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Plant epidemics are often associated with weather-related variables. It is difficult to
identify weather-related predictors for models predicting plant epidemics. In the article by
Shah et al., to predict Fusarium head blight (FHB) epidemics of wheat, they explored a
functional approach using scalar-on-function regression to model a binary outcome (FHB
epidemic or non-epidemic) with respect to weather time series spanning 140 days relative
to anthesis. The scalar-on-function models fit the data better than previously described
logistic regression models. In this work, given the same dataset and models, we attempt to
reproduce the article by Shah et al. using a different approach, boosted regression trees.
After fitting, the classification accuracy and model statistics are surprisingly good.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One purpose of epidemiology is to predict the outbreak of diseases beforehand. Weather plays a huge role in infectious
diseases, whether for human, animal, or for plants. In this report, we attempt to reproduce the article Predicting Plant Disease
Epidemics from Functionally Represented Weather Series by Shah et al. (Shah et al., 2019). In the study of plant disease epi-
demics, epidemiologists often investigate how disease outbreaks are correlated with weather patterns (Chakraborty et al.,
2000).

We can expect crops to have a low level of disease, which is harmless. A more severe level of diseases can cause epidemics,
which leads to reduction in crop yield. Farmers often intervene such situationwith the use of crop protection chemicals. These
decisions are supported by predictive models which help farmers to forecast disease outbreaks.

To accurately predict plant disease outbreaks, it is crucial to identify weather-based variables. One common approach is to
mine a time series of weather variables to recognize time periods and predictors related to disease outbreaks (Carisse et al.,
2018). Window-pane analysis is often used to accomplish this. However, window-pane analysis has the flaw of being ‘data
dredging’. Shah et al. proposed using functional data analysis (FDA) instead. They used scalar-on-function regression, which is
one form of FDA, to identify weather variables and time periods associatedwith epidemics of Fusarium head blight (FHB). FHB
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is the most economically significant wheat disease in many areas of the world. FDA demonstrates an improvement of pre-
diction accuracy over existing models.

In this work, we use boosted regression trees instead of FDA to reproduce the work by Shah et al., with the objective of
improving current FHB predicting models. The prediction accuracy and model efficiency are significantly enhanced.

2. Related work

Early work of predicting FHB epidemics using boosted regression trees In 2014, Shah et al. applied boosted regression
trees on the original dataset of 527 FHB observations (Shah et al., 2014). They used BRTs on a training data set of 369 ob-
servations and testing data set of 158 observations. The resulting misclassification rate on the testing data is 0.23. Models
were simplified, dropping some insignificant models during model fitting. The variable RESIST was included in every model.
On the simplified 5-, 7-, 10-, 14-, and 15-day pre-anthesis brti models, the cross-validated AUCs were 0.802, 0.832, 0.843,
0.875, and 0.872 respectively. For post-anthesis, the values were 0.867, 0.852, 0.881, 0.851, and 0.879 respectively.

Predicting FHB epidemics using random forests Shah et al. investigated the feasibility of random forests on the pre-
diction of FHB epidemics (Shah et al., 2023a). Predictors were selected as input variables using three random forest variable
selection algorithms: Boruta, varSeIRF, and VSURF. Compared with the logistic regression models, the random forest models
had better performance in general.

Accuracy in the prediction of disease epidemics when ensembling simple but highly correlated models As a case
study on FHB epidemics, Shah et al. examined ensembling methods which combine the predictions made by individual
component base models to achieve better prediction accuracy (Shah et al., 2023b). Some base models may produce highly
correlated predictions. Three ensembling methods were investigated: soft voting, weighted averaging of smaller subsets of
the base models, and penalized regression as a stacking algorithm (Shah et al., 2023b). The stacked algorithm has superior
performance than the other two.

FHB prediction models from the United States In the US, the first models for FHB prediction were logistic regression
models by De Wolf et al. (De et al., 2003). Information used was from 4 states at 50 location-years, representing 3 different
wheat production regions in the US. The prediction accuracy of these logistic regression models were from 62% to 85%. These
models were effectively employed in an online FHB risk assessment service in 31 states in the US.

FHB prediction models from Argentina A computer program using SAS identified the key meteorological factors
correlated with wheat head blight incidence in Pergamino, a region in humid pampeana (Moschini & Fortugno, 1996).
Analyzing data from 1978 to 1990 with linear regression, the study found specific humidity and rainfall conditions most
strongly linked to the disease. Two predictive models were developed and successfully validated against data from 1991 to
1993, accurately forecasting disease occurrence.

3. Methods

We use the same dataset as in the work by Shah et al. (Shah et al., 2019). There are 999 observations, 273 FHB epidemics
(Yi ¼ 1) and 726 FHB non-epidemics (Yi ¼ 0). This is a binary classification problem. Since the response variable is binary,
logistic regression was naturally applied.

Scalar predictors include resist andwc. resist is the level of cultivar resistance to FHB, a categorical factor (Shah et al., 2019).
wc describes the combination of wheat type (spring (sw) or winter (ww) wheat) and corn residue presence (corn ¼ 1) or
absence (corn ¼ 0). wc ¼ 1 if sw. wc ¼ 2 if ww and corn ¼ 0. wc ¼ 3 if ww and corn ¼ 1.

There are also weather-based predictors measured 5e15 days before or after flowering (Shah et al., 2019). They are derived
from temperature (T), relative humidity (RH), and TRH. Infection usually takes place during flowering (anthesis), which
makes this period crucial. There are 39 weather-based predictors in total (see Appendix A). For instance, weather variable 3 is
the mean RH from 7 days pre-anthesis to anthesis.

In the original work, there are 26 models in total (see Appendix B). Model can be a standard logistic regression (lr) or a
scalar-on-function regressionmodel (sof). We apply boosted regression trees on the lr models. Note that models (1, 2, 3), (7, 8,
9) and (11,12,13) only differ inwindow lengths (Shah et al., 2019). Models (7, 8, 9) and (11,12,13) differ only by the inclusion of
the scalar variable wc.

Instead of using standard logistic regression, we turn these models into boosted regression tree models. Boosted
regression trees is an ensemble method that combines the advantage of two algorithms: regression trees and boosting (Elith
et al., 2008). We can treat the individual terms in the final BRT models as individual trees and they are fitted in a ‘forward,
stagewise fashion’ (Elith et al., 2008). Boosted regression trees also has other advantages: No prior data transformation nor
elimination of outliers is needed. BRTs are highly effective in modeling complex, non-linear relationships that often exist in
ecological and biological data. Unlike scalar-on-function regression, which typically assumes a linear relationship between
predictors and the response variable, BRTs can automatically detect and model intricate interactions and non-linearities
without requiring prior specification of the form of these relationships. Also, BRTs inherently model interaction effects be-
tween variables. This capability is crucial in ecological modeling. BRTs are generally more robust to outliers and extreme
values compared to traditional regression methods. Moreover, BRTs are more scalable, accurate, flexible, and efficient.

As for predictive metrics, Boosted Regression Trees (BRTs) generally outperform traditional models across key predictive
metrics. By combining multiple weak learners, BRTs achieve lower misclassification rates and enhance both sensitivity and
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specificity, adapting effectively to complex and non-linear data patterns. This ensemblemethod also excels in optimizing Area
Under the Curve (AUC) values and Cohen's Kappa statistics, providing a robust measure of classification accuracy and
agreement that is less susceptible to imbalances and biases in the data. Consequently, BRTs offer a superior alternative in
scenarios requiring high accuracy and reliability in predictions.

To implement boosted regression trees in R, we use the gbm.step function in the gbm package. This function assesses the
optimal number of boosting trees using k-fold cross validation. It is an implementation of the cross-validation procedure by
Hastie et al. (Hastie et al., 2009). The data is divided into 10 subsets. Then, the function fits a gbm model with increasing
complexity. After processing every fold, the average holdout residual deviance and its standard error are used to identify the
optimal number of trees (Hastie et al., 2009). We need to adjust parameters such as bag fraction, tree complexity, learning
rate, etc. After hyperparameter tuning, we select bag fraction to be 0.5, tree complexity to be 5 or 10, and learning rate to be
0.005 or 0.01.

To compare models, AUC, sensitivity (the proportion of FHB epidemics correctly classified as such), specificity (the pro-
portion of FHB non-epidemics correctly classified as such), and misclassification rate are used (Shah et al., 2019). The Youden
Index is required to calculate some of these statistics. More specifically, Area Under the Curve (AUC), which measures the
entire area underneath the Receiver Operating Characteristic (ROC) curve, helps assess the model's ability to discriminate
between classes across all thresholds. Sensitivity (or true positive rate) quantifies the proportion of actual positives (FHB
epidemics) correctly identified, while specificity measures how well the model identifies actual negatives (non-epidemics).
The misclassification rate provides the overall proportion of incorrect predictions. The Youden Index, a summary measure of
the ROC curve, combines sensitivity and specificity to assess the model's effectiveness, with higher values indicating better
performance. Lastly, Cohen's Kappa statistic quantifies the level of agreement between two raters who classify items into
categories, adjusting for agreement that occurs by chance, thereby providing a more accurate measure of inter-rater
reliability.
Table 1
Logistic regression and boosted regression tree model statistics comparison.

Model ID Method Scalars Period AUC YI Sensitivity Specificity Kappa Misclass

1 lr resist pre 0.718 0.27 0.692 0.653 0.29 0.336
brt 0.978 0.36 0.905 0.939 0.827 0.07

2 lr resist pre 0.714 0.31 0.601 0.74 0.312 0.298
brt 0.940 0.31 0.868 0.865 0.685 0.134

3 lr resist pre 0.717 0.24 0.78 0.556 0.259 0.382
brt 0.826 0.27 0.725 0.725 0.430 0.262

5 lr resist pre 0.716 0.32 0.593 0.747 0.314 0.295
brt 0.974 0.31 0.945 0.888 0.775 0.096

7 lr resist post 0.739 0.3 0.67 0.7 0.323 0.308
brt 0.976 0.35 0.919 0.944 0.845 0.063

8 lr resist post 0.732 0.3 0.656 0.716 0.33 0.3
brt 0.994 0.41 0.956 0.970 0.915 0.034

9 lr resist post 0.743 0.3 0.681 0.73 0.366 0.283
brt 0.992 0.33 0.971 0.944 0.881 0.049

11 lr resist þ wc post 0.751 0.32 0.656 0.749 0.368 0.276
brt 0.989 0.32 0.974 0.949 0.893 0.044

12 lr resist þ wc post 0.748 0.31 0.663 0.738 0.361 0.282
brt 0.994 0.35 0.967 0.956 0.899 0.041

13 lr resist þ wc post 0.758 0.3 0.681 0.742 0.38 0.274
brt 0.991 0.33 0.960 0.949 0.883 0.048

15 lr resist þ wc pre 0.755 0.27 0.703 0.68 0.327 0.313
brt 0.992 0.39 0.949 0.959 0.891 0.044

17 lr resist pre 0.717 0.3 0.626 0.708 0.297 0.314
brt 0.987 0.36 0.930 0.959 0.878 0.049

19 lr resist post 0.731 0.28 0.663 0.69 0.307 0.317
brt 0.994 0.36 0.978 0.952 0.900 0.041

20 lr resist þ wc post 0.749 0.29 0.692 0.702 0.343 0.3
brt 0.993 0.32 0.989 0.945 0.896 0.043

21 lr resist pre 0.733 0.29 0.67 0.696 0.318 0.311
brt 0.987 0.36 0.941 0.950 0.872 0.052

22 lr resist þ wc pre 0.756 0.28 0.689 0.683 0.319 0.315
brt 0.990 0.32 0.967 0.941 0.874 0.052

23 lr resist pre 0.7 0.24 0.729 0.567 0.233 0.388
brt 0.986 0.38 0.945 0.948 0.870 0.053

24 lr resist þ wc pre 0.712 0.32 0.553 0.773 0.311 0.287
brt 0.987 0.33 0.967 0.928 0.853 0.061

25 lr resist prepost 0.75 0.25 0.762 0.628 0.316 0.335
brt 0.993 0.34 0.978 0.950 0.898 0.042

26 lr resist þ wc prepost 0.783 0.28 0.711 0.723 0.381 0.28
brt 0.986 0.28 0.974 0.910 0.830 0.072
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Fig. 1. AUC by model version and period.
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Chart 1 provides a visual representation of the systematic process employed in our study.
Below is the R code snippet for Model 1 as a demonstration:
fit1_brt <- gbm.step(data¼X2, gbm.x¼2:3, gbm.y¼1, family¼'bernoulli', tree.complexity¼5,

learning.rate¼0.01, bag.fraction¼0.5)

summary(fit1_brt)

preds <- attr(fit1$terms , "term.labels")[-1]

y_brt <- data.frame(id ¼ 1:nrow(X), actual ¼ Y, fitted.prob ¼ fit1_brt$fitted)

lr.1.brt <- f.stats.brt(id ¼ 1, scalar ¼ "resist", wb ¼ "1", wb.preds ¼ preds, model ¼ "lr.1.brt",

version ¼ "orig", period ¼ "pre", y_brt ¼ y_brt)

stats.out.brt(lr.1.brt)
4. Results

Among 26 models in the original work, twelve were based on previously reported logistic regression models. Six of these
(1, 2, 3, 5, 15, 17) were about pre-anthesis conditions. The rest (7, 8, 9, 11, 12, 13) were about post-anthesis conditions. Later on,
eight more logistic regressionmodels (19e26) with newly derived variables were added. Models 21e24 focus on pre-anthesis
conditions. Models 19 and 20 focus on post-anthesis condition. Models 25 and 26 cover conditions in windows spanning
anthesis (Shah et al., 2019).We can see thatmodels with 2 or 3 weather-based variables generally perform better thanmodels
with a single weather-based variables. In the original work, four s-o-f models had better performance that logistic regression
models.

Apart from the s-o-f models, we can compare our models' results with the models from the original work by Shah et al.
(Shah et al., 2019). The model statistics has significantly improved. Table 1 demonstrates the comparison between our result
and the original result. For most models, the misclassification rate has dropped from about 0.3 to below 0.1. Sensitivity (the
proportion of FHB epidemics correctly classified as such) and specificity (the proportion of FHB non-epidemics correctly
classified as such) have increased from about 0.6 tomore than 0.9 (almost reaching 1 in some cases). AUC is almost 1 for many
models. Kappa (Cohen's Kappa statistic) has increased to more than 0.8 for many models. We can see that boosted regression
trees work really well on the prediction of FHB epidemics.

To illustrate the model statistics more vividly, we plot several figures. Fig. 1 shows the AUC value by period and model
version. Purple represents the original logistic regression models which are now BRT models. Yellow means the newly added
1141



Fig. 3. Kappa by period and model version.

Fig. 2. Misclassification rate by period and model version.

C. Peng, X. Zhang and W. Wang Infectious Disease Modelling 9 (2024) 1138e1146

1142



Fig. 4. Sensitivity and specificity by model version and AUC.

Fig. 5. Sensitivity and specificity by model version and misclassification rate.
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logistic regression models which are now BRT models too. Green represents the scalar-on-function models in the original
work by Shah et al. We can see that BRT models have higher AUC values than s-o-f models. Fig. 2 shows the misclassification
rate by period and model version. BRT models have very low misclassification rate. Fig. 3 demonstrates the Cohen's Kappa
statistic by period and model version. Again, BRT models have superior performance.
Fig. 6. Sensitivity and specificity by period and misclassification rate.
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Chart 1. Flow chart of systematic process.
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Fig. 4 shows sensitivity and specificity by model version and AUC. Fig. 5 displays sensitivity and specificity by model
version and misclassification rate. Fig. 6 demonstrates sensitivity and specificity by period and misclassification rate. BRT
models have higher sensitivity and specificity values.

5. Conclusion

In this investigation, we have successfully demonstrated the application of boosted regression trees (BRTs) in predicting
Fusarium head blight (FHB) epidemics, building upon the foundational work by Shah et al. (Shah et al., 2019). The original
research highlighted the limitations of standard logistic regression models and the advantages of employing scalar-on-
function models for this purpose. Our findings suggest a significant leap in predictive accuracy and model efficiency
through the use of BRTs, which not only matched but substantially exceeded the performance of the previously established
models.

The superior classification performance of BRT models is particularly notable, with misclassification rates significantly
reduced to below 0.1 for most models and measures of sensitivity and specificity approaching near perfect scores. These
results underscore the robustness of BRTs in handling complex, non-linear relationships between weather-related variables
and the incidence of FHB epidemics. The ability of BRTs to effortlessly manage interactions without prior data transformation
or the elimination of outliers provides a compelling case for their broader application in epidemiological modeling.

However, while our study marks a considerable advancement in the predictive modeling of plant disease epidemics, it is
not without its limitations. The approach's dependency on high-quality, comprehensive datasets and the potential for
overfitting in BRT models are challenges that require careful consideration. Furthermore, the interpretability of BRT models
can be less straightforward compared to more traditional statistical methods, which may pose challenges for broader
adoption among practitioners and policymakers.

To enhance the application of Boosted Regression Trees (BRTs) in predicting plant diseases like Fusarium Head Blight
(FHB), it is crucial to improve data quality through partnerships with agricultural and meteorological organizations, incor-
porate regularization and cross-validation to prevent overfitting, and enhance model interpretability using tools like partial
dependence plots. Future research should focus on optimizing data resolution for modeling, developing hybrid models that
balance complexity with interpretability, and creating visualization tools to clarify variable interactions and influences.
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Appendix A. Weather-based Predictors in the Original Work
Weather variable ID
 Description
Shah et al. (2014) models

3
 Mean RH from 7 days pre-anthesis to anthesis

4
 Mean RH from 10 days pre-anthesis to anthesis

5
 Mean RH from 14 days pre-anthesis to anthesis

6
 Mean overnight RH from anthesis to 5 days post-anthesis
1144
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(continued )
Weather variable ID
 Description
7
 Mean overnight RH from anthesis to 7 days post-anthesis

8
 Mean overnight RH from anthesis to 10 days post-anthesis

13
 No. hrs overnight RH � 90% from 10 days pre-anthesis to anthesis

18
 Mean T from 7 days pre-anthesis to anthesis

19
 Mean T from 15 days pre-anthesis to anthesis

20
 Mean T from anthesis to 5 days post-anthesis

21
 Mean T from anthesis to 7 days post-anthesis

22
 Mean T from anthesis to 10 days post-anthesis

28
 No. hrs T < 9 �C from 7 days pre-anthesis to anthesis

29
 No. hrs T < 9 �C from 15 days pre-anthesis to anthesis

31
 No. hrs 15 �C � T � 30 �C & RH � 80% from 15 days pre-anthesis to anthesis

32
 No. overnight hrs 15 �C � T � 30 �C & RH � 80% from anthesis to 5 days post-anthesis

33
 No. overnight hrs 15 �C � T � 30 �C & RH � 80% from anthesis to 7 days post-anthesis

34
 No. overnight hrs 15 �C � T � 30 �C & RH � 80% from anthesis to 10 days post-anthesis

s-o-f models

11
 Daily mean RH 120 days pre- to 20 days post-anthesis

27
 Daily mean T 120 days pre- to 20 days post-anthesis

12
 Daily mean overnight RH 120 days pre- to 20 days post-anthesis

14
 Cumulative no. overnight hrs in which RH � 90% from 120 days pre- to 20 days post-anthesis

30
 Cumulative no. hrs in which T < 9 �C from 120 days pre- to 20 days post-anthesis

38
 Cumulative no. overnight hrs in which 15 �C � T � 30 �C & RH � 80% from 120 days pre- to 20 days post-anthesis

39
 Cumulative no. hrs in which 15 �C � T � 30 �C & RH � 80% from 120 days pre- to 20 days post-anthesis

New lr models

9
 Mean RH from 20 days pre-anthesis to anthesis

10
 Mean RH from 10 days pre-anthesis to 10 days post-anthesis

15
 No. hrs in which RH � 90% from 20 days pre-anthesis to anthesis

16
 No. hrs in which RH � 90% from anthesis to 10 days post-anthesis

17
 No. hrs in which RH � 90% from 50 days pre-anthesis to 10-days post-anthesis

23
 Mean T from 25 days pre-anthesis to 15 days pre-anthesis

24
 Mean T from 20 days pre-anthesis to 10 days pre-anthesis

25
 Mean T from 40 days pre-anthesis to 30 days pre-anthesis

26
 Mean T from anthesis to 20 days post-anthesis

35
 No. hrs 15 �C � T � 30 �C & RH � 80% from 30 days pre-anthesis to anthesis

36
 No. hrs 15 �C � T � 30 �C & RH � 80% from 60 days pre-anthesis to 40 days pre-anthesis

37
 No. hrs 15 �C � T � 30 �C & RH � 80% from anthesis to 10 days post-anthesis
Appendix B. The Models in the Original Work
Model ID
 Class
1145
Scalars
 Weather-based predictors
1
 lr
 resist
 3

2
 lr
 resist
 4

3
 lr
 resist
 5

4
 sof
 resist
 11

5
 lr
 resist
 4 þ 13

6
 sof
 resist
 11 þ 14

7
 lr
 resist
 6 þ 20 þ 32

8
 lr
 resist
 7 þ 21 þ 33

9
 lr
 resist
 8 þ 22 þ 34

10
 sof
 resist
 12 þ 27 þ 38

11
 lr
 resist þ wc
 6 þ 20 þ 32

12
 lr
 resist þ wc
 7 þ 21 þ 33

13
 lr
 resist þ wc
 8 þ 22 þ 34

14
 sof
 resist þ wc
 12 þ 27 þ 38

15
 lr
 resist þ wc
 3 þ 18 þ 28

16
 sof
 resist þ wc
 11 þ 27 þ 30

17
 lr
 resist
 19 þ 29 þ 31

18
 sof
 resist
 27 þ 30 þ 39

19
 lr
 resist
 16 þ 26 þ 37

20
 lr
 resist þ wc
 16 þ 26 þ 37

21
 lr
 resist
 9 þ 23 þ 35

22
 lr
 resist þ wc
 9 þ 23 þ 35

23
 lr
 resist
 15 þ 25 þ 36

24
 lr
 resist þ wc
 15 þ 25 þ 36
(continued on next page)
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(continued )
Model ID
 Class
1146
Scalars
 Weather-based predictors
25
 lr
 resist
 10 þ 17 þ 24

26
 lr
 resist þ wc
 10 þ 17 þ 24
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