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A B S T R A C T   

Since the outbreak of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
RNA-dependent RNA polymerase (RdRp) has become a main target for antiviral therapeutics due to its essential 
role in viral replication and transcription. Thus, nucleoside analogs structurally resemble the natural RdRp 
substrate and hold great potential as inhibitors. Until now, extensive experimental investigations have been 
performed to explore nucleoside analogs to inhibit the RdRp, and concerted efforts have been made to elucidate 
the underlying molecular mechanisms further. This review begins by discussing the nucleoside analogs that have 
demonstrated inhibition in the experiments. Second, we examine the current understanding of the molecular 
mechanisms underlying the action of nucleoside analogs on the SARS-CoV-2 RdRp. Recent findings in structural 
biology and computational research are presented through the classification of inhibitory mechanisms. This 
review summarizes previous experimental findings and mechanistic investigations of nucleoside analogs inhib-
iting SARS-CoV-2 RdRp. It would guide the rational design of antiviral medications and research into viral 
transcriptional mechanisms.   

1. Introduction 

The SARS-CoV-2 virus is responsible for the COVID-19 pandemic. It 
is a new member of the betacoronavirus genus and possesses an 
approximately 30-kilobyte RNA genome [1,2]. The RNA-dependent 
RNA polymerase complex (RdRp) is the minimum replicase required 
to catalyze the replication of the RNA genome. It contains non-structural 
protein 12 (nsp12) with nsp7 and nsp8 as cofactors [3,4] (Fig. 1A). 
Considering the constant mutations of SARS-CoV-2 virus [5], the highly 
conserved and functionally essential enzyme RdRp has become a 
promising target for the development of antiviral drugs [6–11]. 

Nucleoside analogs structurally similar to natural nucleosides are 
promising inhibitors of viral replication and transcription. The nucleo-
side analog’s prodrug is typically metabolized into its 5’-triphosphate 
form in the cells. It can therefore compete with the natural substrate 
nucleoside triphosphate (NTP) for incorporation into the primer strand 
during the nucleotide addition cycle [12–18]. Such incorporation would 
result in the presence of nucleoside analogs at the primer strand or later 
at the template strand during the second round of RNA synthesis, 

allowing nucleoside analogs to exert inhibition via different mechanisms 
[17,19–24]. 

Until now, nucleoside analogs have been extensively explored as 
RdRp inhibitors [25–27]. In addition, concerted efforts have been made 
to comprehend the molecular details of inhibition, which would facili-
tate the mechanism-based drug design. In this review, we begin by 
introducing the nucleoside analogs that have experimentally demon-
strated efficacy against SARS-CoV-2 by targeting the active site of RdRp. 
These analogs are classified according to the positions of their chemical 
modifications. The current understanding of the inhibitory mechanisms 
exerted by nucleoside analogs at the molecular level is then reviewed. 
For each mechanism, the previous structural biology and computational 
simulation findings are introduced. In conclusion, we discuss the per-
spectives based on our current knowledge. 

2. Nucleoside analogs showing inhibitions on the RNA synthesis 
of SARS-CoV-2 RdRp 

Nucleoside analogs are small molecules structurally similar to the 
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natural RdRp substrate NTP, but with distinct chemical substitutions. 
Due to the structural similarity, RdRp may “mistakenly” recognize the 
analogs as the substrate and catalyze their incorporation into the primer 
strand. Thus, nucleoside analogs may appear in the RNA duplex and 
inhibit viral transcription and replication. In this section, we classify the 
analogs experimentally validated as RdRp inhibitors based on their 
chemical modification positions. When applicable, the findings of wet 
lab investigations and the respective computational results are discussed 
for each analog. 

2.1. 1’-ribose modification 

Remdesivir has been one of the most studied nucleoside analogs 
targeting the viral RdRp of SARS-CoV-2. The typical modification in its 
active form is a 1’-cyano ribose substitution, although its base has also 
been modified (Fig. 2). Multiple experiments have been performed to 
demonstrate its antiviral activity [28–38]. One intriguing property of 
Remdesivir as an RdRp inhibitor is its higher incorporation efficiency 
than its counterpart natural substrate ATP. For example, Lu et al. have 
measured the K1/2 of Remdesivir against ATP and found that Remdesivir 
has a higher incorporation efficiency (0.03 µM) than ATP (0.04 µM) 
[39]. Moreover, Gordon et al. found the selectivity of ATP over 
Remdesivir-TP is 0.26–0.35 [40,41], and Dangerfield et al. consistently 
show that the specificity (kcat/KM) of Remdesivir-TP is higher than that 
of ATP [42]. Besides the ensemble kinetic studies, the efficient incor-
poration of Remdesivir-TP was consistently observed in the 
single-molecular experiment [43]. Computational investigations also 
demonstrated that Remdesivir-TP is strongly bound with SARS-CoV-2 
RdRp, for example, with a ΔΔG of − 2.8~− 6.2 kcal/mol against ATP 
using free energy perturbation method [44,45] or − 13.6 kcal/mol using 
MM-GBSA protocol [46]. Molecular docking studies based on the static 
model also indicated more negative binding energy of Remdesivir-TP 
than that of ATP (for example, − 7.6 kcal/mol versus − 7.0 kcal/mol in 
Elfiky et al.’s study [47], and − 9.3 kcal/mol versus − 8.6 kcal/mol in 
Celik et al.’s work [48]). Further experimental assays indicate that after 
the efficient incorporation of Remdesivir into the primer strand, the 
inhibition does not take effect immediately but occurs at a later stage 
[20,43]. Specifically, three additional substrates can still be added to the 
primer strand before the RNA synthesis stalls [19,22,23,39–41,49,50]. 
However, such inhibition is profound only at a relatively low NTP 
concentration. It can be overcome when the NTP concentration in-
creases [19,22,23,39,40,43] and 90% full product can be generated with 

the NTP concentration as low as 10 µM [22]. Interestingly, Tchesnokov 
et al. found that inhibition can also happen when Remdesivir is 
embedded in the template strand, and such inhibition would be signif-
icantly (>90%) compromised when the NTP concentration reaches 
~100 µM [22]. Together, these studies have suggested a complex sce-
nario of inhibition exerted by Remdesivir in SARS-CoV-2 RdRp. Further 
computational simulations have been performed to elucidate the un-
derlying molecular mechanisms, which we will review in Section 3. 

2.2. 2’-ribose modification 

The natural substrate NTP of SARS-CoV-2 RdRp possesses a hydroxyl 
group at the 2’-ribose position, and analogs with 2’-substitution have 
shown promising inhibitory effects toward SARS-CoV-2 RdRp. For 
instance, AT-527 is the guanosine analog phosphoramidate prodrug, and 
a previous study has demonstrated that its free base form AT-511 can 
effectively inhibit the replication of SARS-CoV-2 in vitro with an EC90 of 
0.47 µM and CC50 > 86 µM [51]. The active form of AT-527 after 
metabolism is named AT-9010, a GTP analog with a 2’-hydroxyl group 
and a 2’-hydrogen atom replaced with a fluorine atom and a methyl 
group, respectively (Fig. 2). Previous biochemical data has shown that 
AT-9010 can competitively incorporate into the primer strand against 
GTP with discrimination of ~5-fold in vitro [17]. In addition, after in-
cubation with the prodrug AT-527, the intracellular concentration of 
AT-9010 is comparable with that of GTP, which also shows its antiviral 
potential [17]. The triphosphate active form of Sofosbuvir (named 
2’-F-Me-UTP, Fig. 2) possesses the same 2’-modifications as AT-9010 
except that it is an analogy to UTP. Although computational studies 
have indicated a comparable binding free energy of 2’-F-Me-UTP rela-
tive to that of UTP [47,52], several experimental studies have shown 
that the incorporation efficiency of 2’-F-Me-UTP is lower than that of 
UTP [17,39,40,43]. Even so, polymerase extension assays have indi-
cated it can be readily incorporated by SARS-CoV-2 RdRp and then 
effectively terminate the RNA synthesis [53]. However, the performance 
of Sofosbuvir in cell culture is controversial. Although Sofosbuvir in-
hibits more than half of SARS-CoV-2 replication in the human lung 
epithelial Calu-3 cells and human hepatoma lineage cells (HuH-7 cells) 
at a concentration of 10 μM [54], it exhibits no antiviral activity against 
SARS-CoV-2 in the A549-hACE2 cells (a human alveolar epithelial cell 
stably expressing hACE2) at concentrations up to 10 μM using 
high-through luciferase SARS-CoV-2 based neutralization assay [55]. 
Gemcitabine is a cytidine analog also with two fluorine substitutions on 
the 2’-ribose position (its active form named Gem-TP, Fig. 2). Its anti-
viral property has been validated previously using live virus infection in 
human respiratory cells [32]; however, primer extension assays suggest 
that it seldom exhibits inhibitory effect in SARS-CoV-2 RdRp [39]. Be-
sides, primer extension assays have shown several extra 2’-substituted 
nucleoside analogs can also terminate RNA synthesis catalyzed by 
SARS-CoV-2, including 2’-C-Me-CTP and 2’-OMe-UTP [35,39,56] 
(Fig. 2). It is noted that the inhibition exerted by 2’-OMe-UTP is distinct 
as more than one 2’-OMe-UTP can be incorporated. However, incorpo-
rating the second 2’-OMe-UTP is compromised, suggesting the inhibi-
tion still takes effect although is delayed [35,39]. Also, a recent work 
using primer extension assays has shown that 2’-OMe-G can exert in-
hibition when embedded in the template strand [57]. 

2.3. 3’- ribose modification 

Nucleoside analogs with the 3’-modifications have also been pro-
posed or designed, as the 3’-hydroxyl group serves as a nucleophile for 
an incoming NTP and is also the prerequisite for the NTP incorporation. 
In this regard, 3’-modifications endow the analogs with the inherent 
capability to inhibit the next NTP incorporation. For instance, the active 
form Cordycepin (named Cor-TP) is structurally similar to ATP while has 
replaced the 3’-hydroxyl group with a hydrogen atom (Fig. 2). The 
radioactive elongation assay has shown that Cordycepin could compete 

Fig. 1. The structure of the SARS-CoV-2 RdRp complex and the active site. (A) 
The structure of nsp12 bound with nsp7 and nsp8 is shown in surface repre-
sentation (PDB ID: 7UOB). Nsp12, nsp8–1, nsp8–2, and nsp7 are colored green, 
blue, orange, and light purple, respectively. The primer and template strand of 
the double-stranded RNA (dsRNA) are displayed with red and cyan sticks, 
respectively. (B) The active site of RdRp complexed with NTP (shown in yel-
low). The primer strand and template strand are colored red and cyan, 
respectively. The two Mg2+ ions are shown in magenta spheres. 
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against all NTPs (at an NTP concentration of 10 µM) and terminate 
elongation with the Cordycepin’s concentration at 50 µM [49], consis-
tent with the observation in a recent anti-SARS-CoV-2 assay [58]. 
Computational simulations have consistently proposed that Cordycepin 
is readily catalyzed by SARS-CoV-2 RdRp and incorporated into the RNA 

strand to exert termination [44,59]. 3’-OMe-UTP has the methoxy 
substitution at the 3’-ribose position of UTP (Fig. 2), and its capability to 
terminate the RNA synthesis was shown by the extension reactions with 
SARS-CoV-2 RdRp [35]. The triphosphate forms of Alovudine and AZT 
(3’-F-dTTP and 3’-N3-dTTP, Fig. 2) both have 3’-ribose substitutions in 

Fig. 2. The chemical structures of the representative nucleoside analogs in the active form. The analogs are grouped by the type of modifications, and each group 
is labeled. 
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comparison with dTTP (deoxythymidine triphosphate). In particular, a 
fluorine atom and an azide group have substituted the 3’-hydroxyl group 
for 3’-F-dTTP and 3’-N3-dTTP, respectively. Primer extension assays 
have also shown that the chain extension is immediately terminated 
after incorporating 3’-F-dTTP and 3’-N3-dTTP [53]. It is noted that the 
3’-modification could usually be combined with other ribose modifica-
tions to render the nucleoside analogs inhibition capability and these 
analogs would be discussed in the next subsection. 

2.4. Multiple ribose modifications 

It is common that nucleoside analogs simultaneously modify two or 
even three ribose positions in comparison with their counterpart natural 
nucleotides. For example, the active form of Stavudine (named Sta-TP) is 
a thymidine analog, and it has distinct modifications on 2’- and 3’-ribose 
positions (Fig. 2). In specific, Sta-TP is a didehydro-dideoxynucleotide 
with a double bond between the two sp2 carbon atoms at 2’- and 3’- 
ribose positions. Previous extension reactions with SARS-CoV-2 RdRp 
have shown that such modifications could render Sta-TP capable of 
terminating the RNA synthesis after its incorporation [35]. The active 
form of Abacavir and Carbovir is named Car-TP (Fig. 2), and it is 
structurally similar to Sta-TP but has an extra substitution to render 
Car-TP a carbocyclic guanosine didehydro-dideoxynucleotide. Experi-
mental assays have shown that Car-TP can also act as an effective in-
hibitor for SARS-CoV-2 [35,53]. 3’-deoxy-3’,4’-didehydro-cytidine 
triphosphate (ddhCTP) has similar modifications as Sta-TP and Car-TP 
except that the double bond is formed between 3’- and 4’-ribose 
(Fig. 2). Previous study has shown it can be incorporated by SARS-CoV-2 
RdRp in the single molecular experiment in vitro, however it seldom 
impacts the viral replication in cells [43]. The triphosphate form of 
Entecavir (Ent-TP) has modified 2’- and 4’-ribose simultaneously, with 
the 2’-hydroxyl group replaced by a hydrogen atom and the 4’-oxo 
replaced by an ethenyl group (Fig. 2). Previous primer extension assays 
have suggested that Ent-TP can exert the inhibition on SARS-CoV-2 
RdRp [35]. In contrast, another cell-based assay using Entecavir in the 
non-triphosphorylation form shows limited inhibition [33]. The active 
forms of Emtricitabine and Lamivudine (Ec-TP and Lam-TP) both 
contain an oxathiolane ring with an unnatural (-)-β-L-stereochemical 
configuration, while Ec-TP has an extra fluorine substitution at the C5 
position of cytosine’s base in comparison with Lam-TP (Fig. 2). Previous 
experimental studies using primer extension assays have suggested that 
their incorporations could also immediately inhibit the RNA synthesis in 
SARS-CoV-2 RdRp [53,60]. However, a recent study has suggested that 
Emtricitabine shows no antiviral activity in cell cultures [61]. Didano-
sine simultaneously has the 2’- and 3’-ribose modifications by replacing 
the hydroxyl groups with the hydrogen atoms (its active form named 
ddATP, Fig. 2). Previous in vitro antiviral evaluation suggests that it can 
serve as a potential inhibitor for SARS-CoV-2 [62], corroborated by 
bioinformatics study and computational simulations [44,63]. 

2.5. Acyclic modifications 

The abovementioned nucleoside analogs have ribose modifications 
on specific sites while maintaining the ribose’s cyclic architecture. There 
is an alternative class of analogs that have broken the ring moiety of 
ribose and are named acyclic nucleoside analogs. For example, Ganci-
clovir triphosphate (Gan-TP) and Cidofovir diphosphate (Cid-DP) are 
acyclic guanosine and cytidine nucleotides, respectively (Fig. 2). Poly-
merase extension assays have shown that incorporating Gan-TP can 
immediately terminate the RNA synthesis [35]. However, the termina-
tion can still occur while delayed after incorporating Cid-DP [35]. 
Tenofovir diphosphate (TFV-DP) is the triphosphate form of its prodrug, 
and it is an acyclic adenosine nucleotide (Fig. 2). Molecular docking 
study has indicated that the binding affinity of TFV-DP is comparable 
with that of ATP, suggesting it is a potential inhibitor [47]. Consistently, 
polymerase assay observed that no further extension is observed once 

one molecule of TFV-DP is incorporated [60], and such inhibition can 
take effect when different lengths of RNA primer are used [53]. How-
ever, cell-based studies have shown that Tenofovir has no or only limited 
inhibition of SARS-CoV-2 RdRp activity [33,61]. Penciclovir is also an 
alternative acyclic guanosine nucleotide (its active form named 
Penciclovir-TP, Fig. 2), and in vitro SARS-CoV-2 assay has suggested that 
its inhibition occurs only at a high concentration [31]. Such limited 
inhibition is consistent with another cell-based SARS-CoV-2 RdRp assay 
[33], even though computational work has proposed Penciclovir as a 
potential inhibitor due to its comparable binding free energy with 
Remdesivir [64]. 

2.6. Base modifications 

The nucleoside analogs with base modifications are less common 
than those with the ribose modifications, probably because they could 
usually impair the base pairing stability at the active site, thus impairing 
their incorporation efficiency into the primer strand. Even so, the ex-
periments have explored several nucleoside analogs with the base 
modifications, and their efficacies to inhibit SARS-CoV-2 RdRp have 
been observed [32,57,65,66]. For example, Schultz et al. conducted 
investigations on the antiviral activity of 18,000 drugs using live virus 
infection in human respiratory cells and found that several 
base-modified nucleosides analogs show antiviral activity, including 
6-Thio-dG, 6-Thiopurine riboside as well as the well-studied Molnupir-
avir, etc [32]. The active form of Molnupiravir is β-d-N4-hydrox-
ycytidine triphosphate (NHC-TP), and calculations of the binding free 
energies based on the static structural models suggest that it has higher 
binding affinity than the natural substrates, with ΔΔG= − 21.8 and 
− 10.1 kcal/mol for its enamine and oxime tautomer, respectively 
(Fig. 3A and B) [46]. RNA elongation assays have shown that NHC-TP 
can be catalyzed by SARS-CoV-2 RdRp and incorporated into the 
primer strand instead of CTP and UTP, although at lower incorporation 
efficiency. However, its incorporation will not stall the RdRp, and thus, 
it can appear in the template strand in the second round of RNA syn-
thesis to incorporate either GTP or ATP (Figs. 3A and 3B). This would 
generate the mutated RNA products and lead to the lethal influence on 
viral replication [67]. The RNA mutagenesis exerted by Molnupiravir 
was also observed in another biochemical study [68], and its inhibition 
on SARS-CoV-2 was further validated by several experimental assays 
[33,69–71] and even in animals [72,73]. Favipiravir is a purine nucleic 
acid with base modifications. Its triphosphate form, Favipiravir-TP, can 
mimic both ATP and GTP to incorporate into the RNA strand 
(Fig. 3C-3D). Computational works show that Molnupiravir and 

Fig. 3. The two base pairing patterns of Molnupiravir and Favipiravir. (A-B) 
Molnupiravir base paired with adenine and guanine. (C-D) Favipiravir base 
paired with cytosine and uridine. 
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Favipiravir have comparable or higher binding strength than their 
respective natural NTPs in SARS-CoV-2 RdRp [46,48]. Inhibition or 
mutagenesis provoked by Favipiravir has been observed in SARS-CoV-2 
RdRp [18,74], although other experimental studies have shown that 
Favipiravir has only shown limited inhibition on SARS-CoV-2 [31,33]. 
In addition to generating RNA mutations, the inhibition exerted by 
Favipiravir may be more complex. A previous study has shown that RNA 
extension will stall after several Favipiravir-TPs are consecutively 
incorporated [16]. Moreover, an alternative study has shown that 
incorporating the Favipiravir will make the further extension slower or 
less efficient [74]. 

3. Molecular mechanisms of nucleoside analogs inhibiting 
SARS-CoV-2 RdRp 

Although several nucleoside analogs have shown inhibitory efficacy 
against SARS-CoV-2 RdRp in the wet lab studies, the experimental as-
says alone cannot reveal the underlying molecular mechanisms, signif-
icantly impeding the further rational design of RdRp inhibitors. Under 
such circumstances, structural biology and computational simulations 
have emerged as promising methods and made significant progress in 
understanding the inhibitory mechanisms of nucleoside analogs on 
SARS-CoV-2 RdRp at the molecular level. The experimental structures 
have provided valuable insights into the transcriptional mechanisms of 
SARS-CoV-2 RdRp and lay the structural basis for exploring the inhibi-
tory mechanisms of nucleoside analogs. Furthermore, computational 
simulations based on the experimental structures have been performed 
to elucidate the acting mechanism and design the nucleoside analogs, 
significantly deepening our knowledge about the inhibition that occurs 
in the SARS-CoV-2 RdRp. This section will review the current under-
standing of four common inhibitory mechanisms (Fig. 4), with the 
representative nucleoside analogs as examples. 

3.1. Immediate chain termination 

Immediate chain termination requires the nucleoside analog to 
effectively compete with the natural substrate NTP to incorporate into 
the primer strand. Its incorporation would then immediately inhibit the 
addition of the next nucleotide (Fig. 4A), and thus, it is named an “im-
mediate” chain terminator. 

AT-9010 is structurally similar to GTP but has the 2’-substituions 
(Fig. 2). The cryo-EM structure containing AT-9010-TP at the active site 
(+1 site) and AT-9010-MP at − 1 site of the primer strand has been re-
ported (PDB ID: 7ED5) [17]. This structure has shed light on the mo-
lecular mechanism for its capability as an immediate chain terminator. 
In particular, the presence of AT-9010-MP at the − 1 site has suggested 
that it can be incorporated into the primer strand and smoothly trans-
locate to the − 1 site, satisfying the prerequisite of the immediate chain 
terminator. Moreover, as shown by the structure, the 2’-methyl substi-
tution of the incorporated AT-9010 at the − 1 site would create a 
repulsive hydrophobic-polar contact with the ribose 4’-oxygen atom of 
the AT-9010-TP at the active site. The substrate, thus, is not correctly 
poised for catalysis and abolishing the chain extension [17], providing 
the molecular mechanism of AT-9010 as an immediate chain terminator. 

Sofosbuvir is the uridine analog, and its active form 2’-F-Me-UTP has 
similar ribose modifications as the AT-9010 (Fig. 2). Recent experiments 
have demonstrated that its incorporation can also immediately termi-
nate the next nucleotide addition and thus act as an immediate termi-
nator [53]. A computational study by MD simulations based on the 
cryo-EM structure of SARS-CoV-2 RdRp has further elucidated its 
inhibitory mechanism. Specifically, the simulations have shown that 
2’-F-Me-UTP can maintain the catalytically active conformation at the 
active site (+1 site) of SARS-CoV-2 RdRp [52]. Moreover, they have 
found that after its incorporation and translocation to the − 1 site, the 
2’-methyl group of Sofosbuvir would clash with the base of the next 
substrate NTP, thus disrupting the stability of NTP at the active site and 
exerting the “immediate” termination as observed in the experiments 
[53]. 

3.2. Delayed chain termination 

Delayed chain termination implies that the nucleoside analog does 
not immediately impair the nucleotide addition after its incorporation 
while inhibiting the RNA synthesis after consecutive incorporations of 
several natural NTPs. Therefore, the inhibition occurs when the nucle-
oside analog has moved to an upstream site of the primer strand and 
causes a “delayed” termination (Fig. 4B), in sharp contrast to the “im-
mediate” termination discussed above. 

Remdesivir is one typical delayed chain terminator that has been 
extensively studied, and several RdRp structures containing Remdesivir 
have been resolved. For example, cryo-EM structure has shown that 
Remdesivir-TP can pair well with uridine-MP at the active site (PDBID: 
7UO4) and further revealed that the higher affinity of Remdesivir rela-
tive to ATP is gained by the extra polar interaction between the 1’-cyano 
group and the protein residues T687, N691, and S759 [15]. This is 
consistent with the biochemical experiments showing that the incor-
poration efficiency of Remdesivir-TP is significantly reduced upon 
S759A mutation [15,75]. Computational studies have complemented 
the structural investigations to suggest the high incorporation efficiency 
of Remdesivir-TP. For instance, a previous computational work using 
umbrella sampling has investigated the insertion of Remdesivir-TP into 
the active site and found that the Remdesivir-TP has lower free energy 
than ATP [76]. Several MD simulation works have consistently shown 
that Remdesivir-TP can maintain the catalytically active conformation 
for incorporation into the primer strand [77,78], further rationalizing 
the high incorporation efficiency of Remdesivir-TP. In addition, the 
cryo-EM structures of SARS-CoV-2 RdRp after Remdesivir’s incorpora-
tion have also been resolved. For example, the RdRp structure in the 
pre-translocation state has been determined with 

Fig. 4. Diagrams demonstrating the four common inhibitory mechanisms. In 
the diagram, the primer and template strand are colored red and cyan, 
respectively. The analog is highlighted in grey. 
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Remdesivir-monophosphate (RMP) embedded at the − 1 site of the 
primer strand (PDB ID: 7C2K) [24]. In this structure, the GMP is present 
at the 3’-terminal of the primer strand (at +1 site), and it is well stacked 
with the RMP and base paired with the CMP of the template strand. Such 
a conformation has again corroborated that Remdesivir does not act as 
an immediate terminator. Instead, it would exert inhibition when it 
moves to the upstream site of the primer strand. This has been observed 
in the resolved cryo-EM structures of SARS-CoV-2 RdRp with Remdesi-
vir at the − 3 site of the primer strand (PDB IDs: 7B3C in the 
pre-translocation state and 7B3B in the post-translocation state) [23], 
and rationalized by structural modeling showing Remdesivir at − 4 site 
clashed with S861. Consistently, several computational works have 
further elucidated that its translocation from the − 3 site to the − 4 site is 
inhibited due to the steric clash between the 1’-cyano group of 
Remdesivir and S861 [77,79–81]. Moreover, previous computational 
works have also suggested that the interactions between the 1’-cyano 
group of Remdesivir and a neighboring salt bridge formed by Asp865 
and Lys593 would further halt the translocation of Remdesivir from − 3 
to − 4 site [77]. 

Besides Remdesivir, previous work has also suggested that the 2’- 
OMe-UTP could cause a delayed chain termination [35,39]. Recently, 
computational work has provided the molecular details of the inhibition 
exerted by 2’-OMe-UMP, although it suggests that it is more accurate to 
name 2’-OMe-UMP as a partial chain terminator [52]. In this compu-
tational work, they have found that the presence of 2’-OMe-UMP at the 
− 1 site of the primer strand would create a steric clash between its 
2’-OMe group and the base of the next NTP at the active site (+1 site), 
which would weaken the base stacking between + 1 and − 1 site and 
thus reduces the binding affinity of the next substrate as well as impairs 
the primer extension. However, they also found that the critical distance 
for catalysis (the distance between the O3’ atom of the 2’-OMe-UMP at 
the − 1 site and the Pα atom of the 2’-OMe-UTP at the +1 site) is well 
maintained as that of the wildtype dsRNA with natural NTP. This also 
explains the experimental observations that primer extension is only 
partially terminated [35,39]. 

3.3. Template-dependent termination 

Template-dependent termination characterizes the situation that the 
nucleoside analog terminates the RNA synthesis when it is present at the 
template strand (Fig. 4C). Such kind of terminator has been found in 
other viral RdRp [21,82], such as Ribavirin against HCV RdRp. For 
SARS-CoV-2 RdRp, biochemical experiments have demonstrated that 
Remdesivir can act as a template-dependent terminator [21,22]. Spe-
cifically, it has been found that Remdesivir embedded at the template 
strand would inhibit the incorporation of its complementary NTP and 
the next NTP. Interestingly, the first inhibition is reduced by the V557L 
mutation, while the second one is seldom affected [22]. Our recent 
computational works have provided molecular insights into such 
template-dependent mechanisms and the drug resistance gained by 
V557L mutation [83,84]. We found that the inhibitions do not take ef-
fect by directly destroying the NTP incorporation at the active site. 
Instead, the translocation of Remdesivir along the template strand is 
inhibited; thus, the active site is occupied and unavailable for the arrival 
of NTP. Specifically, protein residue V557 would form a steric clash with 
the 1’-cyano group of Remdesivir and thus hampers its translocation 
from the + 2 site to the + 1 site along the template strand [83]. How-
ever, upon V557L mutation, the obstacle on the translocation pathway is 
relieved due to the side-chain’s rotation of V557L, explaining the 
reduced inhibition upon V557L mutation [83]. 

Moreover, our work suggests that the interaction between the 1’- 
cyano group of Remdesivir and two conserved protein residues, S682 
and G683, on motif B has further impeded the translocation of Remde-
sivir from the + 1 site to the − 1 site along the template strand [84]. 
Specifically, G683 would destabilize the post-translocation state with 
Remdesivir at the − 1 site of the template strand, and S682 would 

kinetically hamper the translocation by sterically clashing with the 
Remdesivir. In addition to Remdesivir, a recent work using primer 
extension assays has found that 3-MeU and 1-MeG present at the tem-
plate strand can inhibit the NTP incorporation opposite to the nucleoside 
analogs, and 2’-OMe-G at the template strand can inhibit the next NTP 
incorporation [57]. However, how these analogs induce the RdRp 
stalling awaits further exploration. 

3.4. Mutagenesis 

Nucleoside analogs can also cause RNA mutagenesis to impair the 
genes. Such mutagenic nucleoside analog usually possesses base modi-
fications, allowing itself to have different base pairing patterns. There-
fore, the incorporation of such nucleoside analog into the primer strand 
would result in its presence at the template strand for the RNA synthesis 
at the later stage (Fig. 4D). Its two tautomer forms would then induce the 
viral mutations and finally lead to the lethal effect on the viral genes. In 
this subsection, we have reviewed the cryo-EM structures of SARS-CoV-2 
RdRp with the mutagenic nucleoside analogs. 

Molnupiravir (the prodrug of NHC) is one representative mutagenic 
nucleoside analog, and it has been marketed for treating COVID-19 [67, 
85]. Two structures with the monophosphate form of NHC (named 
“NMP”) embedded at the − 1 site of the template strand have been 
resolved [67]. The two structures share high similarity except that NMP 
can form three hydrogen bonds with GMP in one structure (PDBID: 
7OZV) while forming two hydrogen bonds with AMP in another (PDBID: 
7OZU), providing the structural basis to understand how Molnupiravir 
synthesizes the mutated RNA. 

Favipiravir has also been suggested to act as a mutagenic nucleoside 
analog [18,74,86–90], as its triphosphate form could simulate both GTP 
and ATP to incorporate into the primer strand. SARS-CoV-2 RdRp 
structures with Favipiravir-TP at the active site have been resolved (PDB 
ID: 7AAP [16] and 7CTT [18]). In the 7AAP structure, the Favipiravir-TP 
is not well posed, as its triphosphate moiety rotated and misaligned with 
the nucleophile 3’-OH group of the nucleotide at the − 1 site. The re-
searchers thus anticipate such a structural distortion explains the inef-
ficient incorporation of Favipiravir-TP into the primer strand as 
observed in their primer extension assay [16]. However, the 7CTT 
structure shows that the α-phosphate of Favipiravir-TP at the + 1 site is 
in the vicinity (<3.5 Å) of the 3’-OH group of the nucleotide at the − 1 
site, which suggests Favipiravir-TP could also adopt an appropriate 
conformation for incorporation at the active site. Although the confor-
mations of Favipiravir-TP show discrepancies in the two RdRp struc-
tures, both structures have shown that Favipiravir-TP can form 
hydrogen bonds with CMP, which may explain why it can still be 
incorporated and cause mutagenesis. The incorporation of 
Favipiravir-TP into the primer strand has been captured by a cryo-EM 
structure of SARS-CoV-2 RdRp in the pre-translocation state (PDB ID: 
7DFG) [91]. In this structure, Favipiravir-MP is covalently bound at the 
+ 1 site of the primer strand and forms complex interactions with the 
protein residues. Besides, this structure shows that Favipiravir-MP forms 
two hydrogen bonds with UMP, thus complementing the structures with 
Favipiravir-TP:CMP pair to provide the structural basis for under-
standing the RNA mutation caused by Favipiravir. 

4. Summary and outlook 

The RdRp complex is one of the widely studied drug targets for SARS- 
CoV-2, and great efforts have been devoted to exploring its inhibitors. 
Nucleoside analogs are structurally similar to the natural substrate NTPs 
of the RdRp complex, and have been extensively investigated for their 
efficacy in inhibiting viral replication. In this review, we have summa-
rized the nucleoside analogs proposed as potential RdRp inhibitors, 
especially those the experimental assays have validated. Furthermore, to 
provide molecular insights into the inhibition, experimental RdRp 
structures with the presence of analogs have been reviewed, and the 
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corresponding computational studies elucidating the inhibitory mech-
anisms at the molecular level have been discussed. 

Most analogs investigated by the experimental assays contain 
chemical modifications on 1’, 2’, or 3’-ribose positions, but those with 
the 4’-ribose modifications were seldom evaluated. Although none of 
the three 4’-substituted carbocyclic uridine analogs exhibits significant 
antiviral activities toward SARS-CoV-2 in a recent study [92], it is worth 
further investigations to explore the potential of analogs with 4’-sub-
stitution. One promising example is that 4’-fluorouridine has been 
identified as an effective inhibitor to block SARS-CoV-2 replication, and 
the in vitro assay shows that multiple incorporations of 4’-fluorouridine 
would trigger the polymerase stalling [93]. Therefore, 4’-ribose is an 
alternative site to consider or combine with other modifications in 
future drug screening and rational design efforts. 

So far, most studies have focused on the binding affinity of nucleo-
side analogs relative to the cognate natural substrate in SARS-CoV-2 
RdRp to suggest the potential inhibition against SARS-CoV-2 RdRp. 
However, it is essential to investigate if nucleoside analogs can selec-
tively inhibit the viral RdRp rather than the human RNA polymerase to 
evaluate the overall inhibitory effect. One previous study has investi-
gated the selective inhibition of the nucleoside analog Remdesivir in 
SARS-CoV-2 RdRp against the human DNA-dependent RNA polymerase 
(Pol II) by comparing the relative binding affinity (ΔΔG) of Remdesivir 
[81]. By performing alchemical free energy simulations, they have 
found that the ΔΔGATP->RTP in SARS-CoV-2 RdRp is around 
− 6 kcal/mol, suggesting that RTP has a higher affinity than ATP. On the 
contrary, the ΔΔGATP->RTP in human RNA Pol II is + 1 kcal/mol, 
implicating that Remdesivir is less competitive than ATP and rarely 
incorporated into the nascent RNA strand in Pol II. Therefore, the cal-
culations of ΔΔG rationalized the selective inhibition exerted by 
Remdesivir in SARS-CoV-2 RdRp. This is further consolidated by the 
different protein environments of the active site in two polymerases. 
Specifically, the cyano group of RTP can form hydrogen bonds with 
T687 and N691 in the active site of SARS-CoV-2 RdRp. On the contrary, 
P462 in the corresponding position in human RNA Pol II could not 
provide the hydrogen bonds to stabilize the cyano group of RTP, thereby 
reducing its binding affinity. Overall, this study has provided an 
example to investigate the selective inhibition of nucleoside analogs in 
SARS-CoV-2 RdRp against the human RNA Pol II. Considering the 
selectivity against human RNA Pol II is vital for designing nucleotide 
analogs or evaluating the inhibitory effect, future studies are suggested 
to investigate and compare the binding affinity of nucleotide analogs in 
viral polymerase and human RNA Pol II to assess the efficacy of nucle-
otide analogs more comprehensively. 

It is also interesting to discuss the interplay between the structural 
modifications on the nucleoside analogs and the different SARS-CoV-2 
variants. Although RdRp is relatively conserved compared to the sur-
face proteins, mutations were found in the RdRp of each variant [37]. As 
RdRp is an important drug target, studies have been conducted to 
investigate the effect of the naturally occurring mutation on the nucle-
oside analogs’ antiviral activity. For instance, Salpini et al. have found 
that the frequently occurring mutation P323L can strengthen the bind-
ing affinity of the two acyclic nucleoside analogs Penciclovir and 
Tenofovir, while decreasing that of Remdesivir and Emtricitabine, 
which are nucleoside analogs with 1’-ribose modification and multiple 
ribose modifications, respectively [94]. In addition, Cho et al. have 
shown that P323L, A529V, and G671S (in Omicron subvariant) muta-
tions would not influence the IC50 of Remdesivir or Molnupiravir (with 
base modification) [95]. Moreover, Pitts et al. have shown that P323L 
(among all variants), G671S (in the Delta variant), and F694Y (a highly 
prevalent substitution in early Omicron isolates) mutations have little 
effect on the EC50 of Remdesivir and GS-441524 by measuring EC50 
[37]. In addition to the mutations occurring during the evolution of 
SARS-CoV-2, some mutations can appear when the virus is passaged or 
consecutively exposed in the presence of nucleoside analogs. Specif-
ically, Gandhi et al. reported that E802D mutation was produced in a 

case of an immunocompromised patient infected with COVID-19 during 
the usage of Remdesivir, and such mutation increases the IC50 of 
Remdesivir by ~6 folds [96]. As E802 forms an electrostatic network 
with D804 and K807 adjacent to the nascent RNA strand, they speculate 
that E802D mutation may distort the active site in a way that either 
enables the enzyme to exclude Remdesivir or alleviates the steric clash 
from S861, thereby allowing the enzyme to escape Remdesivir-mediated 
chain termination [96]. In addition, Stevens et al. have observed S759A 
and V792I mutations in the GS-441524 lineages when passaging the 
WA-1 clinical isolates in Vero E6 cells in the presence of GS-441524. 
They found that V792I gains drug resistance to Remdesivir by 
reducing the UTP concentration required to bypass the 
template-dependent inhibition, and S759A impairs the binding of 
Remdesivir by 10 folds because such mutation disrupts its hydrogen 
bond with the 1’-cyano group of Remdesivir [75]. Consistently, Malone 
et al. have shown that the selectivity of ATP over Remdesivir-TP is ~5 
upon S759 mutation. In contrast, the selectivity is ~0.5 in the wildtype 
RdRp, indicating that S759A is resistant to Remdesivir [15]. They also 
resolved the cryo-EM structure of RdRp with Remdesivir-TP in the active 
site, consolidating that S759 can stabilize the binding of Remdesivir-TP 
by forming a hydrogen bond with the 1’-cyano group. The mutation 
breaks the hydrogen bond and thus reduces the binding of 
Remdesivir-TP. In summary, although several RdRp mutations have 
been reported during the evolution of the virus or in the constant 
exposure to the nucleoside analogs, further studies are expected to un-
derstand how the nucleoside analogs respond to the naturally occurring 
mutations or cause the drug-resistant mutations. 

It is worth noting that the current investigations of the nucleoside 
analogs as inhibitors have mainly focused on terminating the nucleotide 
addition in RdRp. However, the efficacy of the nucleoside analogs is also 
challenged by the exoribonuclease (ExoN) domain in the nsp14 [35,56, 
65,97–100]. The ExoN domain only exists in coronaviruses and a few 
other virus families of the Nidovirales order [101–104], and it helps to 
preserve the fidelity of RNA replication by excising the mismatched 
nucleotide from the 3’-terminal of the RNA strand [105,106]. Such a 
function of ExoN also brings challenges to the design of nucleoside 
analog for the treatment of SARS-CoV-2, as the analog could be back-
tracked to the ExoN domain [107,108] and cleaved from the primer 
strand [71,109–111]. Therefore, a complete exploration of the nucleo-
side analog against SARS-CoV-2 would not only consider its inhibition 
on the RdRp but also examine if it can evade the excision by ExoN. 
Fortunately, the structures nsp14-nsp10 have been reported and shed 
light on the mismatch recognition and fidelity control by SARS-CoV-2 
[101,110,112]. Further experimental and computational investigations 
of the nucleoside analogs’ performance on the cleavage site of the nsp14 
would be helpful to provide a full evaluation of its inhibitory effect, as 
well as orientate the drug design to optimize its performance simulta-
neously on the RdRp and ExoN [71,77,113]. 

Overall, we have systematically reviewed the nucleoside analogs that 
show inhibition against SARS-CoV-2 RdRp and discussed the underlying 
molecular mechanisms. We hope this work will not only provide a 
comprehensive knowledge of nucleoside analogs inhibiting the SARS- 
CoV-2 RdRp but also be conducive to the further investigations of 
inhibitory mechanisms, orientating the mechanism-driven and 
structure-based drug design by optimizing the modifications on the 
nucleoside analogs. 
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