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Temporally precise sequences of neuronal spikes that span hundreds of milliseconds are observed in many brain areas,
including songbird premotor nucleus, cat visual cortex, and primary motor cortex. Synfire chains—networks in which groups of
neurons are connected via excitatory synapses into a unidirectional chain—are thought to underlie the generation of such
sequences. It is unknown, however, how synfire chains can form in local neural circuits, especially for long chains. Here, we
show through computer simulation that long synfire chains can develop through spike-time dependent synaptic plasticity and
axon remodeling—the pruning of prolific weak connections that follows the emergence of a finite number of strong
connections. The formation process begins with a random network. A subset of neurons, called training neurons, intermittently
receive superthreshold external input. Gradually, a synfire chain emerges through a recruiting process, in which neurons
within the network connect to the tail of the chain started by the training neurons. The model is robust to varying parameters,
as well as natural events like neuronal turnover and massive lesions. Our model suggests that long synfire chain can form
during the development through self-organization, and axon remodeling, ubiquitous in developing neural circuits, is essential
in the process.
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INTRODUCTION
Precisely timed sequential firing of neurons has been observed in

vivo in a number of brain areas. A striking example is found in

premotor neurons of the songbird zebra finch, which sings

stereotyped song consisting of several repetitions of a motif,

typically of 500 ms to 1 s duration; the projection neurons in the

premotor nucleus HVC (used as a proper name)—believed to

underlie the timing of song—spike sequentially at precise times

relative to the motif during singing [1]. Visual cortical neurons in

anesthetized cats [2] and cortical motor neurons in behaving

monkeys [3] also exhibit spike sequences with precise timings

spanning hundreds of milliseconds. Such sequences may serve as

an infrastructure for learning temporally demanding tasks, such as

well-timed motor actions and perceptual discriminations of

temporal signals.

Theoretical studies [4–9] and experiments in cortical slices [2]

suggest that sequential firings of neurons can be produced in

networks within local brain areas. The topology of the synaptic

connections between excitatory neurons, through which the spikes

propagate, is critical to the production of sequences. The synfire

chain, theorized first by Abeles [5,8], is the canonical topology for

sequence generation. Previous theoretical and experimental

studies have shown that synfire chains are robust for spike

sequence generation [10,11]. They have also been proposed as the

neural mechanism that underlies the precise spike sequences

observed in the zebra finch premotor neurons [12].

In the synfire chain architecture, neurons are organized into

synchronous groups that make convergent feedforward synaptic

projections onto successive groups (Figure 1A). With this topology,

a neuron spikes only when induced to do so by the group of

neurons that directly precede it. In this way, relative spike timing is

preserved between groups of neurons. This is shown through an

example simulation of a synfire chain in Figure 1B. The chain has

32 groups, each with 10 neurons. The spike raster shows the spike

times of neurons for a single trial; the spikes from the same group

are plotted on the same row. Individual neurons spike at very

precise times relative to the activation of the chain across multiple

trials (Figure 1C,D). In each panel of Figure 1C, we plot the raster

for a single neuron across multiple trials; the group to which each

neuron belongs is indicated in each panel. The vertical alignment

of each spike across trials indicates the high reproducibility of

individual neuron spike times in a synfire chain. Figure 1D is

a summary of all neurons. Here, the mean spike time across 100

trials is shown as a vertical dash, and the standard deviation of the

mean (jitter) as a horizontal error bar; note that it is possible to

have millisecond accuracy.

The validity of synfire chains is still an active topic of debate,

and an important unresolved issue surrounds their development.

In particular, how is it possible to refine local neural circuitry so as

to attain the high degree of synaptic specificity that is found in

a synfire chain (Figure 1A). An attractive idea is that neurons self-

organize into synfire chains through activity dependent plasticity

of synapses. Activity driven refinement of local neural networks,

through synaptic plasticity and axon remodeling, is ubiquitous in

developing neural systems, and is a necessary supplement to the

genetically programmed mechanism of laying out coarse connec-
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Figure 1. Synfire chain and its spike activity. (A) Topology of synfire chain. In a synfire chain, neurons (gray ovals) are organized into successive
groups (shown as rows). Each group makes convergent synaptic connections (black arrows) onto the next. Group numbers are shown beside each
group. (B) Single trial spike raster of population labeled by group number (upper), and associated population firing rate (lower). Here a group consists
of 10 neurons. Each neuron spikes only once, and neurons in a group spike in tight synchrony. The inset shows a detail of the spikes from 3 successive
groups. The population firing rate holds steady until the end of the chain, where it drops off to spontaneous levels. (C) Raster plots for select
individual neurons across 10 trials. The lowest panel shows a neuron in Group 1, the starting group of the network; it is induced to spike by external
input. Successive panels show neurons in higher groups, which spike due to the intrinsic synfire connectivity. The vertical alignment of spikes across
trials suggests a high degree of temporal accuracy. The inset shows the details of the spike activity of a neuron in Group 40, which spikes
approximately 200 ms after Group 1. (D) A raster plot showing mean spike times (vertical dashs) and spike time jitters (horizontal error bars) for the
first 200 neurons across 1000 trials. Insets show the details of groups 3 (lower) and 19 (upper).
doi:10.1371/journal.pone.0000723.g001
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tions between brain areas [13,14]. Self-organization makes it

possible to form refined connectivity with minimal guidance from

external inputs. This is in contrast to a supervised learning

mechanism for synfire chains, in which an external source repeats

the same sequence of activity in order to entrain neurons to spike

in a particular order [4,15]. Supervised learning is an unlikely

mechanism for developing neural systems, especially in motor

areas, since both the fine-grained targeting of the external sources

and their sequential activations are most likely absent. Songbirds

do typically learn their song from an adult tutor [16], but here we

are interested in the development of the fine-grained timing

mechanism that underlies song. Our assumption is that this

develops before song acquisition, which begins 30 to 40 days

posthatch [16].

Previous theoretical studies of self-organized mechanisms for

synfire chain formation have yielded mixed results. Hertz and

Prügel-Bennett [17] implemented a firing rate-based Hebbian

plasticity of synapses. They found that the mechanism leads to

short chains with only a few synchronous groups. Recent works

implementing spike-time dependent Hebbian plasticity rules

[18,19] yielded similar results [20,21]. A more recent work [22]

used no Hebbian plasticity, but instead applied both pre- and

postsynaptic scaling for all neurons. In this model, a synaptic

weight is updated to target the postsynaptic neuron activity to one

spike per trial, and the amount of the update is proportional to the

average activity of the presynaptic neuron. Using this strategy,

a temporal sequence did emerge, but the network did not organize

into a synfire chain. Consequently, the spike timings are not as

precise as can be achieved by a synfire chain.

In this paper, we re-examine a self-organizing mechanism of

synfire chain formation. We observe that the previous attempts

omitted an important factor in developing neural circuitry—the

activity-dependent remodeling of axon arbors. During develop-

ment, the axon branches of a neuron undergo exuberant

exploration in which many weak connections form to different

postsynaptic targets; subsequently, they undergo remodeling in

which most connections vanish and a few stable connections

remain [14]. Examples where this process plays a critical role

include the development of the neuromuscular junction [23] and

the formation of ocular dominance stripes in cats [13]. Two-

photon imaging studies show that axon arbor pruning and

stabilization is intimately coupled with the maturation of synapses

[24,25]. The structural plasticity of axon arbors introduces

constraints to the refinement process of neural circuitry, since

the existence of a connection is a precondition to the change in

synaptic strength. We explore the possibility that structural

plasticity may be crucial for the development of temporal

sequences in neural networks.

Our approach is to develop a model that allows neurons to self-

organize into a synfire chain architecture using a Hebbian

plasticity protocol—spike-time dependent plasticity—and axon

remodeling, in which the formation of a finite number of strong

connections from a neuron triggers pruning of the weak

connections from it. For the former, we use an established

phenomenological model [26,27]. For the latter, we enforce

a simple rule on all neurons—a limit on the number of ‘‘strong’’

synapses—to schematize the complicated biophysical process of

axonal arbor maturation. Using a combination of the two

strategies, we find it possible to form a synfire chain network

from a randomly connected network. Our model assumes that

neurons in the circuit spike spontaneously at low rates and that

a subset of neurons, called the training set, is activated

intermittently by an external source. In addition, we assume that

neurons can silence or activate synaptic connections based on

spiking activity. This last ingredient is important for maintaining

excitatory balance in the network while allowing neurons to form

connections to appropriate targets.

The formation is characterized by a recruiting process in which

neurons are added to a growing chain started by the training set,

as depicted in Figure 2. Our model produces long synfire chains

capable of generating spike sequences with timing accuracy on the

order of milliseconds. We also find that the model is stable to

neuron loss, either through one-by-one death during the formation

process or through a mass ‘‘surgical’’-like lesion of a mature

network.

RESULTS
We aim to show that long synfire chains emerge in a network of

spontaneously spiking neurons, through connectivity modifications

driven by Hebbian synaptic plasticity and axon remodeling when

a subset of them are activated intermittently by external inputs.

We first give an overview of our model. Then, we describe the

roles of each plasticity rule in the formation process. Finally, we

present results from our model.

Overview of Model
A cartoon of our model is shown in Figure 2; it depicts how

different elements work together and also shows alternate

scenarios if a particular element were removed from the model.

For simplicity, we discuss the growth process as it occurs at the

beginning of the synfire chain formation.

Initially, a neuron connects to all other neurons, but 90% of the

synapses on these connections are non-functional (or ‘‘silent’’, gray

dashed arrows in Figure 2). Functional connections (thin black

arrows) are sparse and weak, and their targets are randomly

selected.

All neurons spike spontaneously at roughly 0.1 Hz due to noisy

fluctuations of membrane potentials. Spike activity modifies all

synaptic strengths, whether silent or active, through spike-time

dependent plasticity (STDP) [18,19]. A synapse remains silent if its

strength does not exceed a threshold HA. With enough

potentiation, however, a silent synapse can become active when

its strength exceeds HA, and the opposite can happen if a synapse

experiences too much depression. Because of spontaneous activity

and STDP, synaptic strengths fluctuate, randomly activating and

deactivating synapses; therefore, the functional connectivity of the

network fluctuates, allowing patterns of connections that would

otherwise be inaccessible in a static architecture. Synapses are also

subject to an activity independent decay with a small rate. This

discourages formation of reliable connections due to the

spontaneous activity alone.

A subset of neurons is intermittently induced to spike

synchronously by a brief external input. These neurons are

referred to as ‘‘training neurons’’ (TN) (shown as black ovals in

Figure 2), and the rest as ‘‘pool neurons’’ (PN) (gray ovals). The

time between two activations of the TN defines a trial period

(2 seconds of simulated time). Following the bent arrow from the

full network leads to a subnetwork that includes only the TN and

their active postsynaptic targets (Figure 2). Because connections

are random between all neurons, they are nonspecific, meaning

that there is no coordination between neurons to select the same

set of postsynaptic targets.

A trial proceeds as follows. A brief burst of excitation, modeled

as high frequency Poisson spike trains, induces the TN to spike.

After the activation of the TN, some PN will be spontaneously

active, and STDP will strengthen synapses from the TN to those

PN. PN that have convergent connections from a subset of the TN
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are more likely to spike spontaneously after TN due to the

depolarization of their membrane potentials, and hence are more

likely to have the synapses from all TN strengthened; this is

a positive feedback that makes the TN form strong connections

with the same postsynaptic targets. The lower middle subnetwork

in Figure 2 illustrates how the synapses are more specific due to the

activation of synapses from the TN onto the same set of PN. This

process, which we call ‘‘recruitment’’, leads to a set of PN that

have many afferent active synapses from the TN and can be

reliably driven to spike by the TN.

It is expedient at this point to stress the importance of allowing

activation or silencing of synapses. The upper middle subnetwork

illustrates the consequence of removing this dynamic aspect from

the network: STDP can strengthen only the existing static

connectivity and therefore the TN will never connect to the same

set of postsynaptic targets. Only those neurons that receive

convergent connections at the outset (gray ovals with black outline

in the upper middle subnetwork of Figure 2) will be recruited to

spike after the TN. The lack of convergence from TN to PN is

a consequence of the initial sparse connectivity. Though a more

dense static connectivity removes the issue of convergence, it

creates poor scalability and a high sensitivity to producing spike

runaway in the network.

Another issue is the ‘‘hoarding problem’’ (shown in the upper

right subnetwork of Figure 2). Since the TN always spike first in

the network, they tend to strengthen, hence activate, synapses onto

all neurons. Therefore, the TN will eventually hoard all of the PN

if there is no restriction on the number of postsynaptic targets

a neuron can have. Axon remodeling introduces such restriction.

In our model, a neuron can emanate only NS connections with

‘‘supersynapses’’; once this limit is reached, all other connections

from the neuron are pruned. A synapse is super if its strength

exceeds a second threshold HS (.HA). Axon remodeling, together

with the tendency that TNs make converging connections to

recruited neurons, limits the number of neurons recruited to the

next group (the ones that spike after the TN) to approximately NS.

The lower right subnetwork of Figure 2 shows the recruitment of

the second group and the pruning of all other connections.

After the formation of the second group, the TN are

‘‘saturated’’. The neurons in the newly formed second group

replace TNs as the sites where PNs can be recruited. The external

inputs can reliably activate the neurons in the second group. Thus,

new PNs can be recruited to form a third group. The iteration of

recruitment and axon remodeling leads to the emergence of a long

synfire chain network.

Finally, there is global feedback inhibition in the network. It is

important for both the replaying and the development of the

synfire chain. Since all neurons can be spontaneously active at any

time, they therefore can interrupt the playing of the chain. Global

feedback inhibition discourages neurons from being spontaneously

active while other neurons are spiking.

Formation of synfire chain
Using our connection plasticity model in conjunction with STDP,

we find that it is possible to form a network with topology similar

to a synfire chain, as shown in Figure 3. The figure shows only

supersynaptic connections (arrows) and those neurons (ovals) that

either receive or send one. Neurons are organized into groups

starting with the training group (labeled T). Topology determines

group membership of a neuron by counting the smallest number

of synapses it takes to reach it starting from any of the training

Figure 2. Cartoon of the formation model. The network is fully connected, but 90% of connections are silent synapses (gray dashed arrows). The
active connections (black solid arrows) are randomly set. Black ovals are training neurons (TN), which receive external excitation at the start of each
trial, and gray ovals are pool neurons (PN), which spike spontaneously. Following the bent black arrow shows a small subnetwork that includes only
the TN and their active synapses and postsynaptic PN. Since the active network is sparse and random, TN do not converge upon the same set of PN
except for a random few. Without the ability to turn on silent synapses (follow the gray dashed arrow to the upper middle subnetwork), STDP can act
only over the active synapses. Therefore, only the few neurons receiving convergent synaptic input from the TN can spike consistently after the TN. If,
however, silent synapses can activate due to spike activity (follow black solid arrow to the lower middle subnetwork), then the TN can activate
synapses onto the same set of PN. Since these neurons receive more excitation and hence are more likely to spike, the synapses from the TN to these
neurons are more likely to potentiate. This is a positive feedback. These synapses will pass the supersynaptic threshold (follow black solid arrow to
the lower right subnetwork), and the TN will coordinate to make convergent synaptic connections onto the same set of PN. The TN do not connect to
other neurons due to axon remodeling, in which weak connections from a neuron are pruned once a finite number of super-connections from the
same neuron are formed. Without axon remodeling (follow gray dashed arrow to the upper right subnetwork), the TN can continue to activate
synapses onto all PN and hoard the entire network to themselves, meaning that all neurons in the network will be induced to spike after they do.
doi:10.1371/journal.pone.0000723.g002
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group; this group assignment is then corrected using a majority

rule (see Text S1 for more details); therefore, the topology shown

in Figure 3 should approximate the spiking order of neurons in the

network. The color of arrows is a measure of its length in groups.

Green arrows connect from the previous group to the next group;

they are the kind of synapses one expects in a synfire chain. Red

arrows go forward, but stretch multiple groups. Blue arrows

connect neurons within group or even reverse in groups at any

length. The grayscale of ovals determines whether a neuron is

saturated or not. Light gray ovals are saturated—have only the

supersynapses shown—dark gray ovals are unsaturated—have

other subthreshold synapses not shown. Note that an ideal synfire

chain would have only green synapses connecting light gray ovals

with equal numbers of ovals per group; the network formed in our

model is more general. In total, 443 neurons (out of the 1000 in

the simulation) are organized into 67 groups. The network has

4410 supersynaptic connections; of these, 78 percent were forward

connections (pointed to a higher group), 20 percent were lateral

connections (pointed to the same group), and 2 percent were

backward connections (pointed to a lower group)—note the long

blue arrows in the network (these connections along with the lack

of full recruitment of all available pool neurons will be discussed in

the section titled Cycles). The network is shown at trial 200000.

The saturation number of supersynapses was set to a constant 10

per neuron. See the figure legend and the Materials and Methods

section for the value of other simulation parameters.

Spike Activity of Developed Networks
The formation of a synfire-like topology does not guarantee that

the network produces reliable spike sequences; the topology shown

in Figure 3 is drawn to approximate the relative spike ordering in

the network. Raster plots (Figure 4) confirm that the formed

network is capable of precisely timed spike sequences. Figure 4A

shows population raster plots during single trials labeled in the

panels. For each panel, all spikes from neurons in the same group

are placed on the same row. Note that successive groups fire in

order. Comparing the developed network raster (Figure 4A) to the

ideal synfire chain (Figure 1B), it is evident that groups of neurons

in the developed network spike less tightly than those from the

ideal network; this is unsurprising since connections that span

across groups are possible in the developed network. The looser

group activity also allows a more continuous spike time encoding

as compared to the ideal chain, which spikes in discrete bursts.

Figure 4A also shows how the network grows with developmental

time. The number of groups grows linearly with the number of

training trials until reaching a saturation in size (data not shown);

the dynamics of the growth can be viewed in the movie (Movie S1)

in Text S1; the saturation in size will be discussed in the section

titled Cycles. Individual neurons spike with high accuracy across

trials during training (Figure 4B); the plot shows raster data for five

select neurons during the formation history (300000 trials sampled

every 1000th trial). Late recruited neurons spike with greater

latency relative to the beginning of a trial, reflecting the group-by-

group recruitment process. Most neurons in the chain can spike

reliably and with a high degree of accuracy across multiple trials

(Figure 4C); spike-timing jitters are on the order of a few ms.

Cycles
Around trial number 180000, the size of the developed network

shown in Figure 3 plateaus at 67 groups. At that point,

approximately half of the neurons have been recruited, while the

other half remain in the pool. The growth ceases at this point

because neurons at the end of the network form stable super-

Figure 3. Topology of supersynapses of a developed network. Active
synapses were originally laid down randomly with a connection
probability 0.1. After 200000 trials, the neurons organize into a network
that resembles a synfire chain (compare to Figure 1A). Only super-
synaptic connections (arrows) and the neurons (circles) that receive
them are shown. Light gray circles are saturated neurons; they have
withdrawn their axons to all other neurons. Dark gray circles are
unsaturated neurons; they have active subsuper synapses that are not
shown. Green arrows are synapses that connect to neurons in the next
group. Red arrows are synapses that connect to neurons in groups
higher than the next. Blue arrows are synapses that connect to neurons
in equal or lower groups. Neurons that are labeled in the same group
are drawn horizontally in rows; these neurons fire near simultaneously.
Successive groups are positioned vertically such that the relative spike
time in the network flowing from top to bottom (see Text S1 for details
of the algorithm used to assign groups). Each neuron had space to
support 10 supersynapses. There were 10 neurons in the training set.
Synaptic plasticity parameters for the simulation were set as follows.
The LTP constant was GLTP = 0.3; the synaptic conductance threshold
for activation/inactivation was HA = 0.2; the synaptic conductance
threshold for supersynapses was HS = 0.4; the maximum synaptic
conductance was Gmax = 0.6 (the unit of all conductances is the leak
conductance of a neuron). The rate of synaptic decay—the amount by
which each synapse is scaled down after every trial—was b= 0.999996.
See Materials and Methods for more details.
doi:10.1371/journal.pone.0000723.g003
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Figure 4. Spike timings of neurons in the network shown in Figure 3. (A) Raster plots (upper) show spike times of neurons for two different stages
of the development. Spikes of neurons in the same group are shown in the same row. Spikes of all pool neurons are shown in the same row at the
bottom. In trial 50000, there are 21 groups, and the chain activity lasts for approximately 100 ms, after which spontaneous activity of the pool
neurons begins. By trial 100000, there are 39 groups, and chain activity lasts about 200 ms. The inset shows a detail of spikes from three successive
groups; spikes of a group cluster together, but those of successive groups can overlap. The duration of the chain activity and its growth in time is also
demonstrated with the population firing rate (lower). Spikes of all neurons were convolved using a Gaussian kernel with a standard deviation of 3 ms
to compute the population firing rate. The firing rates for three different trials—50000, 100000, and 150000 (raster not shown)—are plotted versus
time. The duration of chain activity increases linearly with the number of trials (data not shown). (B) Raster plots across trials for select neurons show
how precise spike timings emerge. Each panel shows spike data across 300000 trials sampled every 10000th trial for that neuron; the group to which
each neuron belongs is indicated in the panel. The neuron in Group 1 is a TN, and therefore is induced to spike at the beginning of each trial (lower
panel). The other neurons (upper panels) are recruited into the synfire network at later trials; thus, early on, they only spike spontaneously. As
neurons from the chain strengthen synaptic connections onto each neuron, it begins to spike with high accuracy. Inset shows a detail from a neuron
in Group 15. (C) Raster plot of mean spike times (vertical dashes) and spike timing jitters (horizontal error bars) for the earliest 100 neurons in the
chain. The network—formed over 350000 trials—was simulated for an additional 1000 trials, and the spike data for all neurons was recorded. The first
spike time of each neuron was averaged across all 1000 trials, and the jitter (standard error) of the first spike time was calculated. Only those neurons
that spiked in at least one-half of all trials are shown. Insets show details from two different time periods. Note that neurons with smaller latency have
smaller spike timing jitter.
doi:10.1371/journal.pone.0000723.g004
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synaptic connections to neurons that are situated earlier in the

chain (indicated by the long blue arrows in Figure 3); this

represents a cycle. Cycles can occur because any neuron, not only

pool neurons, may be spontaneously active—and hence re-

cruited—after the developed network finishes spike activity. If

one neuron is re-recruited to be a cycle, this may not be enough to

reignite the chain activity by itself; nevertheless, the re-recruited

neuron biases all of its postsynaptic partners—who are also in the

chain—to be spontaneously active. Subsequently, those neurons

are biased to be re-recruited to the end, forming a cycle; hence, in

Figure 3 the long blue arrows converge upon the same targets.

Figure 5 shows a raster plot of cyclic activity in the network at trial

300000. Note that in the 2nd and 3rd rendition of the activity, the

spikes begin at the same group number.

Two factors limit the development of cycles: one, the spike

refractory period which prohibits a neuron from spiking again for

some time period, and two, long-term depression (LTD), which

tends to weaken reverse synaptic connections. The neuron

refractory period was set to 25 ms and the LTD time constant

was set to 20 ms, making the LTD time window approximately

60 ms. Therefore, LTD defines a weak lower bound on the

duration of synfire activity and hence size of the chain. In our

simulations, we found typical spiking durations for a single cycle to

be greater than 300 ms; therefore, the size of the developed

network is not strongly constrained by these two factors. We ran

an additional set of simulations to determine how the size of the

network is related to the number of neurons in the pool (Figure 6).

We found, as expected, a positive relationship between the two.

Nevertheless, the relationship is weaker than linear, suggesting that

other factors, like maximum synaptic strength, number of

supersynapses, etc., may have a strong influence on the expected

size of the network.

Robustness to Parameters
Parameters used in Figure 3 do not have to be fine-tuned, as

shown in Figure 7 and 8.
Training neurons In Figure 3, we showed a network that

formed using 10 TN, which also happened to match the number

of supersynapses per neuron. Here we ran simulations where the

number of TN was set to 6, 20, and 40. Figure 7A (upper) shows

the supersynaptic topologies of the three developed networks; color

coding is identical to that of Figure 3. Note that only the first few

groups of each network show any significant difference in

structure. Figure 7A (lower) demonstrates this by plotting the

number of neurons per group as a function of group ID number.

Regardless of the number of TN, the chain rapidly converges to

a steady-state value; the line representing 10 TN is from Figure 3.

We found that the minimum number of TN required for this

particular set of parameters was 6, which is roughly the number of

presynaptic neurons needed to fire within close temporal

proximity in order to make a postsynaptic neuron spike.
Number of supersynapses It is also possible to change the

number of slots for supersynaptic connections on each neuron

(Figure 7B). Leaving all other parameters the same, we increased

the total number of supersynapses per neuron (and number of

TNs) from 10 to 20. After 200000 trials, the network forms

a synfire chain like that shown in Figure 3. The major difference is

that the network shown here has more neurons per group.
Synaptic plasticity parameters There are two main

parameters to synaptic plasticity: the LTP constant, GLTP, which

determines the rate of potentiation; and the homosynaptic

depression rate, b, which determines how rapidly synaptic values

decay each trial. Figure 8 shows how the network size varies as

a function of these two parameters; all other parameters were held

fixed (10 TN and 10 supersynapses). For each parameter pair (25

Figure 5. Cycles in spike activity. The raster shows activity in the network of Figure 5 later in development (Trial 300000). At this point, the network
has developed a cycle that replays a portion of the chain activity. Insets show a detail of the same group of neurons in three consecutive cycles.
doi:10.1371/journal.pone.0000723.g005
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pairs are shown) a 1000 neuron network was simulated until the

network topology ceased to change significantly. Most simulations

terminated after 250000 trials; others lasted 500000 trials or more;

the minimum number was set to be 100000 trials. After the

formation completed, the simulation was run for another 100

trials. All neurons that spiked within the first 1000 ms in at least 75

percent of the trials were counted; this quantity indicates the

number of neurons that are driven to spike reliably in the chain

and is called the size. Figure 8 shows a band where the chain sizes

are large, suggesting that the model can handle changes to GLTP

and b. The shape of the phase diagram can be understood in the

following way. If GLTP is high, synapses can potentiate beyond the

superthreshold through spontaneous activity alone. This

eliminates the need for cooperation amongst neurons in the

same group; they will not converge upon the same postsynaptic

targets, and the long chain does not form. This condition is shown

in Figure 8 when GLTP = 0.5. At the other end, when GLTP is small,

the synaptic strengths cannot maintain high values, and the chain

is also short in length; this effect is shown in Figure 8 when

GLTP = 0.1. If b is low hence synaptic decay rate is high, synapses

tend to maintain values below the superthreshold and the chain

does not form. This effect is shown when 1-b= 161025 in Figure 8.

On the other hand, when synaptic decay is low, supersynapses

tend to form spontaneously. In Figure 8, one sees that the chain is

longer for GLTP = 0.4 when b takes on an intermediary value (1-

b= 861026 and 1-b= 661026 in Figure 8). Between the extremes

mentioned above, the chain grows into long sequences.

Turnover and Lesions
Real neural networks must be robust to the loss and renewal

(turnover) and mass loss (lesions) of neurons. For example,

projection neurons in the songbird premotor nucleus are known

to turnover in developing and adult songbirds (see review in [28]).

To test our model against these effects, we simulated both kinds of

neuronal loss. First, we simulated neuronal turnover by assuming

that neurons ‘‘die’’ and are ‘‘born’’ randomly through a Poisson

process during network formation. Second, we simulated a surgical

lesion of the brain area by ‘‘destroying’’ some percentage of the

neurons in a mature network and observed its recovery. See the

Materials and Methods section for details.

In Figure 9A, we show a network that developed with an

average neuron turnover rate of one death and renewal every

1000 trials; all other parameters are identical to those used in

Figure 5. Even with neuronal death, the model can form a long

stable chain. The network here is shown after 250000 training

trials; during that time, 230 neurons were killed and renewed,

a little less than one-quarter of the total in the simulation.

Spike activity in the network is also sparse and temporally

precise. Chain activity increases with the number of training trials

(Figure 9B); network activity shows little difference from when

there is no turnover. The spike history of individual neurons tells

a different story (Figure 9C). After recruitment into the synfire

network, each neuron can spike at a precise time; the mean spike

time, however, can drift forward as training proceeds. The reason

is that as neurons downstream in the synfire chain are deleted

(second panel up from bottom in Figure 9C), neurons upstream

are more likely to fill vacancies downstream. These neurons have

an advantage over free pool neurons because they are induced to

spike, and therefore their afferent synapses from downstream

neurons LTP at a higher rate than synapses onto pool neurons do.

Despite the drift, over shorter numbers of trials, the mean spike

time of each neuron has high accuracy (Figure 9D).

Besides one-by-one neuronal death, which occurs naturally in

the brain, our mechanism is also robust to more massive deaths of

neurons as might occur in head traumas or from surgery. We

performed simulations, where we took the already developed chain

from Figure 4, and then randomly killed a percentage of the

neurons (Figure 10). The upper network of Figure 8A shows the

pre-lesion network with those neurons chosen to die colored

yellow. The middle network of Figure 10A shows the post-lesion

Figure 6. Size of developed network versus the total number of neurons. Simulations were repeated using 500, 1000, 1500, and 2000 neurons. The
number of neurons that ended up in the chain were counted and plotted versus the total number of neurons. The relationship is positive.
doi:10.1371/journal.pone.0000723.g006
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network right after the (,20%) lesion. The lower network of

Figure 10A shows the network recovery after 100000 training

trials. The final chain is both shorter (smaller in total number of

groups) and wider (greater in number of neurons per group). Note

that the cycle from the pre-lesion chain persists after recovery.

We repeated the simulation using different levels of lesions

(Figure 10B). Different amounts of lesions lead to recovered

networks of different sizes; in all cases, the chains were shortened

(Figure 10B). The relative amount that the chains were shortened

did not depend on the level of lesions to a point (Figure 10C). For

Figure 7. Simulations varying the number of training neurons and the number of supersynapses per neuron. (A) (Upper) Networks formed with
three different numbers of training neurons (TN). After a few groups, the width of the synfire network returns to a steady state size. The color coding
is identical to Figure 3. (Lower) The distribution of neurons in each group for four networks formed using different numbers of TN; line color and
shape encode the different values of number of TN. The number of neurons per group quickly converges to the same number, independent of the
number of TN. The inset shows the distribution for the first 7 groups. The curve with 10 TN is from Figure 3; the other three curves are from the
networks above. (B) A network formed with the numbers of supersynapses and TN both set to 20; all other parameters were the same as in Figure 3.
The major difference compared to the network shown in Figure 3 is that the number of neurons per group is higher.
doi:10.1371/journal.pone.0000723.g007
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10, 20, and 30 percent lesions, the networks were shortened by 10,

20, and 30 percent respectively. For a 40 percent lesion, however,

the network shortened by a disproportionately large amount. This

means the chain maintains its relative size during recovery up to

some point of neuronal loss; beyond that point, it loses additional

neurons.

DISCUSSION
Neural circuits that generate precisely timed spike sequences can

serve as an infrastructure for learning motor controls or sensory

discriminations that require precise timings; neurons in such

networks are time markers to which actions or sensory inputs can

associate. Our model suggests a mechanism for the formation of

synfire chains during circuit development. The process is driven by

intermittent activations of a subset of neurons, which, along with

the spontaneous activity, drive modifications of connections

between neurons through synaptic plasticity and axon remodeling.

Axon remodeling is a key ingredient of our model. Initially,

a neuron contacts many postsynaptic targets with weak or silent

synapses. Such exuberant connections make it possible for

synchronously firing neuron groups, like the training neurons, to

find new recruit neurons to add at the end of the existing chain.

The strengthening rate of synapses is not equal. Synapses on a pool

neuron that receive convergent connections from a large fraction

of a synchronously spiking group that is already in the chain tend

to be strengthened more rapidly; for example, pool neurons

selected for the second group were initially contacted by many

training neurons. In our model, a neuron supports only a finite

number of strong connections; once the number is reached, all

other weaker connections are pruned. Such maturation-triggered

pruning is crucial for preventing all neurons from being recruited

into the second group; without it, all connections from the training

neurons, however weak initially, are eventually strengthened to

maturation due to the consistent activations of the training

neurons and their strongly connected targets. Saturated neurons,

with the allocated number of strongly connected targets, do not

form further connections. Thus, only a finite number of neurons

are recruited into the second group, with the number of neurons in

each group roughly equal to the number of allowed strong

connections from a neuron. After formation, the second group

replaces the training group as the active zone, to which the pool

neurons are connected to form the next group. This process

iterates, and leads to the formation of long synfire chains. It is

important to note that our model uses cues that are local to an

individual synapse or to a single neuron; no global information

about the network is necessary.

In our model, axon pruning is triggered by competition between

the axon branches of the same neuron; once a finite number of

branches form strong synaptic connections to their targets, all

other branches are pruned. There are no experiments yet directly

demonstrating this mechanism; however, evidence can be inferred

from several recent experimental results. Recent two-photon

imaging experiments that followed axon dynamics demonstrated

that the stability of axon branches of a neuron is closely linked to

the formation of strong synapses: branches with mature synapses

are stable, whereas those with weak or no synapses are prone to

retraction [24,25]. Moreover, consistent activation of the neurons

enhances the stability of branches that have strong synapses while

concurrently inducing retractions of those that have weak synapses

[25]. This supports the idea that maintaining a finite number of

strong connections discourages formation of additional strong

connections.

Activity dependent pruning of axons is usually linked to the

competition between branches from different neurons to innervate

a postsynaptic target. The axon branch from the most active

neuron usually wins, which leads to retraction of axons from other

neurons. This mechanism has been observed in retinal ganglion

cells [29], and most extensively, in motor neurons [30]. One motor

neuron can innervate many muscle fibers, but a muscle fiber can

Figure 8. The network size as a function of the parameters GLTP and b. Each square represents a single simulation with the pair of simulation
parameters indicated on the axes. For each point, the simulation was run until there were no further changes in the supersynaptic structure. Next, the
simulation was run for an additional 100 trials, spike data was collected, and the number of neurons that spike in at least 75 percent of all trials was
counted; this number, called the network size, is coded by grayscale and written in each box. A higher value indicates a longer synfire chain network
since more neurons are induced to spike regularly.
doi:10.1371/journal.pone.0000723.g008
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Figure 9. Network formation with turnover. (A) A network formed while neurons died and renewed at an average rate of 1 per 1000 trials through
a Poisson process. Even with the turnover, the neurons were able to form a synfire network. (B) Population activity in single trials during the
formation process are similar to those without turnover (Figure 4A). The duration of chain activity increases with the number of training trials. (C)
Spikes of individual neurons across trials show different behaviors than those without turnover (Figure 4B). A recruited neuron can be deleted
(second panel from bottom). Upstream neurons (three upper panels) can shift their spiking times forward as they fill slots vacated by deleted neurons
in earlier groups. (D) Spike timings across 100 trials shows that neurons in the chain spike with accuracy on the order of ms.
doi:10.1371/journal.pone.0000723.g009
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Figure 10. Network recovery from a mass lesion. (A) The mature network of Figure 4 (upper) was given a 20% lesion (middle). The formation process was
then allowed to proceed as normal, with no further neuronal death. The network was able recover after 100000 trials (lower); it, however, ended up shorter
and wider than normal. (B) Four different simulations using the same base network, but performing different levels of lesions at 10, 20, 30, and 40 percent.
The plot shows the change in size of the chain, as defined by the number of neurons spiking reliably, from pre-lesion to post-lesion recovery. The chain
does not recover to its normal size; it is shortened. (C) The size of the post-recovery network normalized by the number of neurons left intact directly after
the lesion. The normalized size is close to 1 for lesions less than 40%, indicating that neurons are not added nor lost during the recovery. At forty percent
however, the normalized size dips below 1, indicating that additional neurons are lost during the recovery period.
doi:10.1371/journal.pone.0000723.g010
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be connected by only one motor neuron. This connectivity is

formed through competition between axons from different motor

neurons at the neuromuscular junction, where axons that are most

active usually win. However, axon retraction is not entirely

determined by such inter-neuronal competition, as demonstrated

by several experiments [31–33], which observed axon retraction

even after the level of competition was reduced by removing a bulk

of motor neurons and leaving abundant muscle fibers to innervate.

That a certain amount of the axonal withdrawal may be intrinsic

to the motor neuron is also shown by a recent experiment [23],

which suggests that the competitive vigor of the axon branches of

a neuron is reduced as some of its branches win. This prevents the

undesirable and never observed outcome that a single motor

neuron with the ‘‘best activity pattern’’ wins all the competitions

and innervates an enormous number of muscle fibers [23]. These

results, taken together, support the idea of competition between

axon braches of the same neuron, probably due to a limited

resource for maintaining strong synapses [23]. Such competition

has been demonstrated in hippocampal neurons [34].

Inter-neuronal competition generally restricts the number of

afferent synapses onto a single neuron, which is the case for the

neuromuscular junction. This restriction alone does not help to

avoid the formation of short chains in our case, since it does not

limit how many strong connections the training neurons make. We

did not explicitly limit the number of afferent synapses onto a single

neuron; nevertheless, our model avoids an undesirable state, where

a single neuron receives a large number of connections, in a natural

manner; once a neuron is completely recruited into the chain, it is

unlikely—although not strictly prohibited—that any more neurons

will make a synapse onto the newly recruited neuron; this is

because only the neurons spiking before the new recruit can LTP

consistently onto it; earlier neurons, however, are saturated and

cannot make new synaptic connections.

It is likely that both inter and intra neuronal competitions are

important for axon remodeling. In our case, the inter-neuronal

competition is not necessary but the intra-neuronal competition is.

Regardless of the exact nature and implementation of remodeling,

we have found that it could lead to the formation of sparse and

precise temporal sequences. Indeed, we found that using Hebbian

synaptic plasticity alone leads to instabilities in network activity;

spike activity either decayed rapidly or exploded. Axon remodel-

ing mitigated these instabilities. Axonal withdrawal ensured that

neurons would not excite neurons unnecessary to sequence

generation, thereby removing the instability towards over-

excitation.

‘‘Switching on’’ of silent synapses is important for the formation

of convergent strong connections from neurons of the same group

to a neuron in the next group. The reason is that, once a neuron is

consistently activated by a subset of synchronously active group of

neurons, all connections from the group will be strengthened to

maturation, even the ones with initially silent synapses. We apply

the term ‘‘silent synapse’’ loosely in this context. The key feature of

our model ‘‘silent synapse’’ is that it represents a potential

functional synaptic connection between two neurons. There are at

least four experimental models explaining the switching on of

putative silent synapses [35]. Our model does not depend critically

upon which one (if only one) in the end is correct. The critical

point for our purposes is that two neurons which have no

functional synaptic connections can develop them through activity.

In our case, for computational simplicity, we allowed silent

synapses to undergo the same LTD and LTP induction as active

synapses. It is unclear that this should be the case. In our model,

however, the tracking of ‘‘synaptic strength’’ for silent synapses is

merely a marker for the level of correlation between two neurons.

The details of this marker may be quite different than what occurs

in STDP, but our model again should not depend critically on

those details. The one detail which may matter is whether the

subthreshold rule is antisymmetric in time. Subthreshold LTD

suppresses the activation of synapses that could make short cyclic

(back) connections in the network. If the rule were symmetric in

time, then postsynaptic neurons would tend to activate synapses

back onto neurons that fire shortly before them. This effect is easily

mitigated so long as neurons have a refractory or adaptation

period that is on the order of the time constant that correlates two

neurons’ activities. Recently, Shen et al. [36] reported that

activation of silent synapses is asymmetric; silent synapses in

cultured hippocampal neurons activated when the stimulation was

applied to the presynaptic neuron only and not when applied to

the postsynaptic neuron only. Since silent synapses are thought to

be mediated through NMDA receptors (see reviews in [37,38]), the

asymmetry of the time rule is not inconceivable.

Silent synapses also provide the possibility of connecting any

pair of neurons while avoiding spontaneous runaway excitation in

the network. An alternate proposal is that a large number of

synapses begin with zero weight, but are active as soon as they

LTP above zero. Though this situation can lead to the formation

of short synfire chains, which we confirmed in simulation, it has

undesirable side effects such as poor scalability and an instability

towards synchronizing the entire population of neurons; this is due

to the nature of the all-to-all connectivity which makes it difficult

to control excitation—even if most weights are small, the

cumulative effect can be large, especially when the number of

neurons is large.

In our model, synaptic strengths decay with a small constant

rate (homosynaptic depression). Homosynaptic depression pre-

vents formation of strong connections between random pairs of

neurons simply due to spontaneous activity. Without it, random

potentiations can accumulate and eventually lead to strong

synapses. Although homosynaptic depression has not been

emphasized as an important form of synaptic plasticity, its

existence can be inferred from the fact that AMPA receptors,

which are major transmitters of excitatory synaptic currents, are

constantly internalized and degrade [39]; consequently, the

efficacy of a synapse is reduced constantly unless it is consistently

potentiated.

The network formed by our model is similar to a synfire chain

[5,8]. Neurons newly recruited into the network are added to the

end; therefore, the model predicts that learned sequences should

grow gradually larger as the sequence forms. The model also

predicts the appearance of cycles in the chains. This is not

undesirable, since sequences such as birdsong are known to consist

of a few introductory notes followed by a series of repeated motifs.

The appearance of cycles suggests that the same set of neurons

encodes repeated motifs. The growth of network is terminated by

the formation of a cycle, and approximately one third to half of the

neurons are incorporated into the network. Increasing the total

number of neurons leads to longer chains. The rest of the neurons

remain in the pool, and do not spike at precise times. This result is

consistent with two observations on HVC of zebra finch, in which

a synfire chain-like network is proposed to underlie the generation

of the precise spike timings of the projection neurons [12]: about

60% of projection neurons are active during singing [40,41]; and

the durations of motifs sang by individual zebra finches are

positively correlated with the sizes of HVC [42]. We tested our

model to a variety of conditions. The formation of a synfire like

network with sparse precise spike sequences was robust to those

conditions. We also tested the model to natural events such as

neuronal turnover and lesions. In both cases, we found that the
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model was still robust. Neuronal turnover did not leave any

noticeable deleterious effect on the formed chain. It did, however,

change the formation process, as neurons gradually shifted their

mean spike time in response to the loss of neurons. Therefore,

neurons downstream of the sequence circuit could see a gradual

change in the sequence. In HVC, projection neurons are

constantly renewed [43,44]. The renewal-induced changes in the

sequence could be useful for novelty and invention as is seen in

birdsong, especially during the song learning period when the

turnover rate is high. In the case of lesions, we found that the

damage by the lesion could be ‘‘frozen’’ into the network, even

though the total number of neurons is kept the same in the

recovery phase as before the lesion; the recovered network might

be operable, but nevertheless impaired. The main effect is that the

length of the chain is reduced after the recovery, and the amount is

proportional to the percentage of neurons lost. Scharff et al [45]

induced death of HVC projection neurons in zebra finch, and

observed variable degrees of recovery of the songs even though the

incorporation rate of new neurons is increased. This work did not

correlate the amount of lesion to the degrees of song recovery, and

did not report on the effect on the motif length. More quantitative

experiments are needed to address this issue. In our model, small

amount of lesion (,10%) does not severely affect the network

function even at the onset of the lesion. This is due to the

redundancy of the connectivity between the groups. After

recovery, the length of chain is reduced accordingly (,10%). A

recent lesion study that induced less than 10% lesions in zebra

finch HVC observed that songs recovered within 2 weeks [46].

The motif length did not change significantly. The process of song

recovery is likely due to many factors beyond the timing network

in HVC [46]. Our model does not describe how syllable number

and structures recover. However, it does predict that such lesion

should lead to shortening of the motif on a longer time scale of

recovery, perhaps on the order of a few months. Increasing the

level of lesion to 20% might be required to clearly see the effect.

In conclusion, we have shown that long synfire chains can form

through a self-organization process. The connections between

neurons are modified through STDP of synapses, axon remodel-

ing, and synaptic decay. Driven by intermittent activations of

a subset of neurons and spontaneous activity, a long chain network

emerges through a group-by-group recruitment. Our results

demonstrate that synfire chains can emerge during the de-

velopment, and can serve as an infrastructure for learning

timing-dependent motor or sensory functions.

MATERIALS AND METHODS

Network
We simulate a network of 1000 recurrently connected excitatory

spiking neurons with global feedback inhibition. The inhibition is

mediated directly; a single inhibitory spike is delivered to all

excitatory neurons whenever any excitatory neuron spikes.

Dynamics of the network are run in trials with a fixed duration

of 2000 ms in simulated time. At the beginning of each trial,

neuron variables are randomized and the spike histories are

reset—trials are not contiguous segments.

Leaky Integrate and Fire Neurons
We use leaky integrate-and-fire unit to model each spiking neuron.

Subthreshold membrane voltage evolves according to

tm
dVm(t)

dt
~(El{Vm){gexc(t)Vm(t)zginh(t) Einh{Vm(t)ð Þ,

Where tm = 20ms is the membrane time constant; Vm is the

membrane potential in mV; El = 285 mV is the leak reversal

potential; gexc (t) is the excitatory conductance due to all excitatory

synapses; ginh (t) is the inhibitory conductance from all inhibitory

synapses; Einh = 275 mV is the reversal potential of the inhibitory

synapses. Here the leak conductance has been set to unity, and all

synaptic conductances are measured relative to the leak conduc-

tance; this normalization is implied throughout. If the neuron

membrane potential depolarizes to Vthresh = 250 mV, the neuron

emits a spike with 2 ms latency. After a spike, the neuron resets its

membrane potential to Vreset = 280 mV and enters a hard re-

fractory period of 25 ms. The long refractory period enhances

stability of spike propagations in the synfire chain network [12].

The parameters are chosen to roughly match the properties of

a two-compartment model of premotor projection neurons in

songbirds, which is conductance based and includes both somatic

and dendritic compartments [12]. The precise values of the

parameters are not important. We have confirmed that synfire

chains also form with the two-compartment model (data not

shown).

Synapses
Each neuron tracks two total synaptic conductances, one in-

hibitory, gi, and one excitatory, ge. Synapses follow ‘‘kick-and-

decay’’ dynamics. When a postsynaptic neuron receives an

excitatory (inhibitory) spike, the excitatory (inhibitory) conduc-

tance discontinuously jumps g(tn
2)Rg(tn

2)+G, where g(tn
2) is the

synaptic conductance just before the arrival of the spike and G is

the synaptic strength of the incoming spike. In between spike

arrivals, the synaptic conductance decays exponentially with time

constant 5 ms for excitatory synapses and with time constant 3 ms

for inhibitory synapses.

Excitation
There are two sources of excitation in the network, neuron-to-

neuron interactions and background spontaneous activity. The

former are represented in the synaptic weight matrix Gmn, which

gives the synaptic strength at which a presynaptic neuron m

connects to one of its postsynaptic neurons n. The latter are

delivered through a Poisson spike train with a frequency of 40 Hz

and amplitudes for each spike uniformly distributed from 0 to 1.3.

Inhibition
There are two sources of inhibition in the network, one from

a global interneuron and another from background spontaneous

activity. The global interneuron acts in the following simplified

manner: for every excitatory spike from any neuron in the

network, it emits a single inhibitory spike back to all neurons using

a constant inhibitory conductance Ginh = 0.3. We chose this

method to reduce computational load. Though it is not a realistic

implementation, for the purposes of our model, it is sufficient. The

primary role of inhibition in our network is to discourage

spontaneous activity during the running of the existing chain.

Aside from the feedback inhibition provided by the global

interneuron, there are also spontaneous inhibitory spikes that are

delivered through a Poisson train of frequency 200 Hz and

amplitudes uniformly distributed between 0 and 0.1.

Spontaneous Activity
The combination of background excitation and inhibition

generates membrane fluctuations with a standard deviation of

approximately 7 mV, and it is enough to drive each neuron to

spike at frequency ,0.1 Hz.

Formation of Synfire Chains

PLoS ONE | www.plosone.org 14 August 2007 | Issue 8 | e723



Spike Timing Dependent Plasticity (STDP)
For the Hebbian plasticity mechanism, we use STDP [18,19] on

excitatory synapses. The method applied here is adapted from the

models found in [26,27]. Synaptic strengths update according to

the precise spike timing of the pre- and postsynaptic neurons; the

STDP kernel used in the simulation is shown in Text S1 (Figure

S1). We implement the STDP protocol in the following manner.

Whenever a neuron spikes, all afferent synapses onto the neuron

undergo LTP and all efferent synapses undergo LTD.

More specifically, consider a neuron pair k and m, with neuron k

a presynaptic neuron to neuron m. Now, say neuron m spikes at

time tm, then the synapse Gkm undergoes LTP at time tm by an

amount that depends on the spike time history of neuron k, given

by

Gkm?GkmzALTPGLTP

XAll Spikes

i

P(tm{t
(i)
k ):

Where GLTP is the LTP strength, and ALTP = 0.01 determines the

maximum fraction of GLTP that a synapse can increase by per spike

pair. The actual amount of LTP for a given spike pair is given by

their exact spike times through the potentiation curve P(Dt), where

Dt$0. The potentiation curve is given by

P(Dt)?
Dt=(5ms)

exp ({(Dt{5ms)=tLTP)

�
if

if

Dtƒ5ms

Dtw5ms
:

In other words, the potentiation curve rises linearly when spikes

are within 5 ms and decays exponentially beyond that time with

the LTP decay time constant tLTP = 20 ms, which determines how

rapidly spikes in the past are ‘‘forgotten’’ by LTP. All synaptic

strengths are capped by the same maximum value Gmax. If LTP

causes the synaptic strength to go above the maximum, the

strength was set to Gmax.

Now consider a second neuron n that is a postsynaptic neuron

on neuron m, then the synapse Gmn undergoes LTD at time tm by

an amount that depends on the spike time history of neuron n,

given by

Gmn?Gmn{ALTDGmn

XAll Spikes

i

D(tm{t(i)
n ):

Where ALTD = 0.0105 is the maximum percentage of Gmn that the

synapse can decrease per spike pair—note that LTP is based on

a constant value whereas LTD is based on the current synaptic

strength; the depression curve D(Dt), Dt$0, determines the

amount of LTD. It is given by

D(Dt)?
Dt=(5:25ms)

exp ({(Dt{5:25ms)=tLTD)

�
if

if

Dtƒ5:25ms

Dtw5:25ms
:

The depression curve rises linearly when spikes are within 5.25 ms

and decays exponentially beyond that time with LTD decay time

constant tLTD = 20 ms. The value of ALTD/ALTP = 1.05 was set to

match the value from Song et al [26].

Homosynaptic Depression
All synaptic strengths decay at a slow constant rate. At the end of

a trial, each synaptic strength is replaced using the rule

GnmRb?Gnm, where b,1 but very close to 1. The homosynaptic

depression rule is a slow memory leak in the system.

Training
Spontaneous activity alone does not lead to a synfire chain using

the above rules of synaptic plasticity. The reason is that neurons

are not associated consistently in groups or in sequences. Also, the

activity has no consistent start point; therefore, if any sequences do

develop, they can only be accessed by waiting for the correct

random stimulation. At the minimum, a training protocol should

define the start of the sequence. This is done by selecting a subset

of neurons, called training neurons (TN), that receive strong

excitatory external input, inducing them to spike synchronously at

selected times. In our case, the external input arrives at the

beginning of each trial in the form of high frequency (1.5 kHz)

strong amplitude (2.0) Poisson spike trains that are 8 ms in

duration. This is sufficient to drive each TN to spike once with

a jitter of approximately 1 ms. This is the only activity imposed on

the network; all neurons, including TN, spike spontaneously

throughout the trial.

Silent Synapses
To model the exuberant connection phase, we allow neurons to

make all-to-all synaptic contacts. Only a small percentage of these,

however, are active (initial probability = 0.10). The others are

functionally silent, meaning they do not produce a physiological

effect on the postsynaptic target. A synaptic ‘‘strength’’ is tracked

for all synapses, and STDP is applied to both kinds. Synapses

transition between either state by crossing a threshold, HA, called

the activation threshold; silent synapses become active by going

above threshold; active synapses become silent by going below

threshold. With the modulation of silent synapses into the active

state, it is possible for TN with divergent connections to converge

upon the same postsynaptic targets. It is also possible for the

postsynaptic target to silence synapses onto its presynaptic

neurons; in this way short cycles are discouraged in the network.

Figure S2 in Text S1 shows how silent synapses work in the

simulation.

Axon Remodeling
Neurons in our model withdraw axons when they have enough

synapses that are of sufficient strength. We do this by means of

a second threshold, HS, called the super threshold; any synapse

going above this threshold is labeled a supersynapse. Each neuron

is given a limited number of slots for supersynapses. When that

number is reached, the neuron saturates and withdraws all other

synapses. Withdrawn synapses do not produce physiological effects

onto their targets, nor do they continue to undergo STDP. They

do, however, continue to decay in ‘‘strength’’ through the

homosynaptic depression. Since the axon withdrawal is revers-

ible—if one of the supersynapses dips below HS—continuing to

track the strength is a way for the system to have some memory of

its past configuration, though that memory should fade in time if

the neuron remains saturated for a long time. This method was

chosen because withdrawals in the network occur instantaneously

rather than through a more realistic gradual process. Reversal is

rare during development. We chose to do the withdrawal as

instantaneous for computational simplicity. Making the withdraw-

al gradual should not affect our results since each neuron has

already selected their postsynaptic targets. Figure S3 of Text S1

demonstrates how axon remodeling works in the simulation.

Neuronal Death
For some simulations, neurons were either allowed to die through

a Poisson process or they were ‘‘lesioned’’ in mass. Neuronal death

was simulated by selecting a neuron and randomizing its output
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synaptic connections, giving it a probability of 0.1 of having active

connections and 0.9 of silent connections. Input connections were

similarly randomized with an additional rule: if the input was

a supersynapse, then the presynaptic neuron would be made

unsaturated. Dead neurons are immediately available again in the

free pool, but because the memory of its synaptic strengths was

erased, it acts as an entirely different neuron.

SUPPORTING INFORMATION

Text S1 Materials and methods.

Found at: doi:10.1371/journal.pone.0000723.s001 (0.04 MB

DOC)

Figure S1 Modification curve for STDP. The amount and

direction by which a synapse will change its strength depends upon

the spike times of the pre- and postsynaptic neurons. The

modification curve shows the amount per spike pair. The ovals

show values from simulation. When the presynaptic neuron spikes

before the postsynaptic neuron (defined as negative Dt), the synaptic

strength increases in strength (LTP). When the presynaptic neuron

spikes after the postsynaptic neuron, the synaptic strength decreases

in strength (LTD). The percent change in LTP is based on a constant

value GLTP, whereas the change in LTD is based on the current

synaptic strength. The modification curve is linear for close spikes,

when the absolute value of Dt is less than about 5 ms, and is an

exponential decay beyond that, see the Materials and Methods

section of the main text for the values used.

Found at: doi:10.1371/journal.pone.0000723.s002 (0.28 MB TIF)

Figure S2 Demonstration of silencing and activating synapses.

(A) A diagram of the network used in the simulation. There are

five neurons (gray ovals) in total. Four of the neurons are in the

training set and receive external synaptic excitation (black tees);

the external excitation induces them to spike synchronously. Three

of the four training neurons (bottom three) make active synaptic

connections (solid straight black arrows) onto the fifth neuron

(right oval). One of the four (top left) makes a silent synaptic

connection (dashed straight arrow labeled G1) onto the fifth neuron;

when this neuron spikes, it will not excite the fifth neuron. The fifth

neuron makes a reciprocal active synaptic connection (solid curved

black arrow labeled G2). (B) The plot shows the trajectory of the

synaptic strengths G1 and G2 as a function of trials. In each trial, the

left neurons were given external excitation, inducing them to spike.

When the lower left three neurons spike, they bias the right neuron

to spike after all the left neurons; therefore, those synapses undergo

LTP, including the silent synapse G1; hence, its strength (unfilled

ovals) increases. Near trial 80, G1 potentiates above the threshold

value (gray dashed line) and the synapse becomes active (black filled

ovals). The opposite occurs for G2; since the left neurons spike

before the right one, G2 undergoes LTD; hence, its strength (filled

rectangles) decreases. Near Trial 50, G2 depresses below the

threshold value, and the synapse becomes silent (unfilled

rectangles). (C) The final configuration of the network after 150

trials. G1 is active, while G2 is silent.

Found at: doi:10.1371/journal.pone.0000723.s003 (0.29 MB TIF)

Figure S3 Axon remodeling in a simulation of 5 neurons. The

trajectory of four synaptic strengths emanating from a single

presynaptic neuron (upper). The neuron is induced to spike early

in the trial; therefore, the primary induction between it and the

other four neurons is LTP. The arrows and letters correspond to

snapshots of the synaptic network (lower). (A) The network starts

with four active synapses with random initial strengths. (B) One of

the synapses, G3 (thick black arrow), goes above HS, making it

a supersynapse. At this point, no remodeling occurs. (C) A second

synapse, G1 , goes above HS. Now the neuron is saturated (the

number of supersynapses per neuron for this demonstration was

set to 2 for illustrative purposes). (D) A saturated neuron withdraws

the other axon branches, leaving only the supersynapses.

Found at: doi:10.1371/journal.pone.0000723.s004 (0.29 MB TIF)

Movie S1 The movie shows the growth of the network from

Figure 3 of the main text. The topology of the supersynaptic

network was captured every 2500 trials for 250000 trials and

played at a frame rate of 2 frames per second; group assignment

was set as in Figure 3 of the main text. At the start of the movie,

only the training neurons are shown (column of gray ovals). The

network then begins to grow by recruiting neurons into successive

groups at the end of the chain. Note that the topology of the

groups preceding the end of the chain is stable during growth,

making occasional adjustments. Around 35 seconds into the movie

(trial 180000), the growth of the chain ceases, and a cycle (long

blue arrows) is formed. After that point, the topology remains

steady with just a few rearrangements.

Found at: doi:10.1371/journal.pone.0000723.s005 (0.93 MB

MOV)
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