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Placement of Nanoarcheum equitans in the archaeal phylogeny<p>An analysis of the position of Nanoarcheum equitans in the archaeal phylogeny using a large dataset of concatenated ribosomal pro-teins from 25 archaeal genomes suggests that N. equitans is likely to be the representative of a fast-evolving euryarchaeal lineage.</p>

Abstract

Background: Cultivable archaeal species are assigned to two phyla - the Crenarchaeota and the
Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly
supported by phylogenetic analysis. The recently described hyperthermophile Nanoarchaeum
equitans, harboring the smallest cellular genome ever sequenced (480 kb), has been suggested as
the representative of a new phylum - the Nanoarchaeota - that would have diverged before the
Crenarchaeota/Euryarchaeota split. Confirming the phylogenetic position of N. equitans is thus
crucial for deciphering the history of the archaeal domain.

Results: We tested the placement of N. equitans in the archaeal phylogeny using a large dataset of
concatenated ribosomal proteins from 25 archaeal genomes. We indicate that the placement of N.
equitans in archaeal phylogenies on the basis of ribosomal protein concatenation may be strongly
biased by the coupled effect of its above-average evolutionary rate and lateral gene transfers.
Indeed, we show that different subsets of ribosomal proteins harbor a conflicting phylogenetic
signal for the placement of N. equitans. A BLASTP-based survey of the phylogenetic pattern of all
open reading frames (ORFs) in the genome of N. equitans revealed a surprisingly high fraction of
close hits with Euryarchaeota, notably Thermococcales. Strikingly, a specific affinity of N. equitans
and Thermococcales was strongly supported by phylogenies based on a subset of ribosomal
proteins, and on a number of unrelated molecular markers.

Conclusion: We suggest that N. equitans may more probably be the representative of a fast-
evolving euryarchaeal lineage (possibly related to Thermococcales) than the representative of a
novel and early diverging archaeal phylum.

Background
Despite a ubiquitous distribution [1] and a diversity that may
parallel that of the Bacteria (for a recent review see [2]), the

Archaea still remain the most unexplored of life's domains.
Whereas 21 different phyla are identified in the Bacteria
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Taxonomy Database, as of October 2004 [3]), known cultiva-
ble archaeal species fall into only two distinct phyla - the Cre-
narchaeota and the Euryarchaeota [4] - on the basis of small
subunit rRNA (SSU rRNA) (NCBI Taxonomy Database, as of
October 2004 [3]). A number of non-cultivated species that
do not group with either Crenarchaeota or Euryarchaeota
have been tentatively assigned to a third phylum, the Korar-
chaeota [5]. However, this group may be artefactual, as well
as that formed by other environmental 16S rRNA sequences
[2].

The Crenarchaeota/Euryarchaeota divide indicated by SSU
rRNA phylogenies is strongly supported by comparative
genomics, as a number of genes present in euryarchaeal
genomes are missing altogether in crenarchaeal ones and vice
versa. These differences are not trivial, as they involve key
proteins involved in DNA replication, chromosome structure
and replication. For example, the Crenarchaeota lack both
DNA polymerases of the D family and eukaryotic-like his-
tones, which are present in the Euryarchaeota [6,7]. Simi-
larly, replication protein RPA and cell-division protein FtsZ
remain exclusive to the Euryarchaeota [8], while only the Cre-
narchaeota harbor the ribosomal protein S30 (COG4919).
This suggests that members of these two archaeal sub-
domains may employ critically different molecular strategies
for key cellular processes. The distinctiveness of the phyla
Euryarchaeaota and Crenarchaeota is further strengthened
by phylogenetic analysis ([9,10] and this work) and is likely to
remain unaffected even when additional cultivable species
will be defined. Such a dramatic split is intriguing as it may be
more profound than that separating the different bacterial
phyla and leaves open different scenarios for the origin of
these important differences during early archaeal evolution.

Karl Stetter and his colleagues recently described a novel
archaeal species - Nanoarchaeum equitans - representing the
smallest known living cell [11]. This tiny hyperthermophile
grows and divides at the surface of crenarchaeal Ignicoccus
species and cannot be cultivated independently, indicating an
obligate symbiotic, and possibly parasitic, life style [12].
Sequencing of the N. equitans genome revealed the smallest
cellular genome presently known (480 kb) and raised fasci-
nating questions regarding the origin and evolution of this
archaeon [13]. Indeed, in contrast to typical genomes from
parasitic/symbiotic microbes [14-16], that of N. equitans
does not show any evidence of decaying genes and contains a
full complement of tightly packed genes encoding informa-
tional proteins [13]. This suggests that the establishment of
the dependence-relationship between N. equitans and Ignic-
occus is probably very ancient. In a phylogeny of 14 archaeal
taxa based on a concatenation of 35 ribosomal proteins and
rooted by eukaryotic sequences, N. equitans emerged as the
first archaeal lineage, that is, before the divergence of the two
main archaeal phyla, the Euryarchaeota and the Crenarchae-
ota [13]. This is consistent with the early emergence of N.
equitans in a phylogeny based on SSU rRNA [12], and with

the proposal that N. equitans should be considered as the rep-
resentative of a novel and very ancient archaeal phylum, the
Nanoarchaeota [11].

Testing the phylogenetic position of N. equitans is thus cru-
cial to deciphering the history of the archaeal domain. For
instance, if the divergence of this lineage indeed preceded the
divergence of Euryarchaeota and Crenarchaeota, features
common to N. equitans and any other archaeal taxa could
probably be considered as ancestral characters (provided that
lateral gene transfers (LGTs) are excluded). For example, the
most parsimonious interpretation for the presence in the
genome of N. equitans of all those genes that are otherwise
found in the Euryarchaeota only [13] is that all these proteins
were present in the last archaeal ancestor and were subse-
quently lost in the Crenarchaeota. However, the hypothesis of
an early divergence of the Nanoarchaeota should be treated
with caution. There are now several examples in which fast-
evolving taxa are mistakenly assigned to early branches
because of a long branch attraction (LBA) artifact due to their
high evolutionary rates [17], especially when a distant out-
group is used [18-21]. Similarly, since adaptation to a symbi-
otic or parasitic life style may have accelerated its
evolutionary rate, the basal position of N. equitans in phylo-
genetic analyses using distant eukaryotic sequences as the
outgroup [13] may be strongly affected by LBA.

We tested the position of N. equitans in the archaeal phylog-
eny by using a dataset of concatenated ribosomal proteins
larger than that used by Waters and colleagues [13], a much
broader taxonomic sampling, and without including any out-
group in order to reduce LBA. By applying phylogenetic
approaches that accurately handle reconstruction biases, we
show that the early emergence of N. equitans observed in pre-
vious analyses probably resulted from an LBA artifact due to
the fast evolutionary rate of this archaeon, possibly worsened
by LGT affecting a fraction of its ribosomal proteins. Indeed,
the phylogenies based on our new ribosomal protein dataset
and on additional single genes suggest that N. equitans is
more likely to be a very divergent euryarchaeon - possibly a
sister lineage of Thermococcales - than a new and ancestral
archaeal phylum. This is consistent with further evidence
gathered from close BLAST hits analyses on the whole
genome complement of this taxon.

Results and discussion
Phylogenetic analysis of concatenated ribosomal 
proteins
Fifty ribosomal proteins having a sufficient taxonomic sam-
pling and for which no LGT were evidenced in previous anal-
yses (see Materials and methods and Table 1) [9,10] were
concatenated into a large dataset (F1 dataset) comprising
6,384 positions and 25 archaeal taxa. The datasets contained
18 taxa previously used for the study of archaeal phylogeny
based on ribosomal proteins [10] plus seven new taxa: the
Genome Biology 2005, 6:R42
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Thermococcale Thermococcus gammatolerans, the Metha-
nomicrobiale Methanogenium frigidum, the Methanosarci-
nales Methanococcoides burtonii, Methanosarcina mazei
and Methanosarcina acetivorans, the halobacterium Halof-
erax volcanii and N. equitans. Exhaustive maximum likeli-
hood searches were performed with a Jones Taylor Thornton
(JTT) model and limited constraints on indisputable nodes as
recovered in unconstrained maximum likelihood and neigh-
bor-joining analyses (data not shown) and in previous work
[10].

The corresponding maximum likelihood unrooted tree is
shown in Figure 1a. The monophyly of the two main archaeal
domains, Crenarchaeota and Euryarchaeota, was recovered
and supported by high bootstrap values (BV) (100% and 98%,
respectively). Within the Euryarchaeota, the basal branching
of Thermococcales (including T. gammatolerans) was also
recovered (BV = 84%) as was the group comprising Methano-
bacteriales and Methanococcales (BV = 64%), and a well sus-
tained group (BV = 96%) comprising Thermoplasmatales,
Archaeoglobales, Halobacteriales (including H. volcanii) and
Methanomicrobia (including the three new members of the
Methanosarcinales M. acetivorans, M. mazei, M. burtonii
and the Methanomicrobiale M. frigidum). N. equitans
emerged as a separate branch distinct from those leading to

Crenarchaeota and Euryarchaeota, in agreement with the
rooted phylogeny of Waters and colleagues [13]. However, in
our analysis the branch leading to N. equitans was relatively
long, suggesting a possible above-average substitution rate
with respect to the other taxa in the dataset that may affect its
correct placement. Consequently, in order to identify the ori-
gin of possible biases in our global analysis, we analyzed two
additional fusion datasets, one including the 27 proteins of
the F1 dataset belonging to the large ribosomal subunit (F2
dataset) and one including the 23 proteins of the F1 dataset
belonging to the small ribosomal subunit (F3 dataset).

The F2 tree (Additional data file 1A) was highly consistent
with the F1 tree (Figure 1a) including the placement of N.
equitans on a separate branch with respect to the other two
archaeal domains. In contrast, in the F3 tree (Additional data
file 1B), N. equitans emerged within the Euryarchaeota with a
high statistical confidence (BV = 98%) and was supported -
albeit weakly - as sister group of the Thermococcales (BV =
54%). This indicates that the components of the two ribos-
omal subunits may harbor a conflicting signal for the place-
ment of N. equitans. Such incongruence was unexpected and
led us to question the reliability of global ribosomal protein
fusions in the assignment of the correct phylogenetic position
of N. equitans in the archaeal phylogeny.

Table 1

Position of Nanoarchaeum equitans in maximum likelihood and Bayesian phylogenies of individual ribosomal proteins

Position of N. equitans Proteins Total

Basal position L3, L10, L11, L31e, S5, S19e, S24e 7

Within Crenarchaeota and sister group to: 9

Sulfolobales L16, L18e, L23 3

Aeropyrum pernix S17e 1

Pyrobaculum aerophilum L6, L20a, L29, S6e 4

Other S10 1

Within Euryarchaeota and sister group of: 33

Thermococcales L1, L2, L14, L15, L21e, L24, L32e, L37e, S3, S7, S17, S19, S28e 13

Methanopyrus kandleri L4, L13, S13 3

Methanococcales L18 1

Methanothermobacter thermautotrophicus S4, S11 2

Archaeoglobus fulgidus S8e, S9 2

Thermoplasmatales L22, L30, S2, S3ae, S15 5

Methanomicrobiales S8 1

Halobacteriales S27a 1

Other L5, L19e, L24e, S4e, S27e 6

Absent in N. equitans L39e 1
Genome Biology 2005, 6:R42
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Phylogenetic analyses of individual ribosomal proteins
To further characterize the conflicting phylogenetic signal for
the placement of N. equitans in our concatenated analyses,
we investigated its position in individual trees obtained by
both unconstrained maximum likelihood and Bayesian anal-
ysis of each of the 50 ribosomal proteins. The topologies of
these trees were consistent overall, despite the weakness of
the phylogenetic signal contained in individual ribosomal
proteins, often of small size. N. equitans generally displayed
above-average branch lengths in these phylogenies, reinforc-
ing the idea that LBA may strongly bias its placement in the
global fusion trees. Moreover, N. equitans showed a highly
unstable position (Table 1). In fact, it emerged as a separate
branch distinct from the crenarchaeal and euryarchaeal
domains (as in the F1 and F2 trees, Additional data file 1A), in
only seven ribosomal protein phylogenies.

This is at odds with the indication of N. equitans as the repre-
sentative of a novel archaeal domain, as Euryarchaeota and
Crenarchaeota were generally well segregated in these indi-
vidual phylogenies (data not shown). In contrast, as many as
33 ribosomal proteins supported the inclusion of N. equitans
within the Euryarchaeota, 13 of which indicated a sister
grouping with Thermococcales, similarly to the small ribos-
omal subunit protein tree (F3, Additional data file 1B). This
striking affiliation may be explained by the occurrence of
massive LGT involving these proteins between N. equitans
and other euryarchaeal lineages. However, as no specific eco-
logical reasons may especially favor such exchanges, this
would rather indicate N. equitans as a euryarchaeal phylum
rather than a novel archaeal domain. Conversely, LGT could
easily explain the grouping of N. equitans with Crenarchaeota
in the individual trees of nine ribosomal proteins (Table 1), as
the genes coding for these proteins in N. equitans may have
been acquired from its crenarchaeal host Ignicoccus species.
If confirmed by future analyses, especially once the complete
genome sequence of the Ignicoccus species is available, this
would be the first report of numerous LGTs involving ribos-
omal proteins between two archaeal species.

It is worth noting that five of the nine proteins grouping N.
equitans with Crenarchaeota belong to the large ribosomal
subunit, and may introduce a strong bias for the basal posi-
tion of N. equitans in the F2 tree (Additional data file 1A), as
well as in the F1 tree (Figure 1a). To test this, we constructed
a fourth dataset (F4 dataset) by removing these nine ribos-
omal proteins from the F1 dataset, and the resulting maxi-
mum likelihood tree is shown in Figure 1b. Strikingly, the F4
tree was highly consistent with the F1 tree, except for the posi-
tion of N. equitans, which was strongly assigned to Euryar-

chaeota (BV = 100%) and branched off as a sister lineage of
Thermococcales (BV = 60%), similarly to the small ribosomal
subunit protein tree (F3, Additional data file 1B). Impor-
tantly, this placement is not likely to be the result of an LBA
between the branch leading to N. equitans and that leading to
Thermococcales, since the latter was rather short (Figure 1b).
Our results strongly suggest that the basal position of N. equi-
tans observed in our global ribosomal protein fusion analysis
(Figure 1a) and in others [13] could resulted from the combi-
nation of conflicting phylogenetic signal from different sub-
sets of ribosomal proteins (Table 1), either due to LGT and/or
to LBA given the relatively fast evolutionary rates displayed
by this taxon. Instead, once these biases are reduced, N. equi-
tans shows a weak but specific affinity to Thermococcales
(Figure 1b) that may represent its genuine placement in the
archaeal phylogeny.

Phylogenetic pattern of N. equitans protein 
complement
We investigated whether the difficulty of assigning the ribos-
omal proteins of N. equitans to a clear phylogenetic status
reflected a general characteristic of the whole protein comple-
ment of this taxon. With this aim, we performed a complete
survey of all 563 open reading frames (ORFs) encoded in the
N. equitans genome by BLASTP searches against all other
available complete archaeal genomes (including T. gamma-
tolerans). Although a close hit does not always correspond to
the nearest phylogenetic neighbor [22], a genome-scale anal-
ysis of the distribution of such hits can highlight interesting
patterns. We have chosen not to extend this analysis further
by automated molecular phylogeny reconstructions because
we reckon that such an approach is highly prone to error.
Indeed, dataset assembly is strictly dependent on human
judgment at critical steps such as choice of homologs and
alignment editing.

The distribution of close hits for the N. equitans ORFs accord-
ing to an E-value cutoff of 10-4 is shown in Figure 2a. Thresh-
olds between 10-2 and 10-10 either increased or decreased the
proportion of N. equitans-specific genes, but did not signifi-
cantly change the relative distribution of close BLAST hits
between archaeal groups (data not shown). A third of the N.
equitans ORFs appeared to have no homologs in other
archaea (gray section in Figure 2a), consistent with a previous
analysis [13]. However, the remaining ORFs displayed many
more close hits with different euryarchaeal lineages (56%)
than with crenarchaeal ones (12%) (Figure 2a). Strikingly,
nearly half of the euryarchaeal close hits (approximately 25%
of the N. equitans ORFs) were represented by Thermococca-
les (green section in Figure 2a).

Unrooted maximum likelihood trees from exhaustive searches based on the F1 and the F2 datasetsFigure 1 (see previous page)
Unrooted maximum likelihood trees from exhaustive searches based on the F1 and the F2 datasets. (a) F1 dataset; (b) F2 dataset. Numbers at nodes are 
bootstrap values. Scale bars represent the number of changes per position for a unit branch length. Asterisks indicate constrained nodes.
Genome Biology 2005, 6:R42
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To identify possible biases introduced by LGT, we determined
the global distribution of the second, third and fourth close
BLAST hits (Figure 2b). Fifty percent of N. equitans close hits
were indeed represented exclusively by members of different
euryarchaeal phyla (green section in Figure 2b), and this pro-
portion was even higher when we included ORFs with a cre-
narchaeon as close hit, but euryarchaeal species as next three
close hits, suggesting possible Euryarchaeota-to-Crenarchae-
ota LGT (pale-green section in Figure 2b). Such a high frac-
tion of close hits with the Euryarchaeota may be due to the
effect of overall higher evolutionary rates in Crenarchaeota,
although this has never been proposed. This unexpected high
proportion of best close hits with Euryarchaeota - and notably
Thermococcales - for the proteins of N. equitans is strikingly
consistent with the phylogenetic analyses of individual (Table
1) and concatenated (Figure 1b and Additional data file 1B)
ribosomal proteins, further suggesting that N. equitans may
be a divergent euryarchaeon related to Thermococcales.

Additional single-gene phylogenies
To test further the phylogenetic position of N. equitans, we
performed single-gene analyses by both maximum likelihood
and Bayesian approaches of additional proteins known to be
potential good molecular markers. Two unrooted archaeal
maximum likelihood trees based on the elongation factors
EF-1α and EF-2 are shown in Figure 3a and 3b, respectively.
Strikingly, both trees strongly placed N. equitans within the

Euryarchaeota (BV = 100% and a posterior probability (PP) of
1.00), and specifically as a sister-group of Thermococcales
(BV = 79%, and PP = 1.00 and BV = 64% and PP = 1.00 in EF-
1α and EF-2 trees, respectively), consistently with the F3 and
F4 trees (Additional data file 1B and Figure 1b, respectively).
The inclusion of N. equitans within the Euryarchaeota in the
phylogeny based on EF-1α is further supported by an inser-
tion/deletion (indel)-containing region that displays identical
structure in N. equitans and several euryarchaeal lineages
including Thermococcales (data not shown). These results
may be interpreted by positing the concerted LGT of EF-1α
and EF-2 from Thermococcales to N. equitans, since the two
factors are part of the same macromolecular complex.

Thus, we analyzed additional markers involved in different
molecular functions, such as the A subunit of topoisomerase
VI, a type IIB DNA topoisomerase involved in DNA replica-
tion and whose phylogeny is highly consistent with that based
on 16S rRNA [23]. The resulting tree (Figure 3c) was largely
congruent with the previous ones, and once more placed N.
equitans as sister-group of Thermococcales (BV = 98%, PP =
1.00), within the Euryarchaeota (BP = 100%, PP = 1.00).
Finally, we investigated the position of N. equitans in an
archaeal phylogeny based on reverse gyrase, a key enzyme
composed of two domains, a helicase and a topoisomerase
[24] and specific to thermophiles, where it catalyzes DNA
positive supercoiling [25]. In N. equitans the gene encoding
reverse gyrase is split into two noncontiguous coding
sequences encoding the helicase and topoisomerase func-
tions, respectively [13]. This has been taken as evidence for an
ancestral nature of the reverse gyrase gene of N. equitans,
consistent with the supposedly early emergence of this taxon
[13]. However, the phylogeny of reverse gyrase (Figure 3d)
supports a late branching of N. equitans, and surprisingly
once more grouped with Thermococcales (BV = 60% and PP
= 1.00). This suggests that the fission of the reverse gyrase
gene in N. equitans probably resulted from a secondary event.
Indeed, a high number of split genes appear to be a general
feature of the N. equitans genome [13], as well as of those of
fast-evolving archaeal taxa, such as Methanopyrus kandleri
[26].

Conclusion
The description of N. equitans by Huber and colleagues little
more than two years ago marked an important step in our
knowledge of the diversity and evolution of the Archaea, still
the most unexplored of life's three domains. Indeed, N.
equitans represents an example of symbiotic/parasitic life
style between two archaeal species that is unprecedented
[11,12]. The exceptionality of this archaeon was confirmed by
the sequencing of its genome, which combines a minimal size
close to the theoretical limits of a living cell with a stability not
observed in other highly reduced genomes [13].

Distribution of close BLASTP hitsFigure 2
Distribution of close BLASTP hits. Hits are displayed as (a) per lineage and 
(b) per archaeal domain of the 563 ORFs of the N. equitans genome with a 
threshold of 10-4.

(a) Closest BLAST hit is a Desulfurococcale

Closest BLAST hit is a Thermoproteale

Closest BLAST hit is a Sulfolobale

Closest BLAST hit is a Pyrococcale

Closest BLAST hit is a Methanococcale

Closest BLAST hit is a Methanopyrale

Closest BLAST hit is a Methanobacteriales

Closest BLAST hit is an Archaeoglobale

Closest BLAST hit is a Halobacteriale

Closest BLAST hit is a Thermoplasmatale

Closest BLAST hit is a Methanosarcinale

No archaeal homologs

(b) The two closer hits are crenarchaeal

The closer hit only is crenarchaeal

Mix of crenarchaeal and euryarchaeal
hits (closer is crenarchaeal)

The four closer hits are euryarchaeal

The closer hit only is euryarchaeal

Mix of crenarchaeal and euryarchaeal
hits (closer is euryarchaeal)

No archaeal homologs 
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Phylogenetic trees for elongation factors EF-1α and EF-2, subunit A of topoisomerase VI and reverse gyraseFigure 3
Phylogenetic trees for elongation factors EF-1α and EF-2, subunit A of topoisomerase VI and reverse gyrase. Unconstrained unrooted maximum likelihood 
trees of (a) elongation factor EF-1α, (b) elongation factor EF-2, (c) subunit A of topoisomerase VI, and (d) Bayesian tree of reverse gyrase. Bold numbers 
at nodes are bootstrap values; the other numbers are the Bayesian posterior probabilities. Scale bars represent the number of changes per position for a 
unit branch length.
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Despite all these characters indicating N. equitans as the
member of a highly divergent lineage, we feel that its assign-
ment to a novel archaeal phylum - the Nanoarchaeota - other
than the well established Euryarchaeota and Crenarchaeota
may be premature. Indeed, the distinctiveness of the N. equi-
tans SSU rRNA primary structure may be an idiosyncrasy of
this taxon due to a unique combination of adaptation to
hyperthermophily and genome reduction. Our phylogenetic
analyses of ribosomal proteins consistently show that N. equi-
tans does not behave like the Euryarchaeota or the Crenar-
chaeota, which generally form clearly distinct branches in the
archaeal tree, but shows instead a highly unstable placement.
Similarly, the suggestion that N. equitans may represent an
ancient divergence in the archaeal domain is far from being
settled. In fact, the branching point of N. equitans is largely
unresolved in the SSU rRNA phylogeny [12], and its basal
placement in a recent tree of a ribosomal protein concatena-
tion may be biased by the attraction of the long branches lead-
ing to N. equitans and to the eukaryotic sequences used as the
outgroup [13]. Indeed, our unrooted phylogenies underline
the above-average evolutionary rate of N. equitans and warn
against the unreliability of global ribosomal protein fusions in
assessing the correct placement of this taxon, because of LBA.
Moreover, an additional bias may be introduced by LGT, as
we suggest that a substantial fraction of N. equitans ribos-
omal proteins may have been exchanged with its crenarchaeal
host. Our results indeed indicate an unsuspected close affin-
ity of N. equitans with the Euryarchaeota, and notably with
Thermococcales. This evidence is strongly reinforced by the
specific and strong affinity of N. equitans with Thermococca-
les in trees of diverse molecular markers that do not lie in
close proximity in the N. equitans genome, and on close
BLAST hit analyses on the whole genome complement of this
taxon. To explain all these findings, the most parsimonious
explanation would be that N. equitans is a highly divergent
euryarchaeal lineage possibly related to Thermococcales.

The hypothesis of nanoarchaea being a euryarchaeal lineage
has important implications for our understanding of archaeal
evolution, as characters in common between N. equitans and
Euryarchaeota could be more easily considered as synapo-
morphies of the group rather than ancestral traits that would
have been lost in the branch leading to Crenarchaeota. The
characterization and genomic analysis of additional
nanoarchaeal species will be necessary to confirm a specific
affinity to Thermococcales, and to shed further light on the
evolution of this intriguing group of archaea.

Materials and methods
Sequence retrieval and dataset construction
We updated a dataset of 62 ribosomal proteins from previous
work [9,10]. In addition to N. equitans [11], we included six
new taxa: two Methanosarcinales (Methanosarcina mazei
[27] and Methanosarcina acetivorans [28]) whose complete
genomes have been recently made available in public data-

bases [29,30], and four other archaeal species whose genome
sequencing is under way, that is, the Methanomicrobiale
Methanogenium frigidum [31], the Methanosarcinale Meth-
anococcoides burtonii [32], the Halobacteriale Haloferax
volcanii [33], and the Thermococcale Thermococcus gam-
matolerans [34] (Y.Z. and F.C., unpublished work).
Sequences were retrieved using BLASTP [35] at NCBI for N.
equitans, M. acetivorans and M. mazei, and by TBLASTN
[35] at the genome-sequencing website for H. volcanii [36],
and at the draft genome analysis website [37] for M. burtonii
[38] and for M. frigidum [38]. Unlike Waters and colleagues
[13], and like our previous studies [9,10], we did not include
any eukaryotic outgroup, in order to prevent LBA. Novel
sequences were manually added to previous alignments [39]
and ambiguous regions were removed.

Single alignment datasets were constructed for each of the 62
ribosomal proteins. From these, four concatenated datasets
were constructed: one including 50 ribosomal proteins for
which no LGT was evidenced in previous analyses and had a
sufficient taxonomic sampling (at least 21 taxa) (F1 dataset);
one including the 27 proteins from the F1 dataset belonging to
the large ribosomal subunit (F2 dataset); one including the 23
proteins from the F1 dataset belonging to the small ribosomal
subunit (F3 dataset); and one corresponding to the F1 dataset
excluding nine ribosomal proteins supporting a close rela-
tionship between N. equitans and the Crenarchaeota (see
Results and discussion) (F4 dataset). Four additional single
alignment datasets were similarly constructed for the two
elongation factors EF-1α and EF-2, the A subunit of topoi-
somerase VI (TopoVIa), and reverse gyrase.

Phylogenetic analyses
To handle rate variation among sites, maximum likelihood-
distance matrices (JTT model with a Gamma-law and eight
discrete classes) were computed with TREE-PUZZLE [40]
and used for neighbor-joining tree reconstruction by the
NEIGHBOR program of the PHYLIP package [41]. Uncon-
strained maximum likelihood trees were computed using
PHYML and the same parameters [42]. Bayesian phyloge-
netic trees were constructed using MrBayes [43] with a mixed
model of amino-acid substitution and a Gamma-law (eight
discrete classes). MrBayes was run with four chains for 1 mil-
lion generations and trees were sampled every 100 genera-
tions. Exhaustive maximum likelihood searches were
performed using the PROTML program of the MOLPHY
package [44] with a JTT model and limited constraints on
indisputable nodes as recovered in unconstrained maximum
likelihood and neighbor-joining analyses and previous work
[10]. Branch lengths and likelihoods for the 2,000 top-rank-
ing topologies were computed using a JTT model including a
Gamma-law and eight discrete classes with TREE-PUZZLE
[40]. Bootstrap analyses were performed on 1,000 replicates
using PUZZLEBOOT [45] and extended majority rule consen-
sus trees were inferred with CONSENSE from the PHYLIP
Genome Biology 2005, 6:R42
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package [46]. All datasets and corresponding phylogenetic
trees are available on request from C.B.

Close BLAST hit analyses
All the ORFs of the N. equitans genome were retrieved from
NCBI. For each ORF a BLASTP search was performed locally
on a database of complete archaeal genomes including T.
gammatolerans. Different distributions of close BLAST hits
were manually established with E-value threshold cutoffs
ranging from 10-2 to 10-10. The same criteria were used to
establish additional distributions including information from
the next three close-hit representatives of different phyla. For
example, when the first six close hits were represented by T.
gammatolerans, Pyrococcus abyssi, P. horikoshii, P. furio-
sus, M. kandleri and Sulfolobus solfataricus, we considered
as three first close BLAST hits Thermococcales, Methanopy-
rales and Sulfolobales.

Additional data files
Additional data are available with the online version of this
article. Additional data file 1 contains a figure showing
unrooted unconstrained maximum likelihood trees com-
puted by PHYML from a concatenation of large subunit and
small subunit ribosomal proteins.
Additional File 1A figure showing unrooted unconstrained maximum likelihood trees computed by PHYML from a concatenation of (A) large subu-nit and (B) small subunit ribosomal proteins. Numbers at nodes are bootstrap values. Scale bars represent the number of changes per position for a unit branch length.Click here for file
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