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With the rapidly increasing availability of high-throughput in situ hybridization images, how to effectively analyze these

images at high resolution for global patterns and testable hypotheses has become an urgent challenge. Here we developed

a semi-automated image analysis pipeline to analyze in situ hybridization images of E14.5 mouse embryos at single-cell res-

olution for more than 1600 telencephalon-expressed genes from the Eurexpress database. Using this pipeline, we derived the

spatial gene expression profiles at single-cell resolution across the cortical layers to gain insight into the key processes oc-

curring during cerebral cortex development. These profiles displayed high spatial modularity in gene expression, precisely

recapitulated known differentiation zones, and uncovered additional unknown transition zones or cellular states. In partic-

ular, they revealed a distinctive spatial transition phase dedicated to chromatin remodeling events during neural differen-

tiation, which can be validated by genomic clustering patterns, epigenetic modifications switches, and network modules.

Our analysis further revealed a role of mitotic checkpoints during spatial gene expression state transition. As a novel ap-

proach to analyzing at the single-cell level the spatial modularity, dynamic trajectory, and transient states of gene expression

during embryonic neural differentiation and to inferring regulatory events, our approach will be useful and applicable in

many different systems for understanding the dynamic differentiation processes in vivo and at high resolution.

[Supplemental material is available for this article.]

With worldwide initiatives towards image-based analysis of the
transcriptome of the developing mouse embryo, and developing
mouse and human brains, in situ RNA hybridization (ISH) images
are being rapidly generated in a high-throughput manner using
automated sample preparation andmicroscopy image acquisition.
For example, the Eurexpress project has generated ISH images for
more than 18,000 mRNAs and 400 miRNAs in mouse prenatal
samples, many of which are from Theiler Stage 23 (or embryonic
day 14.5 [E14.5]) (Diez-Roux et al. 2011). More recently, the
Allen Institute for Brain Science has generated a large number of
ISH images for mouse and human brains, including the Allen
Mouse Brain Atlas (Lein et al. 2007), Allen Human Brain Atlas
(Hawrylycz et al. 2012), BrainSpan Atlas of the Developing
Human Brain (Miller et al. 2014), and Allen Developing Mouse
Brain Atlas (Thompson et al. 2014).

These resources provide detailed visualization of the spatial
pattern of gene expression at the cellular level in vivo. However,
currently these images can only be visually examined one at a
time or automatically annotated at a coarse level (Diez-Roux
et al. 2011; Thompson et al. 2014), limiting their broad usage by
the research community. How to effectively analyze these image
data at high spatial resolution for global patterns and testable hy-
potheses has thus become an urgent challenge. Herewe use the ce-

rebral cortex development system as a model to develop a semi-
automated image analysis pipeline.

The neocortex is a distinctive feature of mammals and is crit-
ical to many cognitive functions. Due to the complexity of its es-
tablishment, accuracy of its function, and vulnerability during
aging, the neocortex is under intensive investigation (Bystron
et al. 2008). Understanding the mechanism of the establishment
processwill not only explain the design of such an integrated func-
tional system, but will also be important to the development of re-
generative strategies for treating neurodegenerative diseases.

Many embryonic stem cell (ESC)-derived CNS cells and their
precursors have been partially induced in vitro (Vazin and Freed
2010). However, the mechanisms of such procedures are largely
unknown, and whether they reflect in vivo differentiation trajec-
tories is unclear. This is at least partly due to the lack of compre-
hensive mapping of the in vivo neural differentiation trajectory.
Recent studies have tried to address this through either microdis-
secting a few known cell layers or sorting with labeled prolifera-
tive/differentiating cell-type markers, and analyzing the gene
expression profiles in each layer or stage (Ayoub et al. 2011;
Belgard et al. 2011; Aprea et al. 2013; Miller et al. 2014). These ap-
proaches, although very helpful in understanding global gene
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expression changes during in vivo neural differentiation, are un-
able to capture precise and detailed spatial information or to iden-
tify gene expression features in undissected layers or unrecognized
stages. Such limitations can be circumvented by examining spatial
gene expression profiles, such as ISH images, which provide signals
at very high resolution, even at the single-cell level.

During mouse and human embryonic cerebral cortex devel-
opment, neural stem cells (NSCs) and intermediate progenitor
cells proliferate in the telencephalon ventricular zone (VZ) and
the subventricular zone (SVZ). Their differentiating daughter cells
migrate through the intermediate zone (IMZ) and finally differen-
tiate into neurons in the cortical plate (CP) (Bystron et al. 2008). In
E14.5 mouse embryos, neurogenesis has reached its peak and ear-
ly-born neurons have partly migrated to form the deeper layers,
while migratory processes for the upper layer neurons have not
yet started (Li and Jin 2010; Diez-Roux et al. 2011). This period
is, therefore, an ideal in vivo system for studying the developmen-
tal microenvironment and neuronal lineage determination in the
cerebral cortex.

By computationally analyzing the image-based expression
profiles at the single-cell level and further analyzing the relation-
ships between network modules, we recapitulated the known cel-
lular layers of the E14.5 cortex that can be validated by commonly
used cell/lineage marker gene expression profiles in microdis-
sected tissue (Bystron et al. 2008). Based on these well-layered
cellular states, we identified potential genes and functional inter-
actions that regulate neurogenesis. In particular, we found that
functional interactions connecting transcriptionally anti-correlat-
ed gene expression modules are enriched for NSC differentiation
regulators. These analyses revealed a distinctive spatial transition
phase for chromatin remodeling during neural differentiation.
The critical role of chromatin remodeling is supported by the key
regulatory circuitry uncovered through network analysis and the
identification of chromatin organization centers during the spatial
gene expression state transition. With our digitized single-cell-lev-
el transcriptome map, we were also able to detect cell cycle stage,
especially the role of mitotic checkpoints during neurogenesis.

Results

Image analysis of the Eurexpress data

The Eurexpress database provides RNA ISH images of 19,411 assays
(as of January 9, 2012), corresponding to more than 18,000 pro-
tein-coding genes and 400 miRNAs on ∼24 sagittal sections per
E14.5 murine embryo (Supplemental Fig. S1A). Among them,
6410 assays have been annotated with EMAP IDs as identifiers of
anatomical regions of gene expression (Diez-Roux et al. 2011;
Hayamizu et al. 2013) according to the definitions from the
EMAP eMouse Atlas Project (http://www.emouseatlas.org). We se-
lected images labeled by 10 EMAP IDs specific to the telencepha-
lon (Supplemental Table S1) and additionally included images of
commonly used neural development markers (Supplemental
Table S2) and miRNAs. Altogether, 3966 images of the middle-
most sagittal section (Section 11 or 14) at stage E14.5 were selected
(Supplemental Fig. S1B) and sequentially displayed with the
MATLAB interface for visual inspection of their quality. If an image
exhibited clear boundaries and detectable signals without contam-
ination, we manually cropped three radial lines (as three repeats)
in the cerebral cortex region to represent the expression pattern
of a gene across the entire thickness of the cerebral wall, as well
as one line over the non-embryo area to measure the background

(Fig. 1A,B; Supplemental Methods). After this semi-automated
curation, we digitized the raw gray-scale intensities (automatically
smoothed for each pixel with its 3 × 3 neighbors to avoid harsh in-
tensity changes) along the lines on 1816 images, corresponding to
1598 Entrez genes and 53miRNAs (Fig. 1C; Supplemental Fig. S1B;
Supplemental Table S3). As different samples have slightly differ-
ent scales and background, and to make image profiles compara-
ble, we removed image background noise, standardized spatial
depth by scaling each radial line to 20 bins, and applied log-trans-
formation. In this way, we obtained 60-bin profiles for these 1816
images (Fig. 1D; Methods; Supplemental Table S3). We observed
that after these scaling and binning steps, the different image pro-
files and their repeats were well aligned with each other, which al-
lowed for clearly separated radial regions and a high consistency
between repeats (Supplemental Fig. S1C–F). Furthermore, 106 as-
says were curated twice for both Section 11 and 14 images to eval-
uate the consistency of the method, by examining the Pearson
correlation coefficients (PCC) between profiles of these paired
images. The significantly positive PCCs (mean ± standard deviation
0.65 ± 0.14, all P-values≤ 0.00074) among these pairs demonstrated
the high consistency and robustness of our image process pipeline.

The E14.5 cerebral wall has been estimated to be 200–300 μm
(Takahashi et al. 1995a,b), and for a 100 × 4 μm(tangential width ×
sample depth) section during E14-E15, there are ∼300 cell nuclei
(Takahashi et al. 1995b). In our curation, the area covered by a ra-
dial line is around 2 × 20 μm (tangential width × sample depth).
Thus, the expected number of nuclei covered by a radial line is
∼30. This estimation is consistent with the fact that, based on
ISH images with clear cell outlines, in early E14 there are ∼20 cells
across the cerebral wall (Takahashi et al. 1992), while in E15 there
are ∼40 (Takahashi et al. 1995a). Since a curated radial line was di-
vided into 20 bins, the intensity within each bin is approximately
at single-cell resolution (Fig. 1C,E).

ISH spatial gene expression clusters identify known

and unknown cell layers

During curation, we observed several radial expression patterns
across the cerebral cortex (Fig. 1E) and hypothesized that these dif-
ferent expression patternsmay represent different cellular states or
layers. In order to identify such patterns, we applied image-wise
z-score normalization (Methods) and used our recently developed
Super k-means algorithm (Liu et al. 2013). Compared to the rou-
tine k-means algorithm, the Super k-means algorithm is orders-
of-magnitude faster, and the solution from Super k-means clus-
tering is both unique and optimum (it would require an infinite
number of iterations of the routine k-means algorithm to obtain
a similar solution). This allows us to rapidly scan a large range
of k to determine the optimum number of clusters represented
by these expression profiles. Based on both the “elbow” method
(Thorndike 1953), which compares the intra- versus inter-sum-
of-squared Euclidean distances (SSD), and the adaptive Bayesian
information criterion (BIC) method (Zhang et al. 2013), the gene
clusters reached an optimum modularity when k = 6 (Methods;
Supplemental Fig. S2A,B). These gene clusters align remarkably
well with respect to the cell layers from CP to VZ (Fig. 2A;
Supplemental Table S3; Takahashi et al. 1995a,b). Visual examina-
tion in the Allen Developing Mouse Brain Atlas further indicates
that these gene clusters have similar patterns on E13.5 and E15.5
(Supplemental Fig. S2C).

We identified the GO/KEGG terms that were enriched
in the Super k-means derived gene clusters using the DAVID
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package (Fig. 2A; Supplemental Table S4; Huang da et al. 2009).We
have also listed all the transcriptional factors (TFs), miRNAs, and
neural lineage markers included in each cluster (Supplemental
Table S3).

The innermost cluster (Cluster 1) is enriched for cell cycle, cell
morphogenesis, forebrain development, and cell fate commitment
genes, andmost importantly, the Notch signaling pathway, which
is a key pathway active in NSCs (Bolos et al. 2007). The next most
inner cluster (Cluster 2) is enriched for cell cycle genes, in particu-
lar, DNA damage/repair and chromosome condensation genes,
which underlines the heavy replicative stress and epigenetic
changes that are underway prior to differentiation. The middle
cluster (Cluster 3) is specifically enriched for genes related to
“chromosome” events, suggesting a distinctive spatial phase ded-

icated to chromatin remodeling events between the VZ to CP tran-
sition. The second most outer cluster (Cluster 4) is involved in
axonogenesis, cell motion, synapse function, and dendrite devel-
opment and is enriched for genes of the Wnt receptor-signaling
pathway. This cluster may therefore mark the process of migration
and functional establishment. The outermost cluster (Cluster 5)
is enriched for ion channel and neurotransmitter genes, which
represent neuron maturation. Interestingly, in addition to the
above-mentioned clusters that have the highest expression in
one location across the radial axis, we also identified Cluster 6
that has a bimodal expression pattern, with high expression at
both the outermost layer and inner SVZ-VZ boundary, and is en-
riched in cell motion-related genes. To better illustrate the lineage
relationship, a neighbor-joining tree was constructed based on the

Figure 1. Workflow to extract and digitize expression profiles. (A) The middle-most sagittal section (Section 11 or 14) was selected for expression profile
measurements. The Eurexpress 3D onlinemouse embryomodel is here used to illustrate the relative position of Section 11. (B) AMATLAB graphical interface
was used for manually curating three radial lines across the cerebral cortex. Another line at the top left of the imagewas cropped for background correction.
(C ) Mean intensity values of every nine neighboring pixels (shown as dotted 3 × 3 squares) on the cropped line were extracted as a vector of smoothed ex-
pression intensities. The region of approximately a single cell (marked by the orange eclipse) can be captured with smoothed intensities in six pixels—the
average length of a bin. (D) Each line was scaled to a 20-bin profile to represent the expression profile of a gene across the radial axis from CP to VZ.
Then, the profiles for all telencephalon-expressed genes were summarized on amatrix of genes versus their expressions in 3 × 20 bins. (E) The representative
Eurexpress ISH imageswithdifferentexpressionpatterns. In the zoomed-inpanels (bottom to top, VZ toCP), thehigh-resolution ISH imagesdisplay the signals
and scales for single cells relative to the size of each radial bin as indicated by the 20-bin red rulers. Image sources are euxassay_007249_11.jpg, euxas-
say_009400_11.jpg, euxassay_017942_14.jpg, euxassay_003376_11.jpg, euxassay_018949_14.jpg, euxassay_009808_14.jpg, euxassay_009545_11.
jpg, euxassay_004815_14.jpg, euxassay_019619_11.jpg, euxassay_008979_11.jpg, euxassay_011139_11.jpg, and euxassay_006007_11.jpg, respective-
ly, from top to bottom and left to right.
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average profiles (Methods; Fig. 2B). This tree clearly shows that
Clusters 1 and 2 are of similar lineage, Clusters 4 and 5 are also
close, and Clusters 1, 2 and Clusters 4, 5 are farthest apart from
each otherwithClusters 3 and 6 in themiddle, yet diverging in dif-
ferent directions. This suggests that chromatin events and cell mo-
tion are most active at different spatial phases, which is consistent
with a previous finding that actin reorganization and chromatin
assembly also occur at distinct times (Iyer et al. 2012).

ISH spatial gene expression has higher spatial resolution

than the gene expression profiles of prenatal samples

To further corroborate the association of the ISH spatial gene ex-
pression cluster with the defined cell lineages, we analyzed a recent
RNA-seq data set of laser-microdissected (LMD) samples from the
CP, SVZ-IMZ, and VZ in the E14.5 murine cerebral cortex (Ayoub
et al. 2011; Methods). We found that the clusters identified based

Figure 2. VZ to CP ISH profile-based spatial gene expression clusters. (A) Spatial expression profiles of telencephalon-expressed genes were clustered
using the Super k-means algorithm with k = 6 and laid out according to their highest expression location, from the ventricle side moving outward.
Cortical layers (Takahashi et al. 1995a,b) can be approximately separated into four zones, the CP, IMZ, SVZ, and VZ, as delimited by the yellow vertical
lines. Gene expression profiles were extracted based on gray-scale pixel intensities as illustrated in Figure 1. Each column represents one of the 60 bins
from the three neighboring lines marked on each image. Each row represents one of the 1816 images (for the 1598 Entrez genes and 53 miRNAs, all dig-
itized expression intensity values are provided in Supplemental Table S3). The functional GO or KEGG terms enriched within each cluster of genes are listed
next to the heatmap. (B) Neighbor-joining tree of the six clusters based on their average expression profiles. (C) RNA-seq expression levels of panel A genes
(1561 detected RefSeq genes) in the six microdissected samples from the CP, SVZ-IZ (SVZ-IMZ), and VZ, respectively (two samples from each region and
two technical repeats for each sample). (D) RNA-seq expression levels of panel A genes (1521 detected RefSeq genes) in three cell types (three samples from
each cell type). (PP) Proliferative progenitor, (DP) differentiating progenitor.
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on ISH images agree remarkably well with the expression profiles
of the LMD samples (Fisher’s exact test, P < 0.05 after Bonferroni
correction) (Supplemental Table S5). Compared with the RNA-
seq profiles of LMD samples, the ISH profiles displayed a higher
spatial resolution in gene expression. For example, as the SVZ
and IMZ layers were not separated in the LMD samples, the genes
expressed only in the SVZ or IMZ (e.g., Cluster 3 genes) cannot be
distinguished, and hence the spatial expression patterns are lost
(cf. Fig. 2, A and C; note the difference between two biological re-
peats of SVZ-IMZ samples). As a consequence, these profiles from
LMD samplesmissed the distinctive transition phase of chromatin
remodeling during the neural differentiation process.

Recent array-based profiles of LMD human prenatal cortex
(Miller et al. 2014) assayed more neocortex layers and identified
the separation of germinal zones and post-mitotic zones, whose
patterns are similar to homologous genes in the ISH clusters
(Supplemental Fig. S2D). Nonetheless, the chromatin remodeling
genes were again undetected in their study.

Alternative to microdissection, fluorescence activated cell
sorting (FACS) based on cell surface markers was utilized to profile
transcriptome changes during E14.5 mouse cortex differentiation
(Aprea et al. 2013). Compared to FACS, high-resolution ISH pro-
files have the advantage of directly capturing and visualizing the
trajectory and the transient states from differentiating progenitors
to neurons (Fig. 2D; Supplemental Table S5).

Chromatin remodeling as a distinctive transition phase

between NSC and neurons

As described above, Cluster 3 is specially identified by high-resolu-
tion ISH profiles and particularly enriched for chromatin regula-
tors, such as Hmgn1, Rec8, and Trp53bp1 (Supplemental Table
S4). Therefore, we hypothesized that there is strong epigenetic reg-
ulation at the VZ-CP transition interface during neural differentia-
tion, especially during the period marked by Cluster 3, when cells
migrate through the IMZ. As epigenetic modification often reg-
ulates stretches of chromatin regions composed of multiple genes
or genomic clusters, we first examined whether the VZ-side and
CP-side expressed genes tend to locate separately in different
chromatin domains (Fig. 3A). Indeed, compared to random expec-
tation, genes from the two transcriptionally anti-correlated mod-
ules (Cluster 1 and 2 versus Cluster 4 and 5) tend to be located
on different but clustered chromosomal regions, especially on
Chromosome 5, 10, and 19 (overall permutation P = 0.0398 to ob-
tain at least three significantly clustered chromosomes out of 20)
(color-coded panel in Fig. 3A; Supplemental Methods). For exam-
ple, on Chr 10 (clustering P = 0.033) there is a domain that con-
tains a significantly consecutive segment of Cluster 4/5 genes
(permutation P = 9.2 × 10−4) (Supplemental Methods; Fig. 3A).

To further investigate chromosomal domains on 3D interac-
tion maps, we examined the intrachromosomal interactions be-
tween curated genes using the published Hi-C data of the 8-wk
mouse cortex (Dixon et al. 2012; Methods). Consistent with a spa-
tially specific reorganization of the chromatin, there are dense in-
teractions within the Cluster 4/5 gene segment on Chr 10, which
is embedded in a Hi-C interacting domain (Fig. 3B; Methods).
The Onecut3, Pip5k1c, and Atcay genes in this domain have all
been reported to regulate neural differentiation and function
(Bomar et al. 2003; Francius and Clotman 2010; Yu et al. 2011;
Espana and Clotman 2012). Other chromosomal clustering do-
mains and intrachromosomal interactions were also identified
(Supplemental Tables S6, S7). Chromatin remodeling and chroma-

tin interactions events centered on these domains and regulators
seem to undergo an important distinctive spatial switch during
neural differentiation.

To further confirm such a chromatin and epigenetic switch at
Cluster 3, we investigated the relative level of histone modifica-
tions in the mouse neural progenitor cells (NPCs) (Mikkelsen
et al. 2007) and cortical neurons (Kim et al. 2010) as measured
by ChIP-seq. We observed a high H3K4me3 signature on Cluster
1/2 genes in NPC and Cluster 4/5 genes in neuron, and a high
H3K27me3 signature on Cluster 4/5 genes in NPC and Cluster
1/2 genes in neuron (Supplemental Fig. S3; Methods). To quantify
these changes, we implemented a nonparametric approach to
determine the relative H3K4me3/H3K27me3 ratio in NPC versus
neuron (Methods). Interestingly, although the genes with a NPC
active mark and neuron inactive mark gradually drop from
Cluster 1 to 5, the neuron active mark and NPC inactive mark in-
crease sharply on Cluster 3 genes, and then slightly decrease in
Cluster 4 and 5 (Fig. 3C). This not only demonstrates sharp chro-
matin remodeling during the phase marked by Cluster 3 but also
indicates that these chromatin events activate neuronal gene ex-
pression (in Cluster 3), precede the expression of the majority of
neuronal genes (in Cluster 4/5), and are likely to be causal and up-
stream of neuronal gene expression changes.

Using these three lines of evidence—clustering in genomic lo-
calization, chromosome interaction, and histone modification
changes—we can pinpoint in vivo chromatin remodeling during
neural differentiation to the spatial phase represented by Cluster
3. However, how does this chromatin remodeling event regulate
the transcriptional state switch during neural differentiation? To
address this question, we sought to computationally predict the
regulatory circuitry.

Network analysis identifies potential key regulators

of neurogenesis

Although routine motif enrichment analysis can reveal some TFs
and miRNAs whose targets are enriched within each gene expres-
sion cluster (Supplemental Notes; Supplemental Tables S8, S9), it
does not reveal the regulatory circuitry governing the transition
between the differentiation states. We found previously that the
protein-protein interactions (PPIs) occurring between transcrip-
tionally anti-correlated genes or modules are preferentially associ-
ated with differentiation regulation (Xia et al. 2006; Xue et al.
2007). To identify such modules and the interactions between
them (the interfaces between anti-correlated modules), we devel-
oped a network analysis scheme, the so-called Negative-Positive
(NP) network analysis. The NP network includes all PPIs between
pairs of positively and negatively transcriptionally correlated
genes (Xia et al. 2006; Xue et al. 2007). According to this frame-
work, we constructed a 423-gene NP network with 718 positive
edges and 260 negative edges from the high-confidence curated
PPIs from the STRING database (von Mering et al. 2005) (confi-
dence scores > 600) (Methods), where the interacting genes are
positively or negatively transcriptionally correlated across the dig-
itized ISH profiles (PCC > 0.2 or <−0.2) (Supplemental Fig. S4A,B
for threshold determination; Methods). In this NP network, 220
genes are engaged in PPIs between transcriptionally anti-correlat-
ed genes (Fig. 4A; Supplemental Table S10). To test whether the
genes in the network—in particular, the PPI interfaces between
the spatially transcriptionally anti-correlated modules—are signif-
icantly associatedwith differentiation regulation, as previously ob-
served using temporal gene expression profiles (Xue et al. 2007),
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we examined their co-citation impacts (CI, the log-transformed co-
cited paper count in PubMed) (see Methods) with the keyword
“differentiation” using our CoCiter program (Fig. 4B,C; Qiao
et al. 2013; Methods). Compared to either the curated STRING
PPIs or to all of the genes curated by our image analysis pipeline,
the genes in the NP network are significantly more co-cited
with “differentiation” (permutation P < 1 × 10−5) (Supplemental
Methods; Fig. 4B). Furthermore, the interface genes between tran-
scriptionally anti-correlatedmodules are significantly more co-cit-
ed with “differentiation” than the other genes in the NP network
(permutation P < 1 × 10−5) (Supplemental Methods; Fig. 4B). It is
interesting to note that, although all the genes annotated are
expressed in the cerebral cortex, the mere presentation at the

right location and time does not necessarilymean that they partic-
ipate in the differentiation process. In fact, the likelihood for them
to be co-cited with differentiation is slightly lower than the
STRING PPI gene background (Fig. 4B,C). This is contrary to the
logic that if a gene expresses at the right place in neural tissues,
it must be required in one way or another for neural differentia-
tion. When a gene’s CI with “differentiation” is plotted against
the average expression PCC (AvgPCC) with all its interactors in
the NP network (Han et al. 2004), those with more negative
AvgPCCs exhibit a higher rate of co-citation (Fig. 4C). This indi-
cates that the negative AvgPCCs of the genes in the ISH expression
NP network are predictive for them being regulators of cell
differentiation.

Figure 3. Role of chromatin remodeling in neurogenesis. (A) The ideogram of all genes curated by the image analysis pipeline. No genes on Chr Y were
detected. Other chromosomes in mouse are acrocentric; centromeres are indicated with black triangles. The color-coded panel indicates P-values for chro-
mosomal clustering of genes from anti-correlated modules. (Dashed box) A zoom-in on the 1.7-Mb Chr 10 domain, with the genome coordinates of TSS
on the left and red triangles indicating the Hi-C domain boundary. (B) The Hi-C interaction network between genes in the 1.7-Mb Chr 10 domain. (C) The
fold enrichment of genes with the top or bottom 2.5% neural progenitor cells (NPCs) versus neuron H3K4me3/H3K27me3 ratios in each cluster (labeled
C1–C6), estimated based on 100,000 permutation background (dashed line). Asterisks indicate empirical P-values by permutation (∗) P < 0.05, (∗∗) P <
0.01, (∗∗∗) P < 0.001. The colors of ideogram lines, network nodes, and bar plots denote different expression clusters, respectively: orange, Cluster 1; yel-
low, Cluster 2; purple, Cluster 3; cyan, Cluster 4; blue, Cluster 5; gray, Cluster 6.
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WeusedGene Set Enrichment Analysis (GSEA) (Subramanian
et al. 2005) to test for pathways that are significantly associated
with AvgPCC-ranked genes (normalized P < 0.01) (Methods;
Table 1). Consistent with the co-citation analysis results, we found
that differentiation-related pathways such as “BMP signaling path-
way” and “Hedgehog signaling pathway” were overrepresented
among the genes with negative AvgPCCs, and Smad5 and Gli2
have the most negative AvgPCC within these two pathways (Fig.
5A). Consistent with their regulatory role in coordinating the
phase transition, BMP up-regulated genes (Methods) are signifi-
cantly enriched in Cluster 1, 4, and 5, while SHH up-regulated
genes (Methods) are significantly enriched in Cluster 4 and 5
(Fisher’s exact test, P < 0.05 after Bonferroni correction) (Supple-
mental Table S5).

Feedback loops form the key regulatory circuitry of neurogenesis

As regulatory interactions frequently form feedback loops, to iden-
tify regulatory circuitry, we retrieved all three-step loops (or “trian-
gles”) composed of at least one negative edge. Altogether, 617 such
loops, traversing 129 nodes, were found in the NP network. These
loops form 16 connected subnetworks (network graph compo-
nents) (Fig. 5B,C; Supplemental Fig. S4C; Supplemental Table
S11). Among them, the second largest network component is a
TF-enriched subnetwork (Fisher’s exact test, P = 1.8 × 10−8, and

4.49-fold enriched over the 129-node background) (Fig. 5B) that
was highly co-cited with “differentiation” and recaptures several
key regulators of neural differentiation, such as Pax6 and Sox2. In
this subnetwork, the top six nodes with the most negative
AvgPCCs—Ncor2, Hivep2, Lmo4, Satb2, Onecut3, and Rcor2, have
many interactions between Cluster 1/2 (proliferative state) and
Cluster 4/5 (differentiated state), suggesting that they might coor-
dinate the transition fromaproliferating cellular state to a differen-
tiated state. Indeed, Ncor2 (Cluster 1) maintains the NSC state
(Jepsen et al. 2007), Lmo4 (Cluster 4) facilitates neuronal radial
migration (Asprer et al. 2011), Satb2 (Cluster 3) regulates chro-
matin structure during cortical development (Gyorgy et al.
2008), and Rcor2 (Cluster 3) is involved in neuronal gene chroma-
tin regulation (Ballas et al. 2005). Interestingly, Ncor2, Rcor2,
and Satb2 are all epigenetic regulators that interact with HDAC
proteins (such as Hdac5 in Cluster 4) in the REST/Co-REST com-
plexes (Ballas et al. 2005; Gyorgy et al. 2008), which is themost im-
portant epigenetic regulator of neural differentiation (Coskun
et al. 2012).

For the other two nodes with negative AvgPCCs, Hivep2
(Cluster 5) has been reported to be regionally expressed during
mouse brain development (Campbell and Levitt 2003); however,
there is little knowledge of its molecular function in the brain,
and Onecut3 (Cluster 5) was recently found to function in the de-
velopment of several CNS cells/regions, such as spinal motor

Figure 4. NP network module interfaces are enriched for “differentiation” functions. (A) The NP network between the six Clusters (423 nodes/genes in
the network). Red edges represent PPIs between two transcriptionally correlated (PCC > 0.2) genes across the space from VZ to CP on the ISH images, while
blue edges are those with PCC <−0.2. (B) Distribution of CIs with the keyword “differentiation” for the indicated gene sets. (C) Relationship between
AvgPCC of genes/nodes (binned at linear intervals, at least five nodes in each bin) and the fraction of genes of at least three PubMed co-citations
(CI≥ 2) with the word “differentiation” within each bin. Gray lines indicate the average background levels.
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neurons (Francius and Clotman 2010), the locus coeruleus, and
the mesencephalic trigeminal nucleus (Espana and Clotman
2012), but no function in the cerebral cortex has been reported.
Their dense connections with each other and with key neural dif-
ferentiation regulators (e.g., the aforementioned epigenetic regula-
tor Rcor2) through feedback interactions, suggest that they may
form regulatory circuits to coordinate neuronal fate transition
through epigenetic regulations. Further supporting the regulatory
roles of nodes with very negative AvgPCCs in the network
(Supplemental Fig. S4C), several nodes in the remaining subnet-
works have also been identified to function in neuronal develop-
ment, such as Nes (Lendahl et al. 1990) and Gli2 (Takanaga et al.
2009). In general, we observed a significant anti-correlation be-
tween AvgPCC of the nodes in these feedback loops and their CI
with “differentiation” (PCC =−0.21, P = 0.018).

The role of mitotic checkpoints in neuronal fate commitment

It is reassuring to have recovered the most important epigenetic
regulations from the computationally predicted regulatory circuit-
ries for the in vivo neural differentiation process. However, to our
surprise, the largest network component is related to the mitotic
spindle (Fig. 5C; Supplemental Table S4).

As our ISH-based gene expression profile is at the single-cell
level, we further examined whether there is a mitotic checkpoint
implemented at the transition stage, by examining the enrich-
ment of cell cycle markers of different phases or checkpoints in
each of the six gene expression clusters (Methods). Interestingly,
while cell cycle genes at the G1/S checkpoint and G2 phases are
significantly enriched in both Cluster 1 and 2, S phase genes are
significantly enriched in Cluster 2 instead of Cluster 1, and G2/
M checkpoint genes are enriched in Cluster 1 rather than Cluster
2 (Fig. 5A; Supplemental Table S5). This is consistent with interki-
netic nuclear migration, which refers to the nuclei shuttling be-
tween the apical and basal side of the germinal zone during the
cell cycle (Sun and Hevner 2014). Meanwhile, M/G1 checkpoint
genes are marginally enriched in Cluster 2 (Fisher’s exact test,
P = 0.11 and fold enrichment = 2.2) (Fig. 5A), suggesting a poten-
tial mitotic exit checkpoint before the transition stage where chro-
matin remodeling occurs. This spatial difference of cell cycle status
can be further supported by principal component analysis (PCA)
of the cell cycle marker gene expression profiles—markers of
S phase and G2/M checkpoint have separated territories, with oth-

er intermediary stage markers scattered
in between (Supplemental Fig. S5).

A few mitotic checkpoint genes in
our study have been found to affect brain
size and brain development. For exam-
ple,Nde1 (Cluster 1) at the network inter-
face regulates cerebral cortical size (Feng
and Walsh 2004), while the human
homologs of Kif2a (Cluster 5) and
Dync1h1 (Cluster 6), also at the network
interface, cause malformation of the
cortex if mutated (Poirier et al. 2013).
The results of our single-cell-level analy-
sis therefore identify the general in-
volvement of mitotic checkpoints in
cell fate transition during cerebral cortex
development.

Discussion

Automated sample preparation andmicroscopy image acquisition
have enabled generation of ISH in a high-throughput manner.
To effectively analyze these data in a similar high-throughput
manner remains a big challenge. To this end, the Allen Institute
for Brain Science has developed an automated image-processing
pipeline to provide a global view of the transcriptome. However,
the pipeline depends on crude pattern recognition, which results
in much lower resolutions (100-μm grid for E13.5 and 120 μm
for E15.5) than the actual data. Moreover, for prenatal brains
with small sizes, as the automated analysis is not precise, they
were forced to perform expert-guided manual annotation of brain
structures instead. Therefore, a practical and effective approach to
digitizing the high-resolution ISH images remains lacking.

In this study,we developed a semi-automatedmethod to digi-
tize ISH images of E14.5 mouse embryos at single-cell resolution.
To our knowledge, it is still technically difficult to separate intact
single cells for gene expression profiling of the developing mouse
cerebral cortex. Two recent studies that have come closest have
used LMD (Ayoub et al. 2011) or FACS (Aprea et al. 2013) for
gene expression profiles, both at much lower resolution, which
use millions of cells either from three major known layers or
with threemarked types (Fig. 2C,D). Especially for exquisite tissues
like prenatal brain, until dissecting intact single cells becomes fea-
sible for gene expression profiling, high-resolution ISH image data-
derived spatial gene expression profiling with ourmethod remains
a good alternative and approximate for in vivo single-cell-level spa-
tial gene expression profiles.

The digitally transformed expression profiles across the corti-
cal layers were used to finely map gene expression clusters to
known and unknown transition zones or cell layers at this stage
(Fig. 5A). Importantly,we foundthat thePPIs connecting transcrip-
tionally anti-correlated genes, or modules, are predictive of them
being regulators of differentiation/transitions across the zones.
Based on this insight, we further predicted the regulatory circuits
that control the fate transition from NSC to CP neuron, including
the well-known REST/Co-REST epigenetic regulatory complex and
mitotic checkpoint control in cell fate transitionduring cortical de-
velopment. These regulatory circuits, together with the distinctive
chromatin remodeling genes’ spatial expression at the transition
zone, strongly suggest a synchronized switching of epigenetic
states when cells exit the cell cycle to migrate through the IMZ,
and that chromatin interaction domains serve as higher-order

Table 1. KEGG/GO terms enriched among the NP network genes with the most positive or neg-
ative AvgPCC

Category KEGG terms GO terms

Top AvgPCC genes
(positive)

Synaptic vesicle cycle Chromosome, chromosome centromeric
region, DNA replication, mitosis,
kinetochore, transferase activity,
transferring glycosyl groups,
chromosome segregation, histone
binding, integral to golgi membrane,
Notch signaling pathway, cell division

Bottom AvgPCC genes
(negative)

Osteoclast differentiation,
Hedgehog signaling
pathway, melanoma

Neural tube closure, embryonic digit
morphogenesis, BMP signaling
pathway, transcription factor
complex, zinc ion binding, embryonic
skeletal system morphogenesis

GSEA was used for the enrichment test, and NOM P-value < 0.01 was used to define significant
enrichment.
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chromatin organization centers during neural differentiation. The
regulatory function of chromatin remodelers during neurogenesis
has recently attracted intense investigation (Kishi et al. 2012; Egan
et al. 2013; Ronan et al. 2013; Tuoc et al. 2013). Our study thus pro-
vides an unbiased analysis that uncovers their critical role from a
computational and high-resolution perspective.

While our method mainly digitized the radial organization
across the cerebral wall, the IMZ may also contain a small fraction
of neuron precursors that migrate temporarily orthogonally rather

than strictly radially (O’Rourke et al. 1992). This kind of heteroge-
neity, though difficult to exclude with ISH data at only one static
time point, does not affect our conclusion that the IMZ (radially
spanned by Cluster 3) (Figs. 1E, 2) is a layer dedicated to chromatin
remodeling for neuron progenitors during VZ-CPmigration, since
the small fraction of orthogonally migrating cells will eventually
still contribute to the neurons in the CP.

Cell-cycle states have been recently shown to not only asso-
ciate with stem cell differentiation but may play an important

Figure 5. Feedback circuits identify keymodules regulating differentiation. (A) The average profiles (upper panel) of the six clusters are consistent with the
differentiation stages and regulatory functions, as indicated with the smoothed intensity of relevant markers (lower panel). Cortical layers (Takahashi et al.
1995a,b) can be approximately separated into four zones, the CP, IMZ, SVZ, and VZ, as indicated in the middle. (NSCs) Neural stem cells, (NPCs) neural
progenitor cells, (NRPs) neuron-restricted progenitors. (B) The second largest subnetwork is enriched for regulators of neurogenesis. In this subnetwork, 22
of the 23 nodes have at least three PubMed co-citations (CI≥ 2) with the word “differentiation.” (C) The largest subnetwork is related to mitotic spindle. In
panels B and C, edge colors indicate PCC as in Figure 4A. Node colors denote the expression clusters as shown in Figure 3. TRANSFAC TFs are labeled with a
black border. Node radius is proportional to CI with “differentiation.”
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role in determining differentiation propensity (Pauklin and Vallier
2013). Here, we found at the single-cell level that mitotic check-
points might be a general key regulatory event in neural
differentiation.

In particular, it has been recently suggested that in the outer
SVZ of humans, there is a class of progenitors named outer radial
glia (oRG) cells, which arise from or undergo asymmetric division
with nonvertical mitotic spindle orientation and may strongly af-
fect mammalian cortical expansion (Shitamukai and Matsuzaki
2012; LaMonica et al. 2013). oRG-like cells are also found in the
superficial SVZ and IMZ of mouse, although at much lower abun-
dance (<10% of mitotic progenitors) (Wang et al. 2011). In our
study, the observed enrichment ofmitotic checkpointM/G1 genes
in Cluster 2 may signify the presence of this progenitor subtype.
Although we did not detect enrichment of cell-cycle genes in the
IMZ (Cluster 3), the dedicated chromatin remodeling function of
the IMZ may still provide a specific environment for oRG cells. It
would be interesting to further test this in prenatal human brain,
where oRGs are more abundant.

Altogether, our analyses provide a novel approach of analyz-
ing ISH image data to directly in situ capture and visualize at the
single-cell level the spatial modularity, dynamic trajectory, and
transient states of gene expression during embryonic neural differ-
entiation and to infer regulatory events. Such an approach will be
useful and applicable inmany different systems for understanding
the dynamic or spatial processes in vivo and at high resolution.

Methods

Image curation

Selected raw images and their annotations (as of January 9, 2012)
were downloaded from the website http://www.eurexpress.org.
After gray-scale conversion and cropping of the head region, the
images were sequentially and randomly displayed for visual exam-
ination of their quality. Only the images with a clear ventricle
boundary were selected and carefully cropped, using radial lines
across the cortex, for downstream analysis. After background cor-
rection, the average intensities of nine neighboring pixels along
the lines were binned to 20 bins each line and log2-transformed.
For each of the 1816 images, a 60-bin profile (three repeat ×
20 bin) was extracted to represent the pattern of a probe across
the cortex, and z-score normalized before Super k-means cluster-
ing. The z-scorewas calculated with (X− μ)/σ, whereX is bin inten-
sity, and μ and σ are the average and standard deviation of X,
respectively.

Determining the best k for Super k-means clustering

To obtain the proper number of groups for clustering, Super
k-means clustering was run iteratively with k from three to 10.
Then, their intra-/inter-SSDs were calculated and compared. The
heuristic “elbow” method (Thorndike 1953) was used to identify
the k with optimum modularity. An adaptive BIC method
(Zhang et al. 2013) was also utilized.

Neighbor-joining tree analysis of gene expression profiles

The neighbor-joining tree was generated with MEGA5 (version
5.05, with analysis option “Phylogeny Reconstruction” and statis-
tical method “Neighbor-joining”) (Tamura et al. 2011). The
Euclidean distances calculated between the average profiles of
the six clusters were used as the input.

RNA-seq and microarray data set processing

RNA-seq data from Ayoub et al. (2011), Belgard et al. (2011), and
Aprea et al. (2013) were downloaded from the NCBI GEO database
(GSE30765, GSE27243, and GSE51606), mapped to the mouse ge-
nome with TopHat v1.4.1, and summarized to expression levels
with Cufflinks v.1.3.0 (Trapnell et al. 2012), based on the UCSC
mm9 annotation. A normalized microarray profile of human
16pcw prenatal microdissected samples from Miller et al. (2014)
was downloaded from http://brainspan.org on April 6, 2014. The
up- and down-regulated genes of BMP and SHH pathways were de-
rived from microarrays GSE48092 and GSE42565, respectively,
and processed with the “affy” package in R (Gautier et al. 2004).
Differentially expressed genes were determined using RankProd
(Hong et al. 2006) with a false discovery rate < 0.01.

Hi-C data processing

The normalized intrachromosomal interaction matrices (40-kb
bin, mm9) of Hi-C data for the 8-wk mouse cortex were down-
loaded from http://chromosome.sdsc.edu/mouse/hi-c/download.
html (version on April 6, 2012). For each pair of genes (based
on the UCSC mm9 annotation), we calculated a gene-wise inter-
action score—the average of normalized bin-wise interaction
scores between their gene bodies, to evaluate the strength of inter-
action. We built the interaction network based on the combined
Hi-C data, with a global gene-wise score cutoff defined as median
(cutoff1, cutoff2, …, cutoff19, cutoffX), where cutoffi equals the bin-
wise interaction score cutoff at the highest 1% boundary for
Chromosome i.

ChIP-seq data processing and calculation of

H3K4me3/H3K27me3 ratio in NPCs versus neuron

ChIP-seq data were downloaded from the NCBI GEO database
(GSE12241 and GSE21161) (Mikkelsen et al. 2007; Kim et al.
2010) and mapped to the mouse genome with Bowtie v0.12.8
(Langmead et al. 2009), based on the UCSC mm9 annotation.
For each RefSeq gene, fragment count (with fragment length
∼200 base pairs [bp]) was summarized for −2000 to +2000 bp sur-
rounding a TSS and corrected by the input (Supplemental Fig. S3).
To determine the H3K4me3/H3K27me3 ratio for each gene, we
first calculated the average input-corrected intensities around the
TSS, replaced them with ranks in each sample, and then defined
a nonparametric rank score by

rank-score = (RankNPC,H3K4me3 − Rankneuron,H3K4me3)
− (RankNPC,H3K27me3 − Rankneuron,H3K27me3),

which measures the relative ratio of H3K4me3/H3K27me3 in
NPCs versus neuron.

NP network analysis

The STRING PPI data (version 9.0) were downloaded on June 13,
2011. The integrated confidence scores were recalculated accord-
ing to the original publication (von Mering et al. 2005) based
only on “fusion,” “experimental,” and “database” scores. Only in-
teractions with scores > 600 were used for further analysis. The NP
network was constructed in a similar way to that described in
Xia et al. (2006) and Xue et al. (2007), except that we required
|PCC| > 0.2.
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Co-citation analysis

The NCBI curated “gene2pubmed” table and PubMed abstracts
from 16 common organisms were downloaded on October 11,
2011. For a given coding gene-term pair, a PubMed reference was
marked as a co-citation paper if (1) it was indexed in the “gene2-
pubmed” table with either the mouse gene or its homologs in hu-
man, fly, and worm (determined with NCBI “homologene.data”
downloaded on July 24, 2011), and (2) its abstract contained the
term. For a given miRNA-term pair, a PubMed reference was
marked as a co-citation paper if (1) its abstract contained the
miRNA name (case-insensitive) without species prefix, e.g., “mir-
124,” and (2) its abstract contained the term. CI = log2 (N + 1),
where N is the co-cited paper count, was used to measure the rele-
vance of a gene to a certain term. “Omic” papers citing more
than 200 genes were ignored. The algorithm is available online
(http://www.picb.ac.cn/hanlab/cociter) (Qiao et al. 2013).

Gene sets used for GSEA

The mouse GO/KEGG annotations for GSEA were downloaded
from the NCBI “gene2go” table and KEGG database API (Kanehisa
et al. 2012) on July 7, 2012. Only termswith a gene set overlapping
with 3∼200 of the 423 NP network genes/nodes were considered.

Cell cycle marker genes

Marker genes from different phases and checkpoints of the cell cy-
cle were derived from the mouse homologs of those identified in
HeLa cells (Whitfield et al. 2002).
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