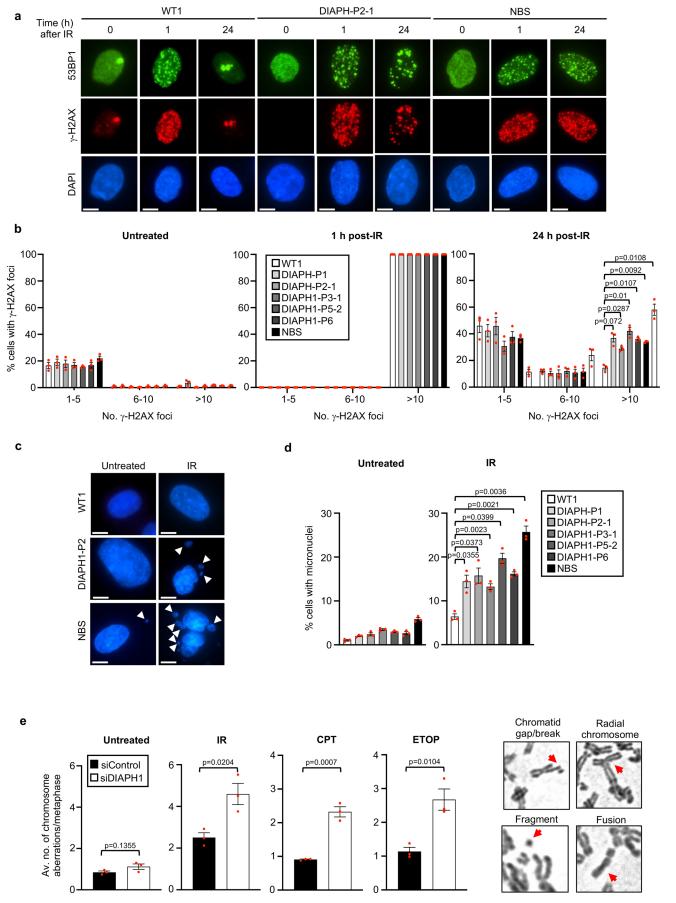

#### Supplementary Fig. 1. Cells lacking DIAPH1 display an inability to repair DSBs induced by IR.

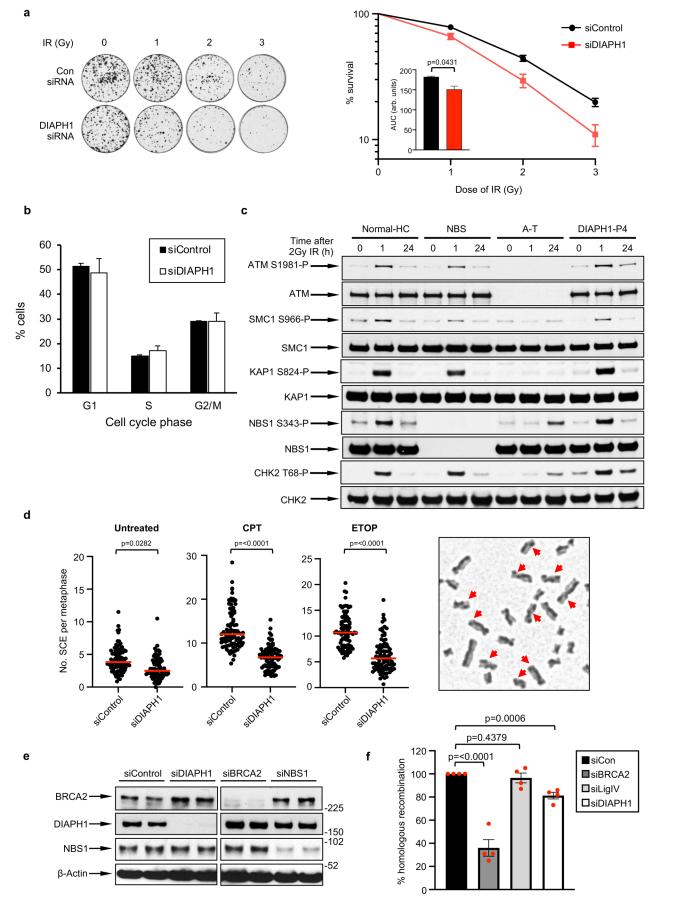
a HeLa cells were transfected with either control siRNA or an siRNA targeting DIAPH1, and then mock treated or irradiated with 3 Gy of IR. Cells were harvested for Western blotting at the time points post-irradiation indicated. Cell extracts were separated by SDS-PAGE and Western blotting was carried out with the antibodies indicated. Representative of n=2 independent experiments. **b** Quantification of  $\gamma$ -H2AX foci in WT and patient P1 fibroblasts before and after exposure to 1 Gy IR.  $\gamma$ -H2AX foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h and 24 h following IR exposure. The mean of n=3 independent experiments is shown with the SEM (red line).  $\gamma$ -H2AX foci were counted in 100 cells per time point, per experiment. Statistical significance was calculated using: (b) a Mann-Whitney rank sum test. Source data are provided as a Source Data file.




#### Supplementary Fig. 2. Cells lacking DIAPH1 display an inability to repair DSBs induced by CPT and ETOP.

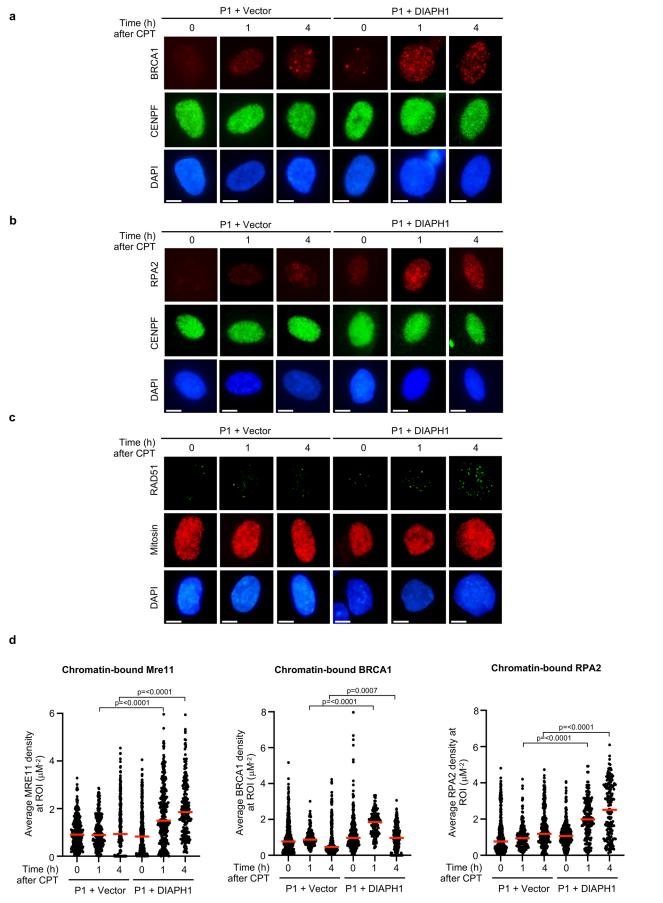
a A Western blot of DIAPH1 expression in cell extracts from DIAPH1-P1 fibroblasts complemented with either an empty vector or a vector expressing WT DIAPH1. KAP1 is used as a protein loading control. n=1 independent experiments. **b-c** Quantification of γ-H2AX foci in complemented DIAPH1-P1 fibroblasts before and after exposure to 100 nM CPT for 1 h. γ-H2AX/53BP1 foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h and 24 h following CPT treatment. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Representative images of the cells at different time points before and post-treatment are shown (b). The scale bars represent 10  $\mu$ m. **d-e** Quantification of  $\gamma$ -H2AX foci in complemented DIAPH1-P1 fibroblasts before and after exposure to 10 μM ETOP for 30 min. γ-H2AX/53BP1 foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h and 24 h following ETOP treatment. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Representative images of the cells at different time points before and post-treatment are shown (d). The scale bars represent 10  $\mu$ m. Note: The quantification of  $\gamma$ -H2AX foci for CPT (c) and ETOP (e) treated cells were carried out as part of the same experiment using the same untreated controls. Therefore, the quantification of γ-H2AX foci in untreated cells in (c) has been duplicated in (e) so that comparisons with the quantification of  $\gamma$ -H2AX foci in ETOP-treated cells can be made. Statistical significance was calculated using: (c & e) an two-way ANOVA with multiple comparisons. Source data are provided as a Source Data file.




### Supplementary Fig. 3. Cells depleted of DIAPH1 display an inability to repair DSBs induced by IR, CPT and ETOP.

a A Western blot of DIAPH1 expression in extracts from HeLa cells transfected with control or DIAPH1 targeting siRNA. A cross-reactive band is used as a protein loading control. n=1 independent experiments. **b-c** Quantification of  $\gamma$ -H2AX foci in HeLa cells transfected with control or DIAPH1 targeting siRNA before and after exposure to 3 Gy IR, 100 nM CPT for 1 h or 10  $\mu$ M ETOP for 30 min.  $\gamma$ -H2AX/53BP1 foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h and 24 h following IR, CPT or ETOP treatment. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Representative images of the cells at different time points before and post-treatment are shown (b). The scale bars represent 10  $\mu$ m. **d-e** Micronuclei were quantified from HeLa cells described in (a) before and after exposure to IR (24 h), CPT (48 h) and ETOP (48 h). The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Representative images of the cells at different time points before and after treatment are shown (d). The scale bars represent 10  $\mu$ m. Statistical significance was calculated using: (c) an two-way ANOVA with multiple comparisons and (e) an unpaired Student's t-test (two-sided, equal variance). Source data are provided as a Source Data file.

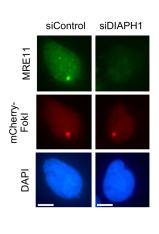


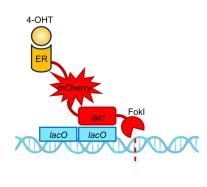

Supplementary Fig. 4. Analysis of DSBR in five independent DIAL syndrome patient-derived cell lines using immunofluorescence and chromosome breakage analysis.

a-b Quantification of  $\gamma$ -H2AX foci in WT fibroblasts (WT1), fibroblasts derived from a patient with Nijmegen Breakage Syndrome (NBS) and fibroblasts derived from 5 different DIAL syndrome patients (P1, P2-1, P3-1, P5-2 and P6) before and after exposure to 3 Gy IR. γ-H2AX foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h and 24 h postirradiation. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Representative images of the cells at different time points before and post-irradiation are shown (a). The scale bars represent 10 μm. c-d Micronuclei were quantified from cells described in (a-b) before and after exposure to IR. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Representative images of the cells at different time points before and after treatment are shown (c). The scale bars represent 10 μm. e Quantification of chromosome aberrations in HeLa cells transfected with control siRNA or an siRNA targeting DIAPH1 before and 24 h after 2 Gy of IR or chronic exposure to low dose CPT (5 nM) or ETOP (50 nM). Chromosome aberrations includes chromatid/chromosome gaps/breaks, chromatid/chromosome fragments and chromosome radials/exchanges. Representative images of each type of aberration are shown. The mean of n=3 independent experiments is shown with the SEM. A minimum of 50 metaphases were counted per cell line in each experiment. Statistical significance was calculated using: (b) a two-way ANOVA with multiple comparisons, (d) an ordinary one-way ANOVA (p=<0.0001) and (e) an unpaired Student's ttest (two-sided, equal variance). Source data are provided as a Source Data file.

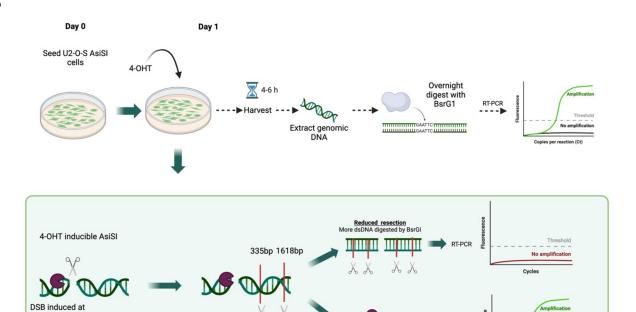


Supplementary Fig. 5. DIAL syndrome cells do not exhibit any defects in activation of the ATM-dependent DDR following exposure to IR.


a U-2 OS cells transfected with either control or DIAPH1 siRNA were plated at low density, exposed to the doses of IR indicated and were allowed to form colonies for 14 days. Colonies were fixed, stained and counted. Representative images of cell colonies are shown (left). Colonies were normalized to the number of cells plated and expressed as a mean % cell survival relative to the untreated control. Quantification of colonies from n=3 independent experiments. **b** Quantification of cell cycle distribution of U-2 OS cells in part (a) as determined by propidium iodide staining coupled with flow cytometry. n=3 independent experiments. c Western blot on cell extracts derived from LCLs from one WT individual (Normal-HC), an individual with NBS, an individual with A-T and DIAPH1 patient P5 before and after exposure to 2 Gy of IR. Timepoints were taken 1 h and 24 h post-irradiation. Antibodies used for Western blotting are indicated. Phospho-specific antibodies are denoted with the position of the phosphorylated residue followed by a 'P'. Antibodies to non-phosphorylated proteins were used to control for protein loading. All Western blots using phospho-specific antibodies were generated from cutting the same nitrocellulose filter into strips and blotting with the antibodies indicated. All Western blots using antibodies to non-phosphorylated proteins were generated by running the same samples in parallel on a separate gel, cutting the nitrocellulose filter into strips and blotting with the antibodies indicated. Representative of n=2 independent experiments. d Quantification SCEs in HeLa cells transfected with control and DIAPH1 siRNA before and 24 h after chronic exposure to low dose CPT (0.5 nM) and ETOP (10 nM). The mean of n=3 independent experiments is shown (red line). Approximately 30 metaphases per cell line were scored for SCEs per experiment. A representative image of the SCEs quantified is shown. e Efficiency of siRNA-mediated gene knockdown in HeLa cells for Fig. 3c. n=1 independent experiments. f Quantification of the relative levels of HR-dependent of an I-Scel-induced DSB using the DR-GFP assay in cells when either BRCA2, DNA ligase IV or DIAPH1 are depleted using siRNA. The mean of n=4 independent experiments is shown. The relative levels of HR were normalised in all samples to that observed in the control siRNA (siCon) transfected cells. Statistical significance was calculated using: (a) a paired Student's t-test, (d) unpaired Student's t-test (two-sided, equal variance) and (f) an ordinary one-way ANOVA. Source data are provided as a Source Data file.




Supplementary Fig. 6. Representative images for BRCA1, RPA2 and RAD51 foci in S/G2-phase complemented DIAL syndrome cells following exposure to CPT.


**a-c** Representative images of the complemented DIAL syndrome cells used for the quantification of CPT-induced (a) BRCA1, (b) RPA2 and (c) RAD51 foci in Fig. 3d-f. The scale bars represent 10 μm. **d** Quantification of the amount of CPT-induced chromatin retention of MRE11 (left), BRCA1 (middle) and RPA2 (right) within the ROIs indicated in Fig. 4a-b. A minimum of 100 ROIs were quantified over three independent experiments. The median of n=3 independent experiments is shown (red line). Statistical significance was calculated using: (d) a Kruskal-Wallis test ([chromatin-bound MRE11] p=<0.0001, [chromatin-bound BRCA1] p=0.0007, [chromatin-bound RPA2] p=<0.0001). Source data are provided as a Source Data file.

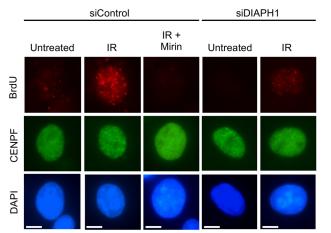






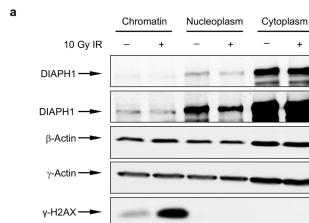
b




Resection
Less dsDNA digested by BsrGI

Copies per reaction (Ct)

BsrGI BsrGI

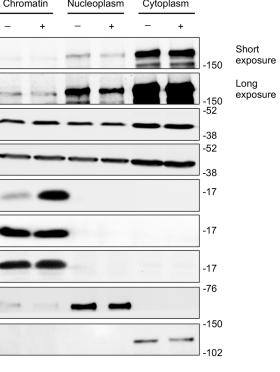


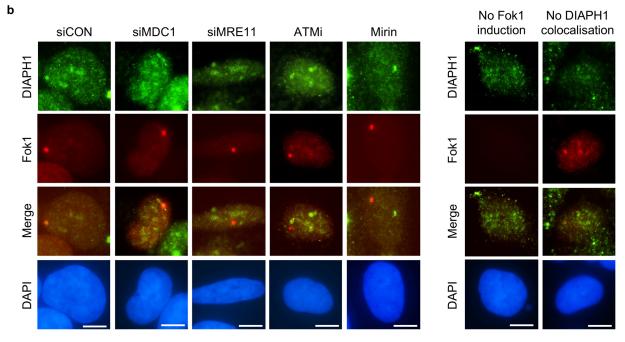

specific sites

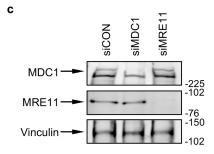


## Supplementary Fig. 7. Representative images for MRE11 localisation to Fokl-induced DSBs and CPT-induced DNA end-resection in cells with/without DIAPH1.

a (Left) Representative images used for the quantification of MRE11 recruitment to Fokl-induced DNA DSBs in U-2 OS cells transfected with control or DIAPH1 siRNA (Fig. 4c). The scale bars represent 10 μm. (Right) A diagrammatic representation of how the ER-mCherry-Lacl-Fokl-DD system induces a DSB. ER: estrogen-receptor; 4-OHT: 4-hydroxy-tamoxifen; *lacO*: lactose operon; *lacI*: lac repressor. b Diagrammatic representation of how resection of an *Asi*S1-induced DSB on chromosome 1 is quantified. Created in BioRender. Woodward, B. (2025) https://BioRender.com/jij9l1g. c Representative images used for the quantification of DSB end-resection as judged by native BrdU foci in HeLa cells transfected with control or DIAPH1 siRNA following exposure to 100 nM CPT for 1 h and permeabilised/fixed 4 h post-treatment (Fig. 4e). The scale bars represent 10 μm.

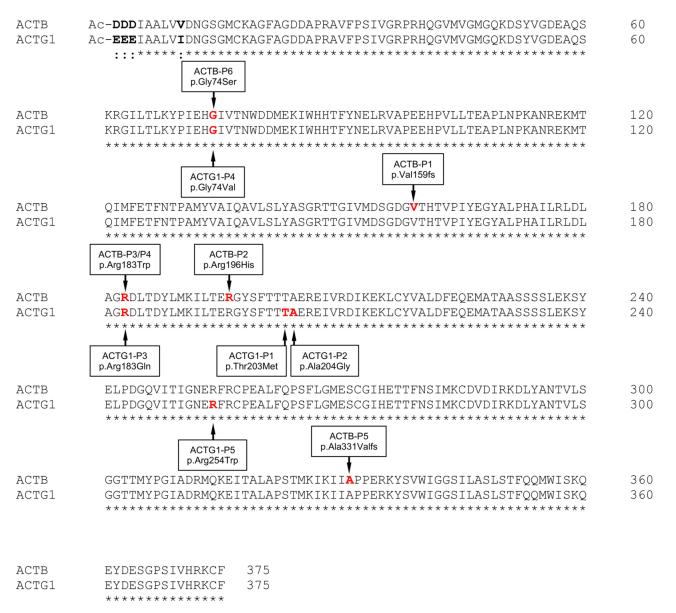




H2A →


Н3 →

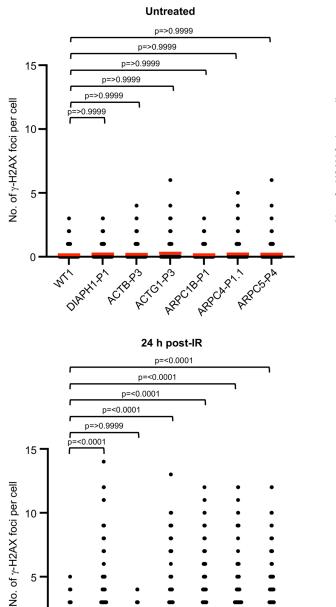
U1-70K ─►

Vinculin —





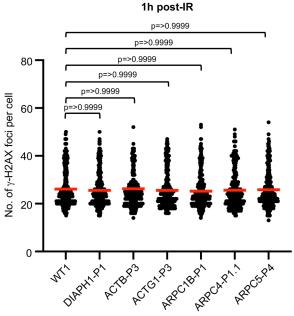




#### Supplementary Fig. 8. DIAPH1 is present in both the nucleus and cytoplasm.

**a** Cell fractionation assessing the localisation of DIAPH1,  $\gamma$ -actin and  $\beta$ -actin before and 1 h after exposure to 10 Gy of IR. Vinculin, U1-70K and histone H3 are used as markers of the cytoplasmic, nuclear and chromatin fractions respectively. Representative of n=2 independent experiments. **b** (Left) Representative images of the recruitment of DIAPH1 to Fokl-induced DNA DSBs in cells depleted of MDC1 or MRE11 or treated with an ATM inhibitor or mirin (Fig. 5d). (Right) Representative images of DIAPH1 localisation in the absence of Fokl-induction and cells where DIAPH1 did not localise to Fokl-induced DSBs. **c** Western blots showing the efficiency of siRNA-mediated gene knockdown. n=1 independent experiments. The scale bars represent 10 μm.

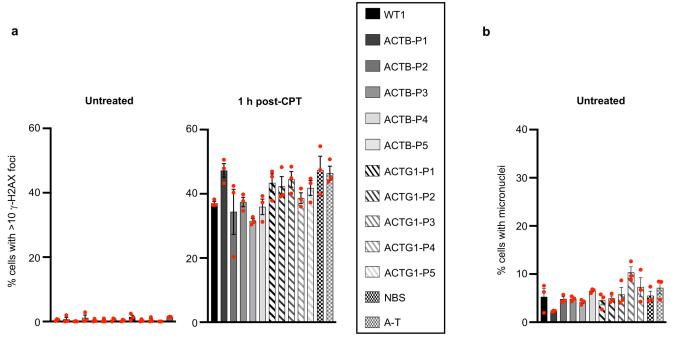


#### Supplementary Fig. 9. Alignment of the $\beta$ - and $\gamma$ -actin protein sequences.

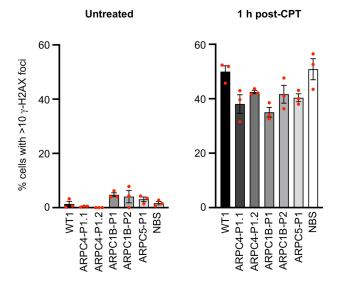

Protein sequence alignment of human  $\beta$ - and  $\gamma$ -actin with the position of all the BWCFF syndrome patient-associated mutations analysed highlighted in red. The four N-terminal amino acids that differ between  $\beta$ - and  $\gamma$ -actin are highlighted in bold. 'fs' indicates frameshift.



Chrent by Class Class backs back by

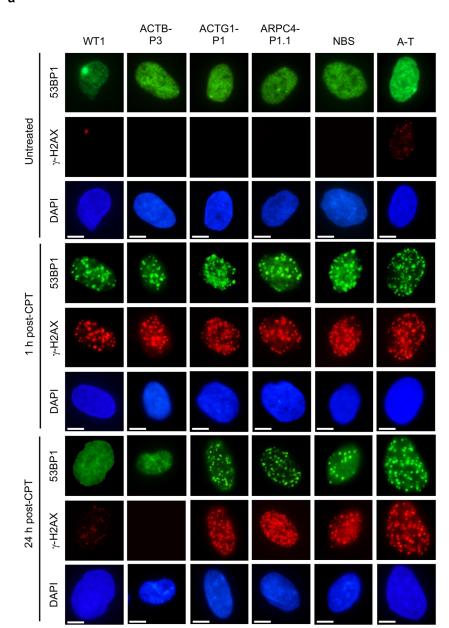

h'r

0



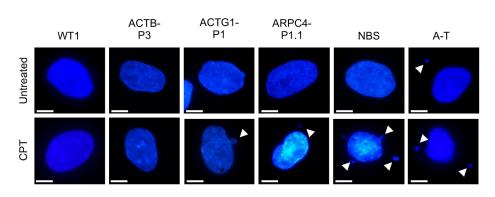

Supplementary Fig. 10. Cells with mutations in *ACTG1* or the ARP2/3 complex display an inability to repair DSBs induced by IR.

Quantification of  $\gamma$ -H2AX foci in WT fibroblasts and *DIAPH1*, *ACTB*, *ACTG1*, *ARCP1B*, *ARPC4* and *ARPC5* mutant patient fibroblasts before and after exposure to 1 Gy IR.  $\gamma$ -H2AX foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h and 24 h following IR exposure. The mean of n=3 independent experiments is shown with the SEM (red line).  $\gamma$ -H2AX foci were counted in 100 cells per time point, per experiment. Statistical significance was calculated using a Kruskal-Wallis test ([untreated] p=0.7591, [1 h post-IR] p=0.0757, [24 h post-IR] p=<0.0001). Note: The quantification of  $\gamma$ -H2AX foci for the WT and DIAPH1-P1 fibroblasts has been duplicated from Supplementary Fig. 1b for comparison purposes.  $\gamma$ -H2AX foci quantification in fibroblasts for all genotypes were performed at the same time as part of the same experimental set. The  $\gamma$ -H2AX foci quantification in WT and DIAPH1-P1 fibroblasts was separated into Supplementary Fig. 1b to fit with the narrative of the manuscript. Source data are provided as a Source Data file.



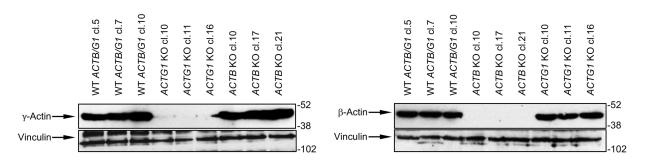




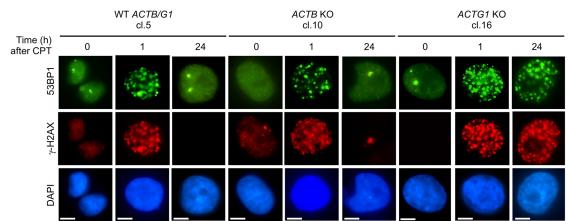


## Supplementary Fig. 11. Cells from BWCFF syndrome with mutations in *ACTG1* but not *ACTB* exhibit a DSB repair defect.

**a-b** Quantification of  $\gamma$ -H2AX foci (a) and micronuclei (b) in patient-derived fibroblasts with *de novo* mutations in *ACTB* or *ACTG1* before and after a 1 h exposure to 100 nM CPT.  $\gamma$ -H2AX foci and micronuclei were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h following the removal of the CPT. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Statistical significance was calculated using unpaired Student's T-test (two-sided, equal variance). **c** Quantification of  $\gamma$ -H2AX foci in patient-derived fibroblasts with mutations in *ARPC1B*, *ARPC4* or *ARPC5* before and after a 1 h exposure to 100 nM CPT.  $\gamma$ -H2AX foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h following the removal of the CPT. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Statistical significance was calculated using unpaired Student's T-test (two-sided, equal variance). Source data are provided as a Source Data file.

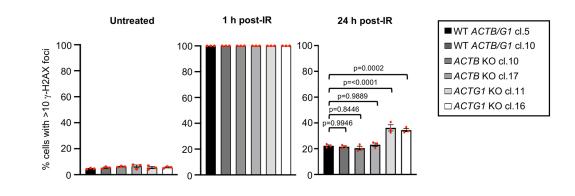


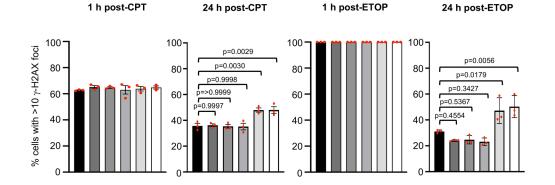



b



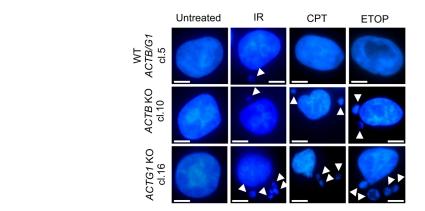

Supplementary Fig. 12. Cells from BWCFF syndrome with mutations in *ACTG1* but not *ACTB* exhibit a DSB repair defect.


**a** Representative images used for the quantification of CPT-induced  $\gamma$ -H2AX foci in patient-derived cell lines with mutations in *ACTB*, *ACTG1*, *ARPC1B*, *ARPC4* and *ARPC5* (Fig. 6b, 6f and Supplementary Fig. 11a and 11c). The scale bars represent 10  $\mu$ m. **b** Representative images used for the quantification of CPT-induced micronuclei in patient-derived cell lines with mutations in *ACTB*, *ACTG1*, *ARPC1B*, *ARPC4* and *ARPC5* (Fig. 6c, 6g and Supplementary Fig. 11b). The scale bars represent 10  $\mu$ m.

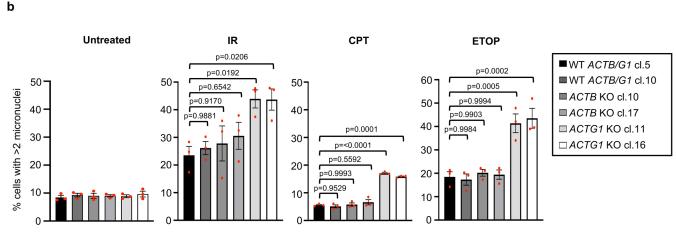


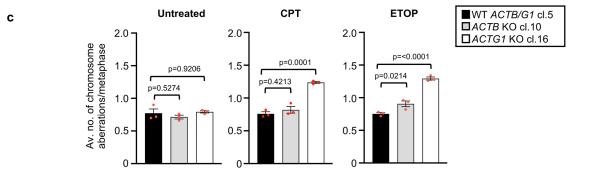




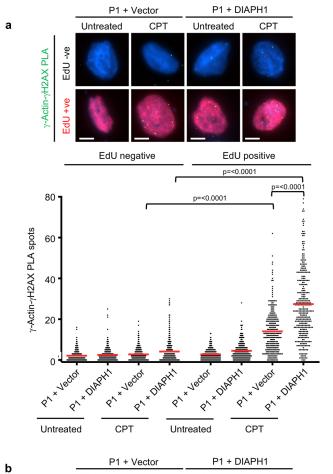


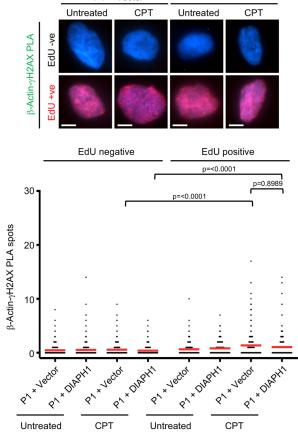





Supplementary Fig. 13. A375 melanoma cells deficient in  $\gamma$ -actin but not  $\beta$ -actin exhibit a DSB repair defect.

a A Western blot showing the level of  $\gamma$ -actin and  $\beta$ -actin in three independent CRISPR knockout clones of *ACTB* and *ACTG1* in A375 cells relative to three independent WT *ACTB/ACTG1* A375 cell clones. n=1 independent experiments. **b-c** Quantification of  $\gamma$ -H2AX foci in two independent WT *ACTB/ACTG1* A375 clones, two independent *ACTB* knockout A375 clones and two independent *ACTG1* knockout A375 clones before and after exposure to 3 Gy IR, 100 nM CPT for 1 h or 10 μM ETOP for 30 min.  $\gamma$ -H2AX/53BP1 foci were visualised by immunofluorescence microscopy and quantified in untreated cells and cells 1 h and 24 h post-treatment. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Statistical significance was calculated using: (c) an ordinary one-way ANOVA. Representative images of the cells at different time points before and after exposure to CPT are shown (b). The scale bars represent 10 μm. Source data are provided as a Source Data file.




а






Supplementary Fig. 14. A375 melanoma cells deficient in  $\gamma$ -actin but not  $\beta$ -actin exhibit genome instability following exposure to IR, CPT and ETOP.

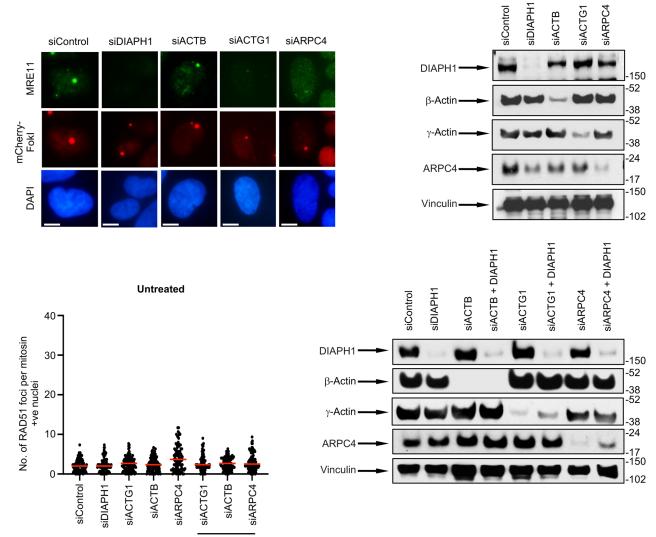
**a-b** Micronuclei were quantified from two independent clones of WT *ACTB/ACTG1* A375 cells, *ACTB* CRISPR knockout A375 cells and *ACTG1* CRISPR knockout A375 cells following exposure to 3 Gy IR, 100nM CPT for 1 h or 10 μM ETOP for 30 min. The mean of n=3 independent experiments is shown with the SEM. A minimum of 500 cells were counted per time point, per experiment. Representative images of the cells at different time points before and after treatment are shown (a). The scale bars represent 10 μm. **c** Quantification of chromosome aberrations in two independent clones of WT *ACTB/ACTG1* A375 cells, *ACTB* CRISPR knockout A375 cells and *ACTG1* CRISPR knockout A375 cells following chronic exposure to low dose CPT (5 nM) or ETOP (50 nM) for 24 h. Chromosome aberrations includes chromatid/chromosome gaps/breaks, chromatid/chromosome fragments and chromosome radials/exchanges. The mean of n=3 independent experiments is shown with the SEM. A minimum of 50 metaphases were counted per cell line in each experiment. Statistical significance was calculated using: (b &c) an ordinary one-way ANOVA. Source data are provided as a Source Data file.





#### Supplementary Fig. 15. $\gamma$ -actin but not $\beta$ -actin is localised to sites of DNA DSBs.

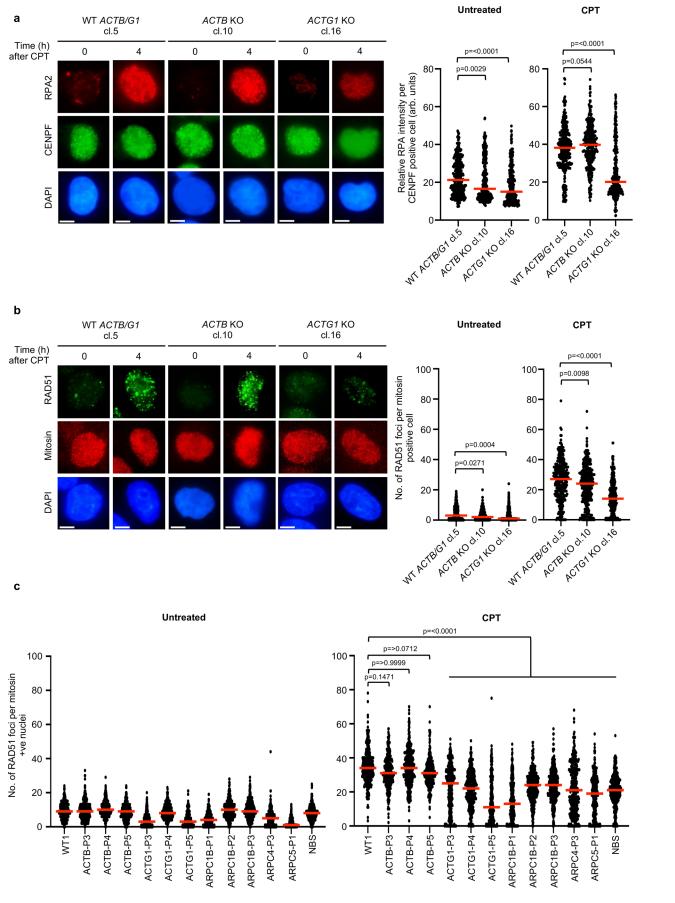
**a-b** Complemented DIAPH1-P1 fibroblasts were treated with 10 μM EdU for 30 min, exposed to 100 nM CPT for 1 h and then permeabilised/fixed. EdU positive cells were labelled with Alexa-fluor-488 using click chemistry. Cells were then subjected to a proximity ligation assay (PLA) reaction using antibodies to γH2AX and (a) γ-actin (b) or β-actin. (Top) Representative images of the PLA reaction (green spots) in EdU positive (red nuclei) and negative (blue) nuclei stained with DAPI. (Bottom) PLA spots were quantified in at least 50 EdU positive and 50 EdU negative cells per experiment per cell line per condition. The mean number of PLA spots per cell for n=3 independent experiments is shown (red line). Statistical significance was calculated using a Kruskal-Wallis test ([a] p=<0.0001, [b] p=<0.0001). Source data are provided as a Source Data file.


Loading Control

-102

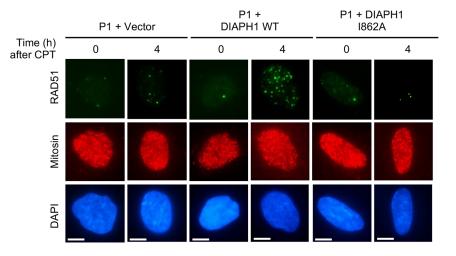
## Supplementary Fig. 16. An actin nucleation deficient mutant of DIAPH1 is unable to support DNA DSB repair.

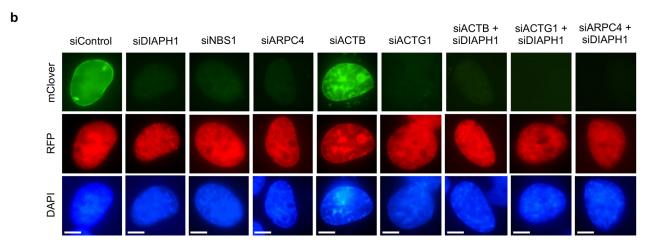
**a-b** Representative immunofluorescence images of DIAL syndrome patient P1-derived fibroblasts complemented with either an empty vector, WT DIAPH1 or a nucleation defective mutant (I862A) before and after a 1 h exposure to 100 nM CPT that were quantified in Fig. 6d-5e. The scale bars represent 10 μm. **c** Western blot showing the level of expression of WT and the I862A mutant DIAPH1 protein in complemented patient-P1 fibroblasts. A cross-reacting band is used as a control for protein loading. n=1 independent experiments. Source data are provided as a Source Data file.


b



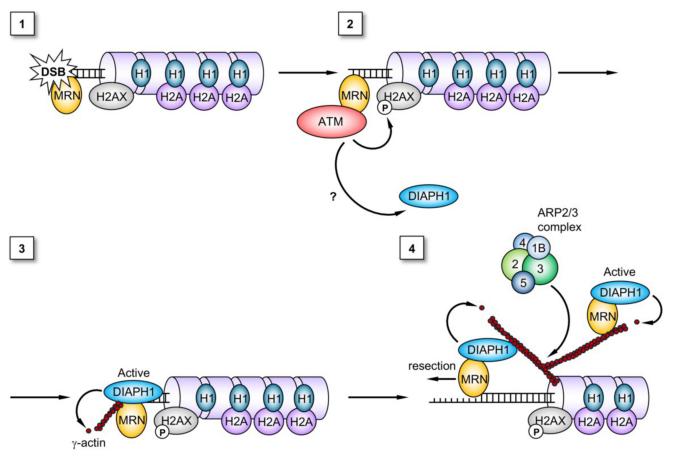
+ siDIAPH1


#### Supplementary Fig. 17. DIAPH1, γ-actin and ARPC4 regulate MRE11-dependent HR repair.


a (Left) Representative immunofluorescence images of MRE11 recruitment to Fokl-induced DSBs quantified in Fig. 7b. The scale bars represent 10 μm. (Right) Western blotting on U-2 OS Fokl-mCherry whole cell extracts showing the knockdown efficiency of the indicated siRNA used in Fig. 7b. Vinculin is used as a protein loading control. n=1 independent experiments. b (Left) HeLa cells were transfected with the indicated siRNAs for 18 h. 48 h post-transfection cells were treated with 100 nM CPT for 1h and then fixed/permeabilised 4 h post-CPT treatment. Cells were stained with antibodies to RAD51 and Mitosin (as a marker of S/G2 cells). RAD51 foci were quantified in a minimum of 100 S/G2 cells, per experiment. The mean of n=3 independent experiments with the SEM is shown (red line). Statistical significance was calculated using a Mann-Whitney rank sum test. (Right) Western blotting on HeLa whole cell extracts showing the knockdown efficiency of the indicated siRNA. Vinculin is used as a protein loading control. n=1 independent experiments. The same cells were used to quantify CPT-induced RAD51 foci in Fig. 7d. Source data are provided as a Source Data file.

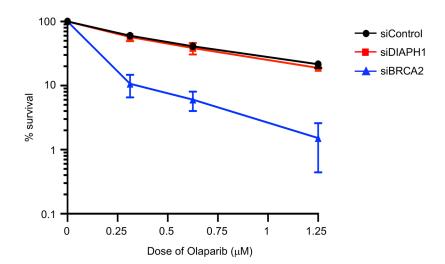


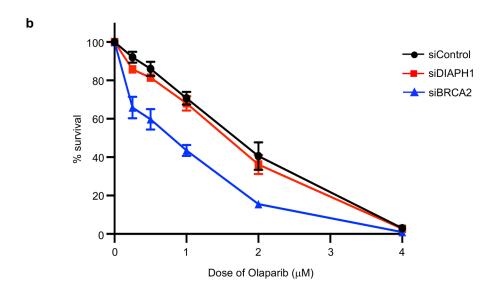
Supplementary Fig. 18. A375 melanoma cells deficient in  $\gamma$ -actin but not  $\beta$ -actin fail to efficiently relocalise RPA2 and RAD51 to sites of CPT-induced DNA damage.


**a-b** WT A375 cells or A375 cells knocked out for *ACTB* or *ACTG1* were exposed to 100 nM CPT for 1 h and then permeabilised/fixed 4 h following CPT removal. Cells were stained with an antibody to (a) RPA2 or (b)RAD51 in conjunction with an antibody to CENPF (as a marker of S2/G2 cells). RAD51 foci and RPA2 fluorescence intensity were quantified in a minimum of 100 cells, per experiment. The mean of n=3 independent experiments with the SEM is shown (red line). **c** Patient-derived cell lines with mutations in *ACTB*, *ACTG1*, *ARPC1B* and *ARPC5* were exposed to 100 nM CPT for 1 h and then fixed/permeabilised 4 h post-treatment. Cells were stained with antibodies to RAD51 and Mitosin (as a marker of S/G2 cells). RAD51 foci were quantified in a minimum of 100 S/G2 cells, per experiment. The mean of n=3 independent experiments with the SEM is shown (red line). Statistical significance was calculated using: (a-c) a Kruskal-Wallis test ([a-untreated] p=<0.001, [a-CPT] p=<0.0001, [b-untreated] p=0.0007, [b-CPT] p=<0.0001, [c-CPT] p=<0.0001). The scale bars represent 10 μm. Source data are provided as a Source Data file.






# Supplementary Fig. 19. Depletion of DIAPH1, ARCP4 and $\gamma$ -actin but not $\beta$ -actin compromise the efficiency of HR-dependent DSB repair.


**a** Representative immunofluorescence images of DIAL syndrome patient P1-derived fibroblasts complemented with either an empty vector, WT DIAPH1 or a nucleation defective mutant (I862A) before and after a 4 h exposure to 100 nM CPT that were quantified in Fig. 7e. **b** Representative fluorescence images that were quantified in Fig. 7f as a measure of HR-dependent DSB repair in cells depleted of the indicated proteins. The scale bars represent 10  $\mu$ m.



## Supplementary Fig. 20. A diagrammatic model of how DIAPH1 and $\gamma$ -actin might function to regulate DSB repair.

1. The MRN (MRE11-RAD50-NBS1) complex binds to a DSB. 2. The MRN complex recruits and activates ATM (Ataxia-Telangiectasia Mutated), which in turn phosphorylates histone H2AX (to form γ-H2AX). Additionally, ATM plays a role in promoting the recruitment of DIAPH1 to DNA DSBs, albeit the underlying mechanism is unclear. 3. DIAPH1 binds to the MRN complex bound at DSBs and becomes activated. This triggers the polymerisation of linear γ-actin filaments within the vicinity of the DNA DSB. The red circles indicate globular actin that is nucleated to form a filament (F-actin). 4. The localised linear γ-actin filament network functions to facilitate MRN-dependent DSB resection either by stabilising the MRN complex at DSBs undergoing processing or helping to further recruit MRN to damaged chromatin. These actin-dependent functions are facilitated by the ARP2/3 complex, which is involved in catalyzing the formation of branched actin filaments. It is possible that the formation of a localised branched actin filament network is critical for stabilising DSBs undergoing repair with the surrounding chromatin and/or enhances DNA repair protein localisation to a break by stimulating chromatin-repair protein liquid-liquid phase separation. H1, H2A and H2AX indicate histones H1, H2A and H2AX respectively. The ARP2/3 complex is compromised of the ARPC1B, ARPC2, ARPC3, ARPC4 and ARPC5 subunits, which are indicated as 1B 2, 3, 4 and 5 respectively. 'P' and 'DSB' indicate phosphorylation and DNA double strand break respectively. Light purple cylinders represent nucleosomes.





Supplementary Fig. 21. Cells depleted of DIAPH1 do not display an increased sensitivity to Olaparib.

**a-b** U-2 OS cells (**a**) or Hela cells (**b**) transfected with either control, DIAPH1 or BRCA2 siRNA were plated at low density, exposed to continuous doses of Olaparib as indicated and were allowed to form colonies for 14 days. Colonies were fixed, stained and counted. Colonies were normalized to the number of cells plated and expressed as a mean % cell survival relative to the untreated control. Quantification of colonies from n=3 independent experiments. Source data are provided as a Source Data file.

| Individual | Gene mutation                           | Inheritance | Clinical phenotype                                                                                                                                                                                                     | Reference                                                       |
|------------|-----------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| ACTB-P1    | c.474_475DupGG; p.Val159fs              | De novo     | Microcephaly, mild learning disability                                                                                                                                                                                 | Not published                                                   |
| ACTB-P2    | c.587G>A; p.Arg196His                   | De novo     | Short stature, moderate ID, epilepsy, muscular hypotonia, scoliosis, constipations, minor facial anomalies (Baraitser-Winter-Cerebrofrontalfacial syndrome)                                                            | Verloes et al. <sup>19</sup>                                    |
| ACTB-P3    | c.547C>T; p.Arg183Trp                   | De novo     | Congenital bilateral deafness, generalized dystonia (dystonia-deafness syndrome)                                                                                                                                       | Zech et al. <sup>22</sup>                                       |
| ACTB-P4    | c.547C>T; p.Arg183Trp                   | De novo     | Congenital bilateral deafness, repeated ear infections, constipation (dystonia-deafness syndrome)                                                                                                                      | Not published                                                   |
| ACTB-P5    | c.992_1008del; p.Ala331Valfs            | De novo     | Microcephaly, mild learning disability, thrombocytopenia                                                                                                                                                               | Latham et al. <sup>21</sup>                                     |
| ACTB-P6    | c.220G>A; p.Gly74Ser                    | De novo     | Short stature, microcephaly, ID, pachygyria, cleft lip<br>and palate, VSD, minor facial anomalies (Baraitser-<br>Winter-Cerebrofrontalfacial syndrome)                                                                 | Di Donato et al. <sup>15</sup> and Verloes et al. <sup>19</sup> |
|            |                                         |             |                                                                                                                                                                                                                        |                                                                 |
| ACTG1-P1   | c.608C>T; p.Thr203Met                   | De novo     | Microcephaly, severe ID, epilepsy minor facial anomalies (Baraitser-Winter-Cerebrofrontalfacial syndrome)                                                                                                              | Not published                                                   |
| ACTG1-P2   | c.611C>G; p.Ala204Gly                   | De novo     | Short stature, mild ID, ADHD, bilateral hearing loss, Intestinal pseudoobstruction at the neonatal period, TPN dependent, periodic tremors, progressive muscle atrophy                                                 | Not published                                                   |
| ACTG1-P3   | c.548G>A; p.Arg183Gln                   | De novo     | Progressive bilateral hearing loss, CI at 13y                                                                                                                                                                          | Cabanillas et al. <sup>20</sup>                                 |
| ACTG1-P4   | c.221G>T; p.Gly74Val                    | De novo     | Severe ID, severe microcephaly, agenesis of the corpus callosum, epilepsy, ptosis, renal duplication, liver cirrhosis, Hashimoto thyreoiditis, minor facial anomalies (Baraitser-Winter-Cerebrofrontalfacial syndrome) | Not published                                                   |
| ACTG1-P5   | c.760C>T; p.Arg254Trp                   | De novo     | Microcephaly, partial agenesis of the corpus callosum, dysgyria, epilepsy, hearing loss, sleep apnoe, minor facial anomalies (Baraitser-Winter-Cerebrofrontalfacial syndrome)                                          | Not published                                                   |
|            |                                         |             |                                                                                                                                                                                                                        |                                                                 |
| ARPC1B-P1  | c.622G>T; p.Val208Phe (Hom)             | Recessive   | Cytopenia, thrombocytopenia, recurrent infections, hepatosplenomegaly, failure to thrive.                                                                                                                              | Brigida et al. <sup>44</sup>                                    |
| ARPC1B-P2  | c.212_226del;<br>p.Gly71_Asn75del (Hom) | Recessive   | Persistent eosinophilia, failure to thrive, recurrent infections, mild thrombocytopenia, lymphopenia.                                                                                                                  | Chiriaco et al. <sup>45</sup>                                   |
| ARPC1B-P3  | c.64+1G>A (Hom)                         | Recessive   | Severe growth failure, eczema, lymphopenia, eosinophilia, thrombocytopenia, recurrent infections                                                                                                                       | Brigida et al. <sup>44</sup>                                    |
|            |                                         |             |                                                                                                                                                                                                                        |                                                                 |
| ARPC4-P1.1 | c.472C>T; p.Arg158Cys                   | De novo     | Microcephaly, mild motor delay, delayed speech, ADHD, facial telangiectasia, thumb-in-palm (splinted), strabismus.                                                                                                     | Laboy Cintron et al. <sup>46</sup>                              |
| ARPC4-P1.2 | c.472C>T; p.Arg158Cys                   | De novo     | Microcephaly, mild motor delay, delayed speech, ADHD, facial telangiectasia, 5 <sup>th</sup> finger camptodactyly.                                                                                                     | Laboy Cintron et<br>al. <sup>46</sup>                           |
|            |                                         |             |                                                                                                                                                                                                                        |                                                                 |
| ARPC5-P4   | c.23C>A; p.Ser8Ter (Hom)                | Recessive   | IUGR, short stature, facial dysmorphia, autoimmune haemolytic anaemia, thrombocytopenia, neutrophilia, recurrent infections, scoliosis, hepatosplenomegaly.                                                            | Nunes-Santos et al. <sup>47</sup>                               |

**Supplementary Table 1.** Summary of the patient-derived cell lines with mutations in either *ACTB*, *ACTG1* or components of the ARP2/3 complex used.