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Inequality constraint 
on the maximum genus for 3D 
structural compliance topology 
optimization
Haitao Han1,2, Chong Wang1, Tongxing Zuo1,2 & Zhenyu Liu1,2*

Structural topology constraints in topology optimization are an important research topic. The 
structural topology is characterized by the topological invariance of the number of holes. The holes 
of a structure in 3D space can be classified as internally enclosed holes and external through-holes (or 
tunnels). The genus is the number of tunnels. This article proposes the quotient set design variable 
method (QSDV) to implement the inequality constraint on the maximum genus allowed in an 
optimized structure for 3D structural topology optimization. The principle of the QSDV is to classify 
the changing design variables according to the connectivity of the elements in a structure to obtain 
the quotient set and update the corresponding elements in the quotient set to meet the topological 
constraint. Based on the standard relaxation algorithm discrete variable topology optimization 
method (DVTOCRA), the effectiveness of the QSDV is illustrated in numerical examples of a 3D 
cantilever beam.

Recently, based on the description of the size, shape and number of holes of an optimized  structure1, topology 
optimization has been implemented from a geometric complexity perspective in a given design domain. The 
number of holes in the structure is implicitly designed, and the set of elements in the holes is  constrained2–4. In 
the 3D case, the number of holes is a topological invariant that is classified as the number of internal enclosed 
holes (or enclosed voids) and the genus (or the number of tunnels of a structure). In the study of the numerical 
instability of topology optimization, Sigmund et al.5 noted that there are infinite numbers of holes in the global 
optimal result. Therefore, structural complexity control is challenging and necessitates substantial theoretical 
research for structural topology optimization. The structural complexity control of topology optimization can 
be interpreted topologically to constrain the number of enclosed voids and the genus of a structure.

Methods of controlling the number of holes of a structure can currently be divided into fuzzy and precise 
methods. A fuzzy method is defined as one that satisfies the following two conditions: (a) neither the genus 
nor the number of enclosed voids in the optimized structure is considered; (b) the genus and the number of 
enclosed voids are handled simultaneously in the optimized structure. For example, a fuzzy method controls the 
number of holes without measuring the topological invariance of a structure, such as in the filter  method6–9, size 
control  method10–15, moving morphable components (MMC)  method16, and intelligent cavity creation (ICC) 
 method17. A precise method is defined as one that satisfies the following two conditions: (a) the genus or the 
number of enclosed voids in the optimized structure can be calculated directly; (b) the genus or the number of 
enclosed voids in the optimized structure can be controlled. Precise methods can be subdivided as follows: (a) 
an inequality constrains the number of enclosed voids; (b) an equality constrains the number of enclosed voids, 
such as in the application of graph theory and set theory to control the number and sizes of the enclosed voids 
of topologically optimized  structures2, the virtual temperature  approach18,19used to eliminate enclosed voids 
and fulfil the connectivity requirement, and the method of imposing an equality constraint on the number of 
enclosed voids with discrete  sensitivity20; (c) an inequality constrains the  genus3,21 ; (d) an equality constrains 
the genus; and (e) inequality or equality constraints exist for both the genus and the number of enclosed voids 
in the optimized structure. For the aforementioned five cases of precise methods, the research focused on the 
last three cases is limited.
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The hole-filling method (HFM) constrains the maximum genus in an optimized structure in 2D space. It can 
be extended to constrain the maximum number of enclosed voids in 3D structure topology optimization. The 
genus calculation formula for the HFM is derived from the discretized Gauss-Bonnet  formula22 for calculating 
the genus of a closed, orientable digital  surface23 in a 3D grid space. However, when the method is expanded to 
3D topology optimization, the following two difficulties are encountered: (a) The outer surface of a 3D structure 
should be an orientable and closed surface, and tunnels in a 3D structure may cross each other. Therefore, the 
division standard of a tunnel is difficult to determine. In the process of filling one tunnel in a solid structure, the 
other tunnel may be filled as well. (b) The discrete Gauss-Bonnet formula requires that the vertices on the outer 
surface of the structure be manifold points. However, a solid structure has an arbitrarily connected type in 3D 
structural topology optimization. To satisfy the maximum genus constraint on 3D structure topology optimiza-
tion, one article proposed the QSDV method based on DVTOCRA 24.

There are two main types of methods for calculating the genus of compact, connected, orientable, and 
closed surfaces: (a) direct methods such as the Gauss-Bonnet  formula25–27 and the Euler-Poincaré characteristic 
 number28,29; (b) indirect methods such as the Betti number of the  surface30–32, the fundamental  group33, and the 
first homology group of the  surface34,35. The latter finds the bases of a tunnel. As shown in Fig. 1, a tunnel can be 
represented on a handle ring and a tunnel ring.

The Euler-Poincaré characteristic number that is used for calculating the genus of a 2D closed surface can be 
extended to the 3D structure case. It is used to construct the genus formula in this article. The calculation has high 
efficiency due to only counting the number of vertices, edges, faces and elements. In the numerical realization of 
calculating the genus, it is necessary that there be no nonmanifold vertices or edges in the structure. However, 
the existence of nonmanifold vertices and edges in the topology optimization process is theoretically allowed. 
In the numerical implementation of a nonmanifold structure, the genus calculation formula is inaccurate (for 
details, see Supplementary Material A). To accurately calculate the genus, a recovery geometric manifold method 
that converts nonmanifold vertices and edges into manifold vertices and edges is proposed.

The QSDV directly affects the volume fraction of the structure because it selects the variable update to meet 
the genus constraint and adds the solid elements to the recovery geometric manifold. The volume fraction of the 
structure cannot meet the predetermined volume constraint. A gradual removal method for structural bound-
ary elements with structural genus invariance is proposed to meet the structural volume fraction constraint.

The QSDV needs to accurately distinguish between solid and void elements. The discrete variable topology 
optimization method is used for the implementation of maximum genus constraints. Discrete variable topology 
optimization methods include topology optimization methods based on branch-and-bound  algorithms36 and 
topology optimization methods based on relaxation algorithms of integer  programming37 and heuristic  ESO38. 
DVTOCRA has not only the advantages of the SIMP method but also the advantages of the BESO  method39. It 
is adopted as a platform for implementing topology constraints.

The rest of this article is organized as follows: "Quotient set design variable method" Section illustrates the 
theoretical background of the topology constraints of 3D structural topology optimization, the principle of the 
QSDV, and the principle of the evolutionary removal of structural boundary elements.  "Numerical examples" 
Section shows an example of topology constraints for topology optimization of a 3D cantilever beam. In "Con-
clusion" Section, a conclusion of the methods proposed in this article is presented.

Quotient set design variable method
Topology optimization model. The topology optimization problem takes the minimal compliance of the 
structure as the optimization objective, subject to constraints on the volume of the material, and is a standard 
topology optimization problem. This article focuses on the problem with an additional upper-limit constraint 
on the genus. Using a regular hexahedron-based mesh, the mathematical model of the topology optimization of 
the QSDV is described as follows:

(1)

min :
ρ

c(ρ) =
1

2
uTKu

s.t. :

N
∑

i=1

viρi − V̄ ≤ 0

Ku = f

ρi ∈ {0, 1}, i = 1, 2, · · · ,N

g ≤ G

Figure 1.  The genus corresponds to the number of handle and tunnel rings.
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where N  is the number of elements; ρ denotes the design variable vector; ρi is a component of ρ ; c(ρ) is the 
structural compliance; u , f  , and K  are the global displacement, external load, and structural stiffness matrix, 
respectively; vi is the volume of the i-th element; V  is the prescribed volume of the material; g is the genus of the 
structure; and G is the maximum genus of the structure.

Calculation of the genus g. In this article, a structure is composed of regular hexahedral elements. The 
structure is actually a three-dimensional CW complex. For genera in a three-dimensional CW complex, the 
formula below is derived (see Supplementary Material A for more details). The genus formula of a three-dimen-
sional structure that does not contain nonmanifold vertices or edges and has no enclosed voids is

where ki , i = 0, 1, 2, 3 , is the number of i-dimensional cells and cn is the number of connected components of 
the structure. cn can be calculated by the burning  method3 from the number of connected components of the 
multiconnected structure and the element composition of each connected component.

Recovering geometric manifold of a structure. A structure obtained in three-dimensional topology 
optimization may have nonmanifold vertices and edges. The structures of nonmanifold vertices and edges based 
on regular hexahedrons are shown in Fig.  2. According to the corresponding features, a recovery geometry 
manifold method that converts the nonmanifold vertices and edges into manifold vertices and edges is pro-
posed. The core idea of the recovery geometry manifold method is to convert the void elements that connect the 
nonmanifold vertices and edges and have higher sensitivity into solids. First, the nonmanifold vertices and edges 
are identified, where a nonmanifold vertex connects only two elements and six element edges and a nonmanifold 
edge connects only two elements and four element faces. Second, the nonmanifold vertices are converted into 
manifold vertices or edges. Third, the nonmanifold edges are converted into manifold edges.

As shown in Fig. 3, there are many strategies for the recovery geometry manifold method from a geometrical 
point of view.

A method based on sensitivity to first address nonmanifold vertices and then address nonmanifold edges is 
chosen. The process of the method is as follows:

(2)k0 − k1 + k2 − k3 = cn − g

(3)f (VN ) = VfN + EfN

(4)b
(

EN + EfN
)

= VbN + EbN

(5)f
(

VfN + VbN

)

= VfN + EfN

Figure 2.  Structural representation of regular hexahedral elements.
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where f  is an operation that converts a nonmanifold vertex to a manifold vertex. VN is the nonmanifold vertex of 
the structure, VfN indicates that operation f  may produce a new nonmanifold vertex, EfN indicates that operation 
f  may produce a new nonmanifold edge, b is an operation that converts a nonmanifold edge to a manifold edge, 
EN is the nonmanifold vertex of the structure, VbN indicates that operation b may produce a new nonmanifold 
vertex, and EbN indicates that operation b may produce a new nonmanifold edge.

(6)b
(

EfN + EbN
)

= VbN + EbN

Figure 3.  The strategy of recovering geometric manifold for nonmanifold structure.
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Applying Eqs. (7) and (8) Mve -1 times yields:

Only when the operation f or operation b processes non-manifold vertex or dges at the microstructure may 
new non-manifold vertex or edges be formed. The filter method will filter the microstructure, and it is recom-
mended to limit the number of microstructures by choosing a large filter radius. Thus, after a finite number of 
f  and b operations, a structure is converted to a manifold structure.

Implementation of the QSDV. The basic principle of the QSDV is to control the change in the design var-
iables to satisfy the topology constraints on topology optimization. When the genus of the structure sti obtained 
in the i-th iteration meets the genus constraint and the genus of the structure sti+1 obtained in the (i + 1)-th itera-

(7)f
(

VfN + VbN

)

= EfN

(8)b
(

EfN + EbN
)

= ∅

Figure 3.  (continued)
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tion by DVTOCRA violates the constraint of the maximum genus, the elements in the structure sti are divided 
into two groups by comparison with the elements in the structure sti+1 : groups of changed and unchanged ele-
ments.

The changed elements of the structure can be further divided into multiple connected subdomains. In these 
connected subdomains, there may be spatially symmetric connected subdomains that inherit the symmetry of 
the structure. This is because of the sequential updates to the design variables in the connected subdomains. 
The symmetry of a structure may be destroyed to meet the genus constraint. Therefore, a quotient set of the set 
of connected subdomains can be constructed by the geometric symmetry equivalence relationship. Finally, the 
elements in the quotient set are sorted by the sensitivity of the optimization objective. In descending order of 
total sensitivity, the elements in the quotient set that make the structure meet the genus constraint are updated.

For example, the process of the QSDV method can be expressed as follows when the genus g > G:

where Ai and Ai+1 are the solid element number sets of the i-th iteration and (i + 1)-th iteration, respectively, Ach 
is the set of changed design variables, fC is the connectivity classification operator, Cn is the number of connectiv-
ity subdomains, fQ is the symmetry classification operator, Qn is the number of elements in the quotient set, fg 
is the selection operator for updatable elements in the quotient set, Qw is the number of updatable elements in 
the quotient set, ρi and ρi+1 are the design variables of the i-th iteration and (i + 1)-th iteration, respectively, and 
ρD represents the design variables obtained by DVTOCRA. Figure 4 shows the path for the variables update in 
the QSDV method when the maximum genus G is assumed to be 2. The changed variables include those that 
are transformed from void elements to solid elements and from solid elements to void elements. A connected 
subdomain of changed variables is surrounded by black and white subdomains. Symmetrically changed variables 
are the same colour. The connected subdomain consists of an element set that becomes solid and an element set 
that becomes void, represented by two colours.

The iterative topology optimization procedure of the proposed QSDV method is described as follows:

(9)Ach = Ai ∪ Ai+1 − Ai ∩ Ai+1

(10)fC(Ach) =
{

ACj

}Cn

j=1

(11)fQ

(

{

ACj

}Cn

j=1

)

=

{

AQj

}Qn

j=1

(12)fg

(

{

ACj

}Qn

j=1

)

=

{

AQj

}Qw

j=1

(13)ρi+1 = ρi

(14)ρi+1

(

{

AQj

}Qw

j=1

)

= ρD

(

{

AQj

}Qw

j=1

)

(Qw ≤ Qn)

Figure 4.  The path for the variables update in the QSDV method when the maximum genus G is assumed to be 
2.
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(a) Discretize the design domain using a finite element mesh and assign the initial parameters for the topology 
optimization program.

(b) Perform finite element analysis (FEA), and then calculate the elemental sensitivity according to the original 
DVTOCRA.

(c) Calculate the intermediate design variables by the original DVTOCRA.
(d) Recover the geometric manifold of the structure.
(e) Calculate the genus of the structure.
(f) Determine whether the genus satisfies the constraint g ≤ G . If g ≤ G , proceed to step (g); otherwise, apply 

the QSDV method, and then proceed to step (g).
(g) Determine whether the volume satisfies the constraint 

∑N
i=1viρi − V ≤ 0 . If 

∑N
i=1viρi − V ≤ 0 , proceed 

to step (h); otherwise, apply the structural boundary evolution under structural genus invariance and then 
proceed to step (h).

(h) Determine whether the process has converged. If convergence occurs, proceed to step (i); otherwise, repeat 
steps (b)–(h) until convergence, and then proceed to step (i).

(i) Determine whether the stopping criteria are satisfied. If so, stop optimization; otherwise, repeat steps 
(b)–(i).

The program flow of the QSDV method based on DVTOCRA is shown in Fig. 5.

Figure 5.  Program flow of the QSDV method based on DVTOCRA.
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Structural boundary evolution under structural genus invariance. The basic principle of the QSDV 
is to select some design variables to update from among the changed design variables according to the topology 
optimization path of DVTOCRA, while other changed variables remain unchanged to meet the structural genus 
constraints. The QSDV requires the initial structure to satisfy the constraint of the genus. Fortunately, because 
the moving limit strategy is used to meet the volume constraint, the initial volume fraction is equal to 1. When 
using the QSDV, the volume fraction violates the volume fraction limit predetermined by the moving limit 
strategy. In topology optimization, the structure obtained by the QSDV may be only slightly changed from that 
of the previous iteration step. Therefore, structural shape optimization is used to decrease the material volume 
 fraction40.

The boundary element removal method under structural genus invariance is proposed to reduce the volume 
fraction of the structure based on sensitivity information. The moving limit strategy is used to control the bound-
ary volume fraction, which is similar to ESO/BESO methods. The algorithm removes a certain number of outer 
boundary elements of the structure. This process is repeated until the volume fraction meets the constraint. 
Note that the boundary elements correspond to low-sensitivity boundary elements. In this article, the boundary 
element volume reduction factor is 0.99.

Numerical examples
A standard example of topology optimization of a three-dimensional cantilever beam demonstrates the effec-
tiveness of the QSDV. The design domain is shown in Fig. 6. It is discretized into 70 × 28 × 14 regular hexahedral 
elements. The lower midpoint of the right end is subject to a downwards unit load.

Unless otherwise specified, the material volume fraction in this article is 0.3, the filter size is 2.1 (divided by 
the element size), and the volume reduction factor is 0.98.

The main reason to choose a relatively long cantilever beam is that DVTOCRA can obtain a structure with 
complex topology. Figure 7a shows the structure obtained by DVTOCRA. The topological homomorphic graph 
of the structure is given to determine the genus in the graph. The genus of the result g is equal to 12, the volume 
fraction is 0.2999, and the objective function value is 12.954854.

The recovery geometry manifold method based on the example of Fig. 7a is added to represent the history of 
the genus in topology optimization and obtain the result shown in Fig. 7b. The historical variation in the genus 
is shown in Fig. 7b. The peak value of the genus is 22, and the genus of the result is 16. The volume fraction of the 
structure in Fig. 7b is 0.3004, and the objective function value is 12.912633, which is smaller than the value of 
12.954854 in Fig. 7a. This might be the result of the stiffness matrix of the structure being improved by removing 
the nonmanifold vertices in the structure.

Based on the example of Fig. 7b, topology constraints are added, and the results shown in Fig. 8 are obtained. 
Figure 8a–l correspond to the upper bound of the genus, with corresponding G values of 1, 3, 5, 8, 10, 12, 15, 16, 
17, 18, 20 and 21. In general, the genus of the result shows an upwards trend with the increase in the G value. 
The genera of the corresponding structures are 1, 3, 5, 8, 8, 7, 8, 16, 16, 9, 15 and 15. The variation in the genus 
of the results also reveals that different genus constraint values G have different effects on topology optimization, 
which is due to the different initial iteration steps of the QSDV. A greater impact on the results is correlated with 
a smaller value of G.

Figure 9 shows the change in genus in the optimization process corresponding to the example in Fig. 8. Fig-
ure 9 shows that the QSDV method can effectively constrain the maximum genus in the topology optimization. 
The curve of the genus parts was confirmed to be the same before the QSDV method was applied by comparing 
the curves of the genera in Fig. 9. This reveals that the basic principle of the QSDV method is a modification 
of the optimal path. The genus curves are the same when the constraint value of the genus is 20 and 21 because 
the influence of the connected subdomain formed by the changing element on the genus can be more than one.

Figure 10 shows the change in the objective function value c during the optimization process correspond-
ing to the example in Fig. 8. The objective function value oscillates at the position where the QSDV method is 
applied, which means that the change in the structure topology has a notable effect on the objective function 
value of the structure.

Figure 6.  Design domain and boundary conditions for topology optimization of a three-dimensional cantilever 
beam.
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Conclusion
This article proposes the QSDV based on DVTOCRA for 3D structural topology optimization to meet the genus 
constraint. The essence of the QSDV is to adjust the optimized result in the topology optimization iterations 
to meet the constraint on the maximum genus. The numerical examples reveal that the QSDV can effectively 
constrain the maximum genus of an optimized structure. When the value of the upper limit G of the genus 
is too small, the QSDV method may converge to a local minimum solution. In such cases, one can adjust the 
parameters, such as the size of the filter radius, to obtain a better-performing solution.

In topology optimization, the 3D Euler-Poincaré characteristic number is used to construct the calculation 
genus formula. To calculate the genus of a structure correctly, a recovery structure geometry manifold is proposed 
based on the sensitivity of the optimal object. Using powerful tools in geometry, the combinational operations 
used to maintain the manifold of the surface of the optimized structure are beneficial for structural topology 
optimization. The implementation of the above steps is of significance for the postprocessing of geometry and 
subsequent computer-aided numerical analysis based on the optimized structure.

From the numerical examples, we speculate that removing nonmanifold vertices during the topology opti-
mization process has a positive effect on the results of topology optimization. Therefore, the geometric manifold 
strategy has potential for further research.

Figure 7.  (a) Results obtained by DVTOCRA. (b) Results obtained by DVTOCRA with a recovery geometric 
manifold. In the homeomorphism graph, the green dots represent displacement constraints, and the red arrow 
represents the load.
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(d) G = 8, g = 8, V = 0.2980

Figure 8.  Topology constraint results of 3D cantilever beam topology optimization. G is the upper limit of the 
genus, and g is the actual genus of the final structure. In the homeomorphism graph, the green dots represent 
displacement constraints, and the red arrow represents a load.
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Figure 9.  Change in the genus of the structure during the optimization process of the example in Fig. 8. The 
line marked “g peak” gives the maximum genus of the structure appearing in the optimization process. The line 
marked “it.” gives the maximum iteration step.
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Figure 10.  Change in the objective function value of the structure during the optimization process for the 
example in Fig. 8. The line marked “Obj.” gives the final value of the objective function. The line marked “it.” 
gives the maximum iteration step.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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