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ABSTRACT

Human tissue-specific genes were reported to be
longer than housekeeping genes (both in coding
and intronic parts). The competing neutralist and
adaptationist models were proposed to explain this
observation. Here I show that in human genome the
longest are genes with the intermediate expression
pattern. From the standpoint of information theory,
the regulation of such genes should be most
complex. In the genomewide context, they are
found here to have the higher informational load
on all available levels: from participation in protein
interaction networks, pathways and modules
reflected in Gene Ontology categories through
transcription factor regulatory sets and protein
functional domains to amino acid tuples (words) in
encoded proteins and nucleotide tuples in introns
and promoter regions. Thus, the intermediately
expressed genes have the higher functional and
regulatory complexity that is reflected in their
greater length (which is consistent with the ‘genome
design’ model). The dichotomy of housekeeping
versus tissue-specific entities is more pronounced
on the modular level than on the molecular level.
There are much lesser intermediate-specific mod-
ules (modules overrepresented in the intermediately
expressed genes) than housekeeping or tissue-
specific modules (normalized to gene number).
The dichotomy of housekeeping versus tissue-
specific genes and modules in multicellular organ-
isms is probably caused by the burden of regulatory
complexity acted on the intermediately expressed
genes.

INTRODUCTION

Human tissue-specific genes were reported to be longer
than housekeeping genes, both in coding and intronic parts.
The competing models were proposed to explain this
observation: selection for economy (in housekeeping

genes), mutation bias and ‘genome design’ (i.e. functional
complexity) (1–11). The first two models assume a neutralist
(permissive) interpretation of the accumulation of DNA in
eukaryotic genomes. In contrast, the ‘genome design’
model suggests that the length of genomic elements is mostly
determined by their functional load. In particular, the greater
amount of intra- and intergenic noncoding DNA, in which
the tissue-specific genes are embedded, may be involved in
the more complex regulation and chromatin-mediated
suppression of these genes, whereas the greater length of
coding sequences may be related to more complex protein
functional architectures. From the standpoint of information
theory, the regulation of intermediately expressed genes
should be most complex (Figure 1). Here, I test this sugges-
tion and investigate in the genomewide context both the
length (using the updated databases and a finer expression
breadth scale) and the informational load (using a novel
approach) of human genes with different expression pattern.
The informational load is extensively studied on all available
levels: from gene participation in protein interaction net-
works, pathways and modules reflected in Gene Ontology
categories through transcription factor regulatory sets and
protein functional domains to amino acid tuples (words of
fixed size) in encoded proteins and nucleotide tuples in
introns and promoter regions.

MATERIALS AND METHODS

Gene sequences and expression

Human gene sequences were extracted from the RefSeq
database (12). The data on gene expression were taken
from the last version of Gene Expression Atlas standardized
with the MAS5 algorithm (13). They present the results of
oligonucleotide microarray experiments performed uniformly
with 72 normal human tissues. The signals from probes on
the chip corresponding to the same gene were averaged; the
replicates representing the same tissue were also averaged. As
recommended (13), a gene was regarded as expressed if its
signal level exceeded the dataset median. The complete sets
of structural and expression data were obtained for 15 726
genes. The genes were divided into seven groups (bins)
differing in the among-tissues expression breadth, with a
roughly equal number of genes in each group. In the part
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of analyses of intronic sequences, the gene groups were
normalized to a roughly equal number of nucleotide tuples
by randomly removing genes from the groups with a
relatively greater total intron length. For analysis of intronic
sequence, only the sum of internal introns (that reside within
the coding sequence) was taken for consistency (because the
complete mRNAs may not be known for all genes). There
were 14 470 intron-containing genes in the dataset. In a
part of analyses, introns were masked for lineage-specific
repeats (that were inserted after the human–mouse split) or
for all known repeats using the standalone RepeatMasker
and DateRepeats programs (A.F.A. Smit, R. Hubley and
P. Green; http://repeatmasker.org).

Genomic objects

For genes with references to the SwissProt (UniProt)
database (13 273 proteins were found), the functional
domains in the encoded proteins were estimated using the
SwissPfam (for non-overlapping domains) and InterPro
(the compilation of all known domain definitions from
different databases, with redundancy) databases (14,15).
The sets of genes regulated by different transcription factors
were taken from the Molecular Signature Database (MsigDb)
(16). The pathway gene sets were compiled using the KEGG
(17) and Reactome (18) databases [using Entrez Gene
mapping (19)], and HumanCyc (20). In the case of Gene
Ontology categories (21), I collected for each category all
its subcategories (separately for Biological Processes,
Molecular Functions and Cellular Components) using GO
graphs, and a gene was regarded as belonging to a given
category if it was mapped to any of its subcategories in
Entrez Gene. (If only the explicit Entrez Gene mapping of
a given gene was used, the picture was similar.) The infor-
mation on protein interactions was taken from the STRING
database (22). All pairwise interactions of a given protein
were taken to form the protein interaction set. The gene
promoter regions were extracted from the database of experi-
mentally determined exact transcriptional start sites

(DBTSS): from 1000 nt upstream to 200 nt downstream
of transcription start site (the standard promoter region
length presented in the DBTSS) (23). The frequencies of
amino acid and nucleotide tuples of different sizes were
calculated using a sliding frame of a given size (with 1-letter
step) for each gene group. The reduced amino acid alphabets
were taken from the work by Li et al. (24). Similar to
reduced amino acid alphabets, the more evolutionarily stable
2-letter purine/pyrimidine alphabet was used for testing
intronic tuples. Thus, using repeats as markers of intronic
sequence, it was estimated in regard to repeat ancestor
copies (using the RepeatMasker program) that transitions
(i.e. mutations from purine to purine or from pyrimidine
to pyrimidine) occur roughly twice more frequently than
transversions (i.e. mutations from purine to pyrimidine or
vice versa).

Estimation of information

The Shannon information (uncertainty) was estimated on the
basis of probability of occurrence of a given object (protein
domain, transcription factor, pathway, protein interaction,
GO category) in a given gene expression group in regard
to the total dataset (i.e. the under- or overrepresentation of
a given object in the total dataset), using a gene set corre-
sponding to this object and the hypergeometric probability
distribution. In other words, the expected count (number of
occurrences) of the genomic object in a given gene expres-
sion group was estimated on the ground of the count of this
object in the total dataset. Then, the probability of the devia-
tion of the observed count from the expected was estimated
using the hypergeometric test. If an object was overrepre-
sented in a given group, the probability of equal or higher
frequency was taken, if underrepresented, the probability of
equal or lower frequency. Only those objects were taken
that occur more than thrice in the total dataset (with the
higher cutoff values, the picture was similar). This condition
gives 1176 InterPro domains, 615 transcription factor sets,
274 pathways, 11 397 protein interaction sets, 1612 GO
Biological Processes, 1034 GO Molecular Functions, and
358 GO Cellular Components (with the explicit Entrez
Gene mapping, there were 710 Biological Processes, 634
Molecular Functions and 224 Cellular Components). For
amino acid and nucleotide tuples (where there were much
higher counts), the probability of occurrence of each tuple
in a given gene group (in regard to the total dataset) was
estimated using the chi-square distribution (with Yates
correction).

The information (uncertainty) of each genomic object was
calculated using the Shannon formula (�P * log2P) (25),
where the probability value was taken either from hypergeo-
metric or chi-square test (as said above). Then the average
information was determined for each gene expression
group, summing the information across the entire set of
objects of a given type (e.g. GO Biological Processes) and
dividing it by the number of objects in the set.

For revealing the number of over- and underrepresented
modules (Tables 1 and 2), I used hypergeometric probability
distribution (as said above), and then estimated false discov-
ery rate (q-value) for correction for multiple comparisons
using P-value (obtained in hypergeometric test) and the

Figure 1. The information (uncertainty) of switch-on/off transition in genes
expressed in different numbers of tissues, according to the Shannon formula
(�P*log2P). (Probability of expression is defined as the ratio of the number
of tissues where a given gene is expressed to the total number of tissues
studied.)
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‘q-value’ program (26). The conventional statistical analyses
(ANOVA and Kruskal–Wallis tests, polynomial regression)
were done using the Statgraphics Plus (Statistical Graphics
Co.) software package. The star plot (Figure 6C) was done
using the Statistica (StatSoft, Inc.) package.

RESULTS

General picture

The intermediately expressed human genes are longer
both in coding and intronic part (Figure 2A and B).

Table 1. The number of Gene Ontology categories overrepresented in genes expressed in different number of tissues (with correction for multiple tests made using

estimation of false discovery rate, q-value < 0.05)

0–5 tissues 6–18 tissues 19–37 tissues 38–54 tissues 55–66 tissues 67–71 tissues 72 tissues

GO Biological Processes 32 7 0 0 0 7 101
GO Molecular Functions 24 0 0 1 0 0 64
GO Cellular Components 15 6 3 0 0 16 69

Table 2. The number of Gene Ontology categories underrepresented in genes expressed in different number of tissues (with correction for multiple tests made

using estimation of false discovery rate, q-value < 0.05)

0–5 tissues 6–18 tissues 19–37 tissues 38–54 tissues 55–66 tissues 67–71 tissues 72 tissues

GO Biological Processes 40 22 3 0 0 1 35
GO Molecular Functions 6 1 0 0 0 7 26
GO Cellular Components 27 15 6 0 0 4 12

Figure 2. The length of coding and intronic sequences in human genes expressed in different numbers of tissues (A and B) and with different expression levels
(averaged over all tissues) (C and D). A and B denote mean values with LSD intervals (ANOVA and Kruskal–Wallis, P < 10�12 in both cases); C and D denote
nonlinear polynomial regression (for the second-order polynomial term, which manifests the nonlinearity, P < 10�12 in both cases; dashed lines, confidence
limits; dotted lines, prediction limits). (In B and D only genes with introns were taken.)
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The tissue-specific genes are generally longer than house-
keeping genes, in consistence with the previous reports (1–
4). (It should be noted that the previous reports were based
on the smaller number of studied tissues and the older ver-
sions of gene expression databases.) There is a strong correla-
tion between the number of tissues where a given gene is
expressed and its expression level averaged over all tissues,
which is similar for different expression thresholds (thus,
for thresholds in the range of 0.5–2.0 dataset medians, Spear-
man r > 0.91, P < 10�12). This fact allows confirming the
effect shown in Figure 2A and B without the use of
arbitrary expression threshold and gene grouping
(Figure 2C and D).

The ‘genome design’ model suggests that the length of a
gene (including its intronic part) is roughly proportional to
its functional load (4,11). Whether the intermediately
expressed genes indeed have a higher complexity? First of
all, the number of encoded protein functional domains is
greater in them (Figure 3A), which suggests that the
increased length of coding sequence is not just a ‘junk’
accumulated because of relaxation of selection for economy

and/or mutation bias (as was assumed in the neutralist inter-
pretations) but is related to functional load. The number of
unique domains is also greater in the intermediately
expressed genes (Figure 3B), which suggests not only the
intensification of the same function (through accumulation
of identical domains) but also the real increase in functional
complexity of protein architectures. The protein length cov-
ered by functional domains is also greater in the intermedi-
ately expressed genes (Figure 3C), which indicates that
their higher number of domains is not associated with a
lower domain size and that there is a real increase in protein
length loaded with function. Notably, it was recently argued
that a lower evolutionary rate of highly expressed (i.e. mostly
housekeeping) proteins is not due to a greater functional den-
sity of their sequence (27), which is consistent with the pre-
sent data (Figure 3).

Similar to the case of coding sequence, the greater length
of intronic sequence in the intermediately expressed genes
cannot be explained by selection for economy and/or muta-
tion bias. Because of the (above-mentioned) strong correla-
tion between average expression level and among-tissues

Figure 3. The average number of Pfam domains (A), the average number of unique Pfam domains (B), the average protein length covered by Pfam domains (C),
and the average genomewide-contextual Shannon information (uncertainty) of InterPro domains (the picture was similar for Pfam domains) (D) in human genes
expressed in different numbers of tissues. [ANOVA and Kruskal–Wallis: (A) P < 10�9, (B) P < 10�7, (C) P < 10�12 and (D) P < 10�4.]
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expression breadth, the economy selection should be more
effective in the intermediately expressed genes compared
with the narrower expressed (more tissue-specific) genes.
Therefore, in the case of selection for economy intronic
length should decrease monotonically with expression
breadth. Were the mutation bias associated with expression
level and/or expression breadth [because transcription can
increase mutation and recombination rate (28,29)], the effect
of mutation bias should also change monotonically with the
change of the latter parameters.

Informational approach

The Shannon information theory defines information as a
measure of surprise (uncertainty) of a message estimated
using the prior probability of this message (25). This
approach allows estimating information of any within-
genome object in the genomewide context, which can be
used for calculation of the prior probability (see Materials
and Methods). The average information (uncertainty) of
protein functional domains is greater in the intermediately
expressed genes (Figure 3D). In other words, there is the

overrepresentation of certain domains (and underrepresenta-
tion of other domains) both in housekeeping and tissue-
specific genes, whereas in the intermediately expressed
genes various domains occur more homogeneously (i.e.
they are more diversified).

From the standpoint of information theory, regulation of
intermediately expressed genes should involve a higher
informational load compared with both housekeeping and
tissue-specific genes because of a more complex choice of
switch-on/off transition (Figure 1). In general agreement
with this theoretical expectation, the intermediately expressed
genes show the higher average information (uncertainty) of
their transcription factor regulatory sets (Figure 4A).
The same is found for their involvement in protein inter-
actions, pathways and modules reflected in Gene Ontology
categories (Figure 4B–D; Supplementary Figure 1A and B).
In consistence with this finding, there are many over- and
underrepresented GO categories (corrected for multiple
tests) in genes expressed in 0–5 or 72 tissues, and almost
none in genes expressed in 19–37, 38–54, 55–66 tissues
(Tables 1 and 2). (It should be emphasized that there are
roughly equal numbers of genes in each gene expression
group.)

Figure 4. The average genomewide-contextual Shannon information (uncertainty) of transcription factor sets (A), pathways (B), protein interactions (C), Gene
Ontology Biological Processes (D) in human genes expressed in different numbers of tissues [ANOVA and Kruskal–Wallis: (A,C,D) P < 10�12; (B) P < 10�5].
(The picture was similar for Gene Ontology Molecular Functions and Cellular Components; see Supplementary Figure 1.)
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On the protein sequence level, the intermediately expressed
genes show the higher average information of amino acid
tuples of different sizes (Figure 5A). To ensure that this effect
is not due to a greater total number of tuples in the groups of
intermediately expressed genes (because of their longer
proteins), the gene groups were normalized to the roughly
equal total number of tuples by randomly removing genes
from groups with a relatively greater total tuple number.
The picture remained similar (Supplementary Figure 2).
The effect also holds for tuples of the reduced amino acid
alphabets (Figure 5B; Supplementary Figure 3A and B),
which reflect more evolutionarily stable protein properties
(24,30).

In introns, there is a similar picture with nucleotide tuples
(Figure 6A). The effect remains after normalization to an
equal total tuple number in each gene expression groups
(Supplementary Figure 4). If, by analogy with the reduced
amino acid alphabets, the more evolutionarily stable 2-letter
purine/pyrimidine alphabet was taken [thus also avoiding

the variation in GC content and CpG dinucleotide frequency,
which can influence gene expression (31–33)], the effect
holds (Figure 6B). It can be seen even without the calculation
of information that the distribution of (genomewide-
normalized) nucleotide tuple frequencies in the star plot is
more homogeneous (and thus have higher uncertainty) in
the intermediately expressed genes (Figure 6C). If both
intronic DNA strands were taken (and thus excluding also
the among-introns variation in purine content), the picture
was similar (Supplementary Figure 5A). If the intronic
sequences were masked for primate-specific (versus mouse)
or all-known repeats, the intermediately expressed genes
still showed the higher average information, although there
was a relative increase of information in the tissue-specific
genes (Supplementary Figure 5B). For the gene promoter
regions (from �1000 to +200 nt of transcription start site),
the uncertainty of nucleotide tuples is also higher in the inter-
mediately expressed genes for both the complete and 2-letter
purine/pyrimidine alphabet (Supplementary Figure 6), which
is consistent with the uncertainty of transcription factor
regulatory sets (Figure 4A).

However, on the level of sequence tuples (in contrast to
explicitly functional objects such as protein functional
domains, transcription factor sets, pathways, protein interac-
tions, Gene Ontology categories), there is a problem of
discerning information from noise caused by possible redun-
dancy (degeneracy) of the sequence level (especially, in the
case of intronic sequence). The use of reduced alphabets
with more evolutionarily stable letters (i.e. reflecting those
sequence properties that are more tightly linked to function)
should reduce this noise. Thus, for amino acid tuples, the
picture was similar even with 3-letter alphabet (legend to
Figure 5, and Supplementary Figure 3), which reduces the
most part of sequence variability (even with a part of
information). [It was reported that at least 10-letter alphabet
is necessary for description of protein properties; refs
(24,30)]. It is impossible to make such a deep alphabet
reduction with DNA sequence. For stricter testing of introns,
the information (uncertainty) of intronic tuples of 2-letter
(purine/pyrimidine) alphabet in both DNA strands was
calculated in regard to the equal prior probability of all tuples
(i.e. as a non-genomewide-contextual uncertainty). (As said
above, sequence variation in GC content and CpG dinu-
cleotide frequency, and its deviation from the equal purine/
pyrimidine content were excluded in the case of this 2-letter
alphabet and both DNA strands.) This non-genomewide-
contextual uncertainty did not differ significantly in the
intermediately expressed genes (Figure 6D), which indicates
that their increase in the genomewide-contextual uncertainty
(Figure 6B) indeed reflects the increase in (genome-specific)
information.

DISCUSSION

The whole picture can be summarized as follows. It was
argued that the overtaking growth of the number of genes
coding for transcription factors over the total number of
genes limited the growth of prokaryotic genomes (34). The
problem of regulatory complexity turns out to be even
more severe for the eukaryotic genomes (35,36). The most
complex regulatory problems should appear in the case of

Figure 5. The average genomewide-contextual Shannon information
(uncertainty) of amino acid 2-tuples of complete 20-letter alphabet (A) and
3-tuples of reduced 10-letter alphabet (B) in encoded proteins of human genes
expressed in different numbers of tissues (ANOVA and Kruskal–Wallis: P <
10�12 in both cases). (The picture was similar for tuples and alphabets of
different sizes: 2- to 3-tuples of complete alphabet, 2- to 4-tuples of 10-letter
alphabet, 4- to 6-tuples of 5-letter alphabet and 7- to 9-tuples of 3-letter
alphabet were tested; see Supplementary Figure 3.)
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intermediately expressed genes (Figure 1). Therefore, the
burden of regulatory complexity might force the dichotomy
of housekeeping versus tissue-specific genes in the multicel-
lular organisms [which can be seen in the histogram of genes
expressed in different numbers of tissues: e.g. figure 1 in (37);
figure 2 in (38)]. The occurrence of protein functional
domains, participation in transcription factor regulatory sets,
pathways, protein interactions, biological processes, molecu-
lar functions and cellular components also reflect this
dichotomy, showing the maximum genomewide-contextual
uncertainty (and thus, informational load) in the intermedi-
ately expressed genes. In other words, there are much less
intermediate-specific modules (if any) than housekeeping
and tissue-specific modules (Tables 1 and 2). This effect is
observed notwithstanding the fact that gene expression bins
are normalized to the roughly equal numbers of genes.
Thus, the dichotomy of housekeeping versus tissue-specific
entities is much more pronounced on the modular level
than on the molecular level. The intermediately expressed

genes possibly connect housekeeping and tissue-specific
modules. In any case, they have the higher functional and
regulatory complexity reflected in their greater length,
which is consistent with the ‘genome design’ model.

The domain architecture is considered the most important
level of protein functional complexity, especially in the
eukaryotic genomes (39–41). Proteins encoded by the inter-
mediately expressed genes are shown here to consist of
a greater number of various domains and therefore may
perform more complex and diverse functions. The higher
complexity of the intermediately expressed genes is also
reflected in the frequency of amino acid tuples in encoded
proteins and nucleotide tuples in introns and promoter
regions. A possible functional load of introns is discussed
in (11,42–47). Briefly, introns can harbor a plethora of
regulatory elements acting in multiple ways: the interaction
with transcription factors (as enhancers and suppressors),
the regulation mediated by splicing, and the action of noncod-
ing RNAs located in introns (to say nothing of alternative

Figure 6. Parameters of intronic nucleotide tuples in human genes expressed in different numbers of tissues. The average genomewide-contextual Shannon
information (uncertainty) of nucleotide 5-tuples of complete 4-letter alphabet (A) and 12-tuples of 2-letter purine/pyrimidine alphabet (B), the star plot of the
genomewide-normalized frequencies of 6-tuples of 2-letter purine/pyrimidine alphabet (C), the average non-genomewide-contextual uncertainty of 12-tuples of
2-letter purine/pyrimidine alphabet in both DNA strands (D). In the star plot (C), the relative frequency of each tuple is plotted along one of star rays (in the same
order in each plot), the larger the difference among the ray lengths, the more heterogeneous is the distribution of tuple frequencies. Note that in genes expressed
in 0–5, 6–18, 19–37 and 72 tissues, some rays are so small that they are even invisible on this scale [i.e. they look as empty sectors of the star). (ANOVA and
Kruskal–Wallis: (A and B) P < 10�12]. (The picture was similar for tuples of different sizes: 2- to 6-tuples of complete alphabet, and 4- to 14-tuples of 2-letter
alphabet were tested; see also Supplementary Figure 5.)
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splicing which alters the protein structure). It is noteworthy
that first intron, which is more often known to contain
regulatory elements (48,49), is longer in the intermediately
expressed genes (Supplementary Figure 7). The situation is
further complicated by participation of introns in chromatin
organization and interplay of the latter with transcriptional
regulation (e.g. 10,50). It is interesting that in the yeast,
introns are longer in the highly expressed genes (51), which
contradicts the ‘selection for economy’ model. [The same is
probably true for some other unicellular organisms, judging
by the correlation between intron length and frequency of
optimal codons (51)]. This fact indicates that in introns of
unicellular organisms, the amount of activating elements
outweigh the amount of suppressing ones. The fraction of
non-housekeeping (i.e. generally suppressed) genes is much
lower in unicellular organisms, therefore there should be a
lower amount of suppressing elements in their introns. The
maximum chromatin condensation is 5-fold lower in yeast
when compared with mammals (52), which suggests that
yeast introns should be less loaded with chromatin-
condensation function.

It should be noted that the ‘selection for economy’ model
comes in two flavors: ‘energy economy’ and ‘time economy’,
which were contrasted in the case of human bi-directional
genes (6,7). The former was rejected in favor of the latter
because antisense genes expressed are both shorter and
narrower than corresponding sense genes (6,7). However,
the antisense genes can be miniaturized because they should
be accommodated within the loci of the sense genes, which is
consistent with the ‘genome design’ model (11). (Also,
their shorter length may be adequate for their function.)
Moreover, in contrast to the energy economy, time economy
is not additive in a piecemeal way [as in ‘beanbag genetics’
(53)]. In other words, the speed of an intracellular
event probably cannot be changed without corresponding
changes in other parts of the system. (Imagine an electronic
circuit where some events are accelerated without
adjustment of the others.) Therefore, time economy is closer
in sense to ‘genome design’ because in this case genomic
structure should be selected as a system [for timing
design (54)].

The combinatorial control of gene expression involving
cooperation of multiple transcription factors is now an
emerging theme (50,55,56). Due to the most complex choice
of switch-on/off transition in the case of intermediately
expressed genes (according to the information theory),
regulation of these genes should be more complex. Therefore,
it may involve a greater amount of multiple regulatory factors
(and their binding sites). Finally, evolutionary design
becomes a recurrent theme in systems biology of gene and
protein networks (54,57–61). It may have a counterpart in
the blueprint of these networks (genomic structure).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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