predicting the prognosis of GC patients was developed. This model 
may be highly valuable for guiding doctors to deliver treatment plans tailored to the need of 
patients with GC.   

1. Introduction 

Gastric cancer (GC) is one of the most prevalent gastrointestinal malignancies in the world, ranking fifth in cancer-related mortality 
[1]. Radical surgery remains the cornerstone of treatment for potentially resectable GC [2]. Although substantial advancements have 
been made in anticancer therapies, including chemotherapy and immunotherapy, patients with advanced GC still have unsatisfactory 
prognoses [3]. Consequently, it is imperative to understand the mechanisms underlying disease progression and identify novel and 
effective prognostic biomarkers. By doing so, the survival rates and overall well-being of GC patients can be improved. 

Apoptosis is a dynamic and evolutionarily conserved phenomenon in the development of various organisms. It maintains the 
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balance and harmony of the intracellular environment, ensuring the proper functioning and homeostasis of cells. Intrinsic or acquired 
resistance to apoptosis is a major hallmark of human cancers [4]. Escaping apoptosis leads to uncontrolled proliferation of cancer cells, 
resulting in tumorigenesis and therapeutic resistance [5]. Tumors employ various mechanisms to evade apoptosis, which allows them 
to survive and persist. Cancer cells often exhibit alterations in the expression or activity of key apoptotic regulators such as Bcl-2 family 
proteins, p53, and caspases. Anti-apoptotic molecules, such as Bcl-2, are frequently upregulated in cancer cells that are resistant to 
drug treatments [6]. The expression of BAK, a member of the Bcl-2 family, can predict chemotherapeutic responses to docetaxel in 
patients with GC and is an effective prognostic biomarker [7]. Recently, a growing number of genes are being recognized as biomarkers 
for GC, which contribute to improving the outcomes of patients with this disease. For instance, the discovery of a gene signature that 
can speculate the prognosis and effectiveness of immunotherapy in GC represents a substantial advancement in personalized medicine 
and development of immunotherapeutic strategies [8]. Additional research has indicated that genes associated with angiogenesis can 
serve as prognostic indicators for patients with GC [9]. However, the molecular basis of apoptosis and the predictive implications of 
apoptosis-related genes (ARGs) in GC remain poorly understood. Therefore, such research could have profound implications for 
personalized treatment, particularly for high-risk patients. 

Our study involved an extensive bioinformatics examination using the Gene Expression Omnibus (GEO) database to assess the 
prognostic significance of ARGs in GC patients. The purpose of this research was to formulate a prognosis risk model on account of 12 
apoptosis-associated genes and to investigate the relationship between gene expression profiles and GC prognosis. Through our 
analysis, we generated a novel prognostic risk prediction model and examined its association with various factors in different risk 
subgroups, including tumor mutation burden, gene set enrichment analysis, immune cell invasion, and chemosensitivity. Additionally, 
a nomogram was created to evaluate the clinical prognosis of these GC patients. This comprehensive evaluation allowed us to gain 
insight into the potential underlying mechanisms and clinical implications of our prognostic model. In conclusion, a novel prognostic 
risk prediction model was established that provides more advantageous information that indirectly improves the prognosis of these 
patients. 

2. Materials and methods 

2.1. Datasets and preprocessing 

The clinical data and gene expression profiles were downloaded from the GEO and The Cancer Genome Atlas (TCGA) databases. 
Four GEO datasets (GSE118916, GSE54129, GSE79973, and GSE81948) were selected to identify the differentially expressed genes in 
GC. Molecular signatures database (MSigDB) was used to screen genes associated with apoptosis. Data from 315 GC patients at TCGA, 
comprising RNA sequences and clinical data, served as an internal training dataset. We incorporated an external testing dataset, 
GSE62254, into our study. This dataset consisted of information from 300 patients with GC who had complete follow-up data. Sup-
plementary Table S1 presents the clinical data for the training and testing datasets used in this research. Principal component analysis 
(PCA), as well as hierarchical cluster analysis were employed to discern different group information based on the distance matrix using 
the R statistical language (v3.6.1). For background adjustment, the raw files of the five GEO datasets were downloaded and processed 
using a robust multichip average (RMA) algorithm after quantile normalization and log transformation. Moreover, TCGA gene 
expression profiles were transformed to base-2 logarithms for further analysis. 

2.2. Identification of apoptosis-related hub genes 

We utilized the R programming language to process the downloaded matrix files. The probe names in the matrix files have been 
converted to their international standard names utilizing the annotation package in R. We screened for differentially expressed genes 
(DEGs) between GC and normal gastric samples using four microarray datasets obtained from the GEO database. For this analysis, the 
limma and robust rank aggregation (RRA) packages in R were employed. The significance levels were set at P < 0.05 and |log2FC| >0.5 
[10]. ARGs were screened using MSigDB as described previously. We then compared the list of ARGs with the identified DEGs, 
resulting in a final set of 174 apoptosis-related DEGs. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses to investigate the probable molecular mechanisms linked to these apoptosis-related DEGs using the 
ClusterProfiler package. 

2.3. Construction and validation of the prognostic model 

In TCGA training dataset, a univariate Cox analysis was performed to assess the connection among 174 candidate genes and the 
overall survival (OS) of patients with GC. LASSO regression allows the identification of a subset of genes with the highest predictive 
value for patient prognosis [11]. Optimal genes and their coefficients were screened by applying the best penalty parameter from the 
smallest cross-validation of 10 folds. We obtained 12 genes and calculated the coefficients for each prognostic gene. The risk score is 
calculated by multiplying the expression of each gene by its corresponding coefficient and summing the results. Patients were divided 
into low- and high-risk groups based on their median risk score. The score’s predictive ability was assessed with Kaplan-Meier survival 
analysis. 
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2.4. Molecular characteristics in different risk subgroups 

Using Maftools software, we conducted an in-depth analysis of somatic variants in different risk subgroups with information 
retrieved from TCGA database [12]. Microarray data were analyzed through Gene Set Enrichment Analysis (GSEA). ClusterProfiler in 
R was utilized to investigate the crucial signal pathways enriched in both subgroups using a significance threshold of P < 0.05, and a 
false discovery rate <0.25. 

2.5. Immune characteristics in different risk subgroups 

The immune cell subtypes were assessed utilizing CIBERSORT4, which utilizes linear support vector regression. This method allows 
for the evaluation of the percentage of immune cells that have infiltrated into different risk categories due to the gene expression 
profile of patients with GC. The distribution of 22 immune cell types infiltrating in each risk subgroup was estimated [13]. 

2.6. Chemotherapies sensitivity in different risk subgroups 

We investigated the chemotherapeutic response of each sample in the TCGA dataset using the Genomics of Drug Sensitivity in 
Cancer database and the pRRophetic R package. The package used ridge regression analysis to determine the half-maximal inhibitory 
concentration (IC50) of certain chemotherapeutics drugs. The prediction accuracy of the regressions was assessed using 10-fold cross- 
validation. 

2.7. Construction of nomogram 

According to the risk scores and clinicopathological features, a nomogram was created to estimate the risk stratification of patients 
with GC. The nomogram aimed to predict the 1-, 3-, and 5-year OS rates in these patients. The nomogram efficiency was estimated 
using a calibration curve. 

2.8. Statistical analysis 

R software was utilized to perform the statistical analyses and graphical visual representations in this study. To determine the 
statistical significance of the variables, Student’s t-test and the chi-squared test were employed to analyze the continuous and cate-
gorical variables separately. Kaplan–Meier analysis estimated the OS. The independent prognostic significance of the risk score and 
clinical characteristics was evaluated by both univariate and multivariate Cox regression analyses. Statistical significance was defined 

Fig. 1. Flowchart of this present study.  
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as P < 0.05. 

3. Results 

The detailed flowchart for this research is shown in Fig. 1. 

3.1. Identification of apoptosis related hub genes 

Datasets involved in GC expression profiles (GSE118916, GSE79973, GSE81948, and GSE54129) were standardized. The results of 
the PCA (Supplementary Fig. S1A) indicated a distinct separation or discernible dimensions between the normal and tumor groups, 
suggesting notable distinctions in the gene expression profiles among these two groups. We screened 2266, 1650, 1507 and 2802 
upregulated genes in GSE118916, GSE79973, GSE81948 and GSE54129, while the number of the downregulated genes in these 
datasets respectively are 2014, 1553, 1339 and 3094. For each dataset, our cut-off criteria for DEGs screening were corrected P < 0.05 
and |log2FC| ≥ 0.5 (Supplementary Fig. S1B). 

The obtained DEGs were analyzed utilizing the RRA method with a significance cut-off of P < 0.05, after correction, which assumed 

Fig. 2. Identification and functional enrichment analyses of apoptosis-related differentially expressed genes. (A) The top 20 up and 
downregulated differentially expressed genes in these four GEO datasets. (B) Heatmap of apoptosis-related genes in molecular signatures database. 
(C) The intersection of the 935 DEGs and 2329 ARGs by Venn diagram. (D) Gene Ontology (GO) enrichment analysis of the apoptosis-related DEGs. 
(E) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the apoptosis-related DEGs. 

Fig. 3. Construction and risk score analysis of a prognosis model. (A) Univariate Cox regression analysis revealed that 45 apoptosis-related 
DEGs significantly correlated with clinical prognosis. (B) LASSO coefficient curves for 45 prognostic apoptotic genes in the training dataset. (C) 
The coefficient profile plot was generated with log (λ). 
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that genes in each experiment were arranged randomly. Genes with higher ranks were more likely to be DEGs, indicating a smaller p- 
value after correction. Using this approach, we identified 935 DEGs consisting of 412 upregulated and 523 downregulated genes. 
Fig. 2A illustrates the top 20 most upregulated and downregulated genes among DEGs. Additionally, Fig. 2B depicts the extraction of 
2329 ARGs, whereas Fig. 2C shows the overlap between the 935 DEGs and 2329 apoptotic genes, resulting in the identification of 174 
apoptosis-related DEGs. For gaining insight into the biological processes and pathways enriched in these 174 apoptosis-related DEGs, 
GO terms and KEGG pathway were analyzed. Analyses of enrichment results helped us to better understand the functional implications 
and potential molecular mechanisms underlying apoptosis in GC (Fig. 2D and E). 

Fig. 4. Prognostic value of the risk model in the TCGA training dataset. (A) The median risk score allocated GC patients in TCGA into two 
groups. From left to right, the risk scores were ascending and each dot represents an individual. (B) Patients with different survival times and 
statuses were arranged with the increasing risk score from left to right. (C) The heatmap showed expression profile of the 12 ARGs. The expression 
level from high to low was manifested with the colors from red to green. (D) Kaplan–Meier analysis showed different prognosis between the two 
groups. (E) Validation of ROC curves for the risk score in the training dataset from TCGA. 
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3.2. Construction and risk score analysis of a prognosis model 

Univariate analysis was performed on the 174 apoptosis-related DEGs using the TCGA training dataset consisting of 315 samples, 
and 45 genes showed significant associations with OS (P < 0.05) (Fig. 3A). We obtained correlation coefficients for each of the 45 genes 
using LASSO Cox regression, which allowed us to assess the strength and direction of their association with OS. This analysis aided in 
selecting the most informative genes that contributed significantly to the prognostic risk model. Finally, 12 candidate genes (CTHRC1, 
PDGFRL, VCAN, GJA1, LOX, UPP1, ANGPT2, CRIM1, HIF1A, APOD, RNASE1, and ID1) were screened from the training array (Fig. 3B 
and C). The formula of risk score = the expression of CTHRC1 ⋅ (0.0349) + PDGFRL ⋅ (0.0110) + VCAN ⋅ (0.0259) + GJA1 ⋅ (0.0644) +
LOX ⋅ (0.0262) + UPP1 ⋅ (0.1300) + ANGPT2 ⋅ (0.0736) + CRIM1 ⋅ (0.0096) + HIF1A ⋅ (0.0348) + APOD ⋅ (0.0545) + RNASE1 ⋅ 
(0.0690) + ID1 ⋅ (− 0.0490). 

TCGA training cohort patients were split into low- and high-risk groups on the basis of the median apoptosis risk score. This 
categorization allowed the stratification of patients according to their predicted risk of adverse outcomes (Fig. 4A). The survival rate of 
each patient is illustrated in Fig. 4B. To gain a more particular knowledge of the expression of 12 apoptosis-related DEGs used in the 
risk model, Fig. 4C shows the individual expression profiles of these genes for each patient. This graphical representation highlights the 
variability between the two groups in gene expression patterns, and the different outcomes were assessed using Kaplan–Meier curves. 
Compared to the high-risk group, the low-risk group survived longer (Fig. 4D; P < 0.001). Moreover, a receiver operating characteristic 
analysis (ROC) assessed the accuracy of prognostic risk scores. The AUC values were 0.693, 0.689, and 0.739 at 1, 3, and 5 years 
survival time, respectively, indicating that it accurately predicted patient survival at these specific time points (Fig. 4E). Overall, the 
risk model demonstrated high accuracy and stability for the assessment of GC patients’ prognoses. 

3.3. External validation of the risk model 

The model’s prognostic value was estimated using the external testing dataset, GSE62254 (n = 300), obtained from the GEO 
database. In the testing dataset, we employed a uniform formula similar to that used in the training database to calculate the risk scores 
for each individual. Risk groups were also assigned to patients in the validation dataset, as shown in Fig. 5A. We plotted the patient 
status, risk scores and survival times in the testing dataset using a scattergram (Fig. 5B). This visualization allowed a clear under-
standing of the relevance of the risk levels to survival outcomes in the testing data. Testing and training datasets showed similar 
expression profiles for the 12 apoptosis-related DEGs in the heatmap, indicating consistency in the biological relevance of these genes 
across different datasets (Fig. 5C). As shown in Fig. 5D, testing data showed differences in survival times between risk groups, which 
matched the training data results (P < 0.001). Furthermore, the accuracy of the predictive value was evaluated using ROC curves. 
There was a 0.650, 0.613, and 0.603 AUC for 1-, 3-, and 5-year OS, respectively, in the testing dataset, indicating a reasonable pre-
dictive capability of the model (Fig. 5E). Univariate regression analysis indicated that the risk score, as well as the T, N, M, and clinical 
stages, were related to the survival time of patients (Fig. 5F; all P < 0.001). Finally, multivariate regression analysis confirmed the risk 
score as a substantial independent prognostic index, even after considering other clinical factors (P < 0.001; Fig. 5G). 

3.4. Molecular characteristics in different risk subgroups 

To gain a deeper understanding of subgroup differences, we analyzed the gene mutation profiles of the two different risk groups. 
Results demonstrated that mutation rates were higher in the low-risk group compared to the high-risk group. Specifically, a consid-
erably higher mutation rate for TTN was observed in the low-risk group. We conducted additional research into the various types of 
mutation in these subgroups and found that missense was the most commonly observed mutation type, then followed by nonsense and 
frameshift deletions. These different mutation types can lead to alterations in protein structure and function, potentially affecting 
tumor development and progression. As shown in Fig. 6A and B, both risk groups shared 20 genes exhibiting the most elevated 
mutation frequencies. These figures provide a visual representation of the mutation rates and highlight the genes with frequent 
mutations in each subgroup. Among these genes, TTN, TP53, CSMD3, LRP1B, MUC16, SYNE1, ARID1A, and FLG consistently showed 
mutation rates exceeding 20 %. 

Next, GSEA analysis was performed to gain insights into the possible molecular mechanisms underlying the progression of tumor. 
Mitogen-activated protein kinase (MAPK) pathways and cytokine-cytokine receptor interactions were extensively enriched in the high- 
risk group (Fig. 6C). The enrichment of these pathways suggests their potential role in promoting tumor progression. In contrast, in the 
low-risk group, pathways related to DNA replication and homologous recombination were enriched. These pathways suggest a po-
tential association with more controlled and stable cell growth, potentially contributing to a better prognosis (Fig. 6D). 

The tumor microenvironment (TME) is primarily made up of immune cells, tumor-associated fibroblasts, multiple inflammatory 
factors, extracellular matrix and growth factors. Understanding the TME and immune cell infiltration patterns can provide valuable 

Fig. 5. External validation of the apoptosis-related gene prognostic risk model. (A) Patient with different risks were separated into two groups 
via the same median risk score in the training dataset. (B) Patients in the testing dataset with different survival times and statuses were arranged by 
the increasing risk score from left to right. (C) The heatmap of the 12 ARGs in the testing dataset showed the same expression pattern. (D) 
Kaplan–Meier analysis showed different prognoses between the two groups as well. (E) The ROC curves of the models for survival rate in the testing 
dataset. (F) Forest plot of the univariate Cox regression analysis in the testing dataset. (G) Forest plot of multivariate Cox regression analysis 
evaluating the independent prognostic value of risk score. 
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information regarding the clinical response to cancer treatment and patient survival. The CIBERSORT algorithm findings described 
that there was a significant increase of the distribution of monocytes, resting mast cells, and M2 macrophages in the high-risk sub-
group. In contrast, the low-risk subgroup exhibited a lower percentage of resting CD4 + memory cells as well as follicular helper T cells 
than the high-risk subgroup (Fig. 6E). As we know, a subset of T cells referred to as CD4+ memory resting cells plays a critical part in 

Fig. 6. Molecular characteristics in different risk subgroups. (A) Waterfall plot displays significantly mutated genes in high-risk subgroup. (B) 
Waterfall plot displays significantly mutated genes in low-risk subgroup. (C) Gene sets enriched in high-risk subgroup. (D) Gene sets enriched in low- 
risk subgroup. (E) The proportions of the 22 immune cells in different risk subgroups. 
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long-term immunity and antigen reactivity. B cells can produce antibodies and exert adaptive immunity with the help of follicular 
helper T cells. 

3.5. Chemotherapies sensitivity prediction in different risk subgroups 

Chemotherapy remains the primary therapeutic schedule for GC. To assess the sensitivity of patients to chemotherapy in relation to 
the apoptosis risk score, we selected six commonly used drugs: oxaliplatin, paclitaxel, irinotecan, cisplatin, docetaxel, and fluorouracil. 
It was suggested that apoptosis risk score could substantially influence the sensitivity of patients to specific chemotherapy drugs, 
namely oxaliplatin, paclitaxel, docetaxel and fluorouracil. We observed lower IC50 values in the low-risk group, indicating that this 
segment of the population has a better response to these chemotherapeutic drugs (Fig. 7). 

3.6. Construction of the prognostic nomogram 

First, we assessed the prognostic precision of the risk score by using additional clinical and pathological parameters, like age, T, N, 
M and clinical stages. It was evident from the ROC curve that the risk score performed better in forecasting the outcomes of patients 

Fig. 7. Relationship between apoptosis risk score and chemotherapy sensitivity. (A) Risk score and the IC 50 of oxaliplatin. (B) Risk score and 
the IC 50 of paclitaxel. (C) Risk score and the IC 50 of irinotecan. (D) Risk score and the IC 50 of cisplatin. (E) Risk score and the IC 50 of docetaxel. 
(F) Risk score and the IC 50 of fluorouracil. 
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Fig. 8. Construction and evaluation of the prognostic nomogram. (A) ROC curves of the clinical characteristics and risk score. (B) The nomogram predicts the probability of the 1-, 3-, and 5-year OS 
in GC patients by combining risk score and four clinicopathological features. (C–E) The calibration plot is utilized to evaluate the accuracy of the 1-, 3-, and 5-year progress forecasts of the nomogram. 
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than the other parameters (Fig. 8A). Based on these findings, we generated a nomogram model that incorporated both the risk grade 
and clinical risk characteristics, which made it possible to estimate the probabilities of patients’ survival for 1, 3, and 5 years. When 
comparing the predictive abilities of the clinical factors and risk score in the nomogram, the latter displayed a superior predictive 
ability (Fig. 8B). The correlation charts visually depict the relationship between the observed and the corresponding predicted survival 
rates of 1-, 3-, and 5-year (Fig. 8C–E). The high consistency between these two rates indicated the nomogram’s excellently predictive 
ability. 

4. Discussion 

As we know, despite the improvements in multidisciplinary anticancer therapies, patients with GC continue to have an unsatis-
factory 5-year survival rate, especially in the advanced stage of the disease [14]. Currently, the prognosis of these patients has mostly 
relied on the pathological judgment of biopsy basing on the extent of tumor penetration, the number of regional lymph nodes invaded 
as well as the stage of distant metastasis. Due to the invasive and complex nature of this technology, its use is limited. As 
next-generation sequencing continues to develop, bioinformatic analysis has emerged as a crucial tool for identifying molecular 
biomarkers capable of predicting the prognosis of numerous cancers. The process of apoptosis is an active, orderly, self-destructive 
event that does not induce inflammatory responses [15]. One of the major hallmarks of human cancers is that cells resist to 
apoptosis and proliferate indefinitely. Recently, increasing attention has been paid to ARGs, which may help assess the prognosis of 
cancers, including colon cancer, oral cancer, hepatocellular carcinoma, and osteosarcoma [16–19]. However, few prognostic signa-
tures related to apoptosis are available to predict personalized survival in GC. Therefore, discovery of novel apoptosis-related prog-
nostic signatures may provide valuable prognostic information as well as therapeutic targets for these patients. 

According to this study, 174 apoptosis-related DEGs were screened in GC datasets, 45 of which were significantly related to 
prognosis. Finally, we constructed a risk model consisting of 12 optimal ARGs (CTHRC1, PDGFRL, VCAN, GJA1, LOX, UPP1, ANGPT2, 
CRIM1, HIF1A, APOD, RNASE1, and ID1) that can effectively predicte the prognosis for patients with GC. Some of these 12 genes are 
reportedly involved in gastric cancer. For example, CTHRC1 is an extracellular matrix protein, which has a high level of expression in 
GC. It was demonstrated that CTHRC1 could contribute to tumor invasion and metastasis by inhibiting tumor cell apoptosis [20]. In 
addition, Song et al. reported that the high level of VCAN in GC indicated a poor prognosis of these patients. Moreover, patients 
expressing low levels of VCAN benefited more from adjuvant chemotherapy, radiotherapy and immunotherapy [21]. Other genes 
among the 12 ARGs need to be investigated for their roles in the apoptosis of GC cells. According to our research, a risk model including 
12 ARGs was constructed. Furthermore, the low-risk group of the model had a higher chance of survival than the high-risk group. For 
GC, it functioned as a standalone prognostic marker which provided additional evidence of its accuracy in gauging patient outcomes. 
Finally, the nomogram predicted GC prognosis at 1-, 3-, and 5-years. With the help of this model, high-risk patients can be screened and 
more reasonable treatment options can be devised. 

In addition, we analyzed TMB, signaling pathways, TME, as well as the sensitivity to chemotherapeutics in different subgroups of 
GC according to the apoptosis risk score. TMB is commonly characterized as the cumulative count of non-synonymous somatic mu-
tations affected by the emergence of neoantigens [22]. With a higher TMB, neoantigens are more likely to be recognized by the im-
mune system. TMB is a significant biomarker in metastatic colorectal cancer with high microsatellite instability and an indicator of a 
patient’s likelihood of responding to immunotherapy [23]. In our study, a higher TMB was identified in the low-risk subgroup. Among 
the two groups, the maximal mutation difference was noted in PCLO, the prevalence of which was higher in low-risk samples than in 
high-risk samples (25 % vs. 14 %). There were reports that mutation in TTN was linked to a higher TMB and better outcomes in several 
tumors, including GC and lung squamous cell carcinoma [24,25]. These findings are consistent with our results. 

Immune cells constitute a substantial portion of the TME in solid tumors. Tumor growth may be promoted or inhibited by the 
infiltration of various innate and adaptive immune cells [26]. Apoptotic genes play important roles in the TME. For instance, BCL-2, an 
inhibitory gene in apoptosis, can induce immunosuppression by enhancing regulatory T cells abundance and cytotoxicity T 
lymphocyte depletion [27]. The present study found that monocytes, resting mast cells, as well as M2 macrophages were more 
abundant in high-risk subgroups. In cancer, elevated levels of resting mast cells, M2 macrophages, and monocytes have been linked to 
tumor progression, angiogenesis, and metastasis. They can contribute to tumor-promoting effects by facilitating immunosuppression, 
promoting inflammation, and supporting tumor cell invasion and migration [28–30]. However, patients in the low-risk subgroup 
exhibited elevated proportions of follicular helper T cells and resting CD4 + memory cells. A large number CD4+ memory T cells 
infiltrating the TME indicate a favorable prognosis [31,32]. Based on the above findings, we propose that apoptosis may play a role in 
tumor immunity and this model may offer a suggestion to find reliable immune biomarkers for GC treatment. 

Chemotherapeutic agents commonly target apoptosis. Various chemotherapeutic drugs induce apoptosis in cancer cells via 
different signaling pathways. For example, studies have demonstrated that paclitaxel can promote apoptosis via ROS/HIF-1α signaling 
pathway in prostate cancer cells [33], while anlotinib inhibited breast cancer cell growth by promoting cell apoptosis [34]. As there is a 
wide range of responses to antineoplastic drugs among patients, precision therapy is necessary to recommend suitable drugs for each 
patient. In this context, the apoptosis risk scores identified in our study significantly affected the sensitivity of patients with GC to 
oxaliplatin, paclitaxel, docetaxel, and fluorouracil, which are commonly used chemotherapeutic agents. Personalized chemotherapy 
according to the risk score may improve the sensitivity to chemotherapy and the clinical outcome of patients with GC. 

In past studies, there have been several researches on the features about the prognosis of GC, including mitochondrial-related gene, 
microRNA, cancer-associated fibroblast related gene and tumor immunophenotyping-derived signatures [35–38]. As far as we know, 
there have been no correlational researches in prognostic studies on GC apoptosis-related signatures. Then, we developed an apoptosis 
model which was established with internal and external verification. Nevertheless, there are several limitations that may affect the 
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robustness and generalizability of our study. Only public databases were utilized to build and validate the prediction model. Therefore, 
larger sample sizes are necessary to testify the clinical applicability. Furthermore, the potential molecular mechanisms of the 12 genes 
in the signature of GC remain unclear and need to be notarized by in vivo or in vitro experiments using cell lines or clinical samples 
from patients with cancer. 

5. Conclusion 

We successfully established a novel prognostic risk model on the strength of 12 ARGs for patients with GC. The apoptosis risk score 
derived from this model stratified patients with GC into two distinct risk subgroups, thereby providing valuable prognostic infor-
mation. Additionally, correlations were evaluated between the risk model and TMB, signaling pathways, tumor immunity, and 
chemotherapy sensitivity. Our findings highlighted the significance of ARGs as potential prognostic biomarkers. A risk model based on 
these genes is a promising tool for predicting patient outcomes and guiding treatment decisions for patients with GC. 
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