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Abstract: A method that employs the back propagation (BP) neural network is used to predict the
growth of corrosion defect in pipelines. This method considers more diversified parameters that
affect the pipeline’s corrosion rate, including pipe parameters, service life, corrosion type, corrosion
location, corrosion direction, and corrosion amount in a three-dimensional direction. The initial
corrosion time is also considered, and, on this basis, the uncertainties of the initial corrosion time
and the corrosion size are added to the BP neural network model. In this paper, three kinds of
pipeline corrosion growth models are constructed: the traditional corrosion model, the corrosion
model considering the uncertainties of initial corrosion time and corrosion depth, and corrosion
model also considering the uncertainties of corrosion size (length, width, depth). The rationality and
effectiveness of the proposed prediction models are verified by three case studies: the uniform model,
the exponential model, and the gamma process model. The proposed models can be widely used in
the prediction and management of pipeline corrosion.

Keywords: pipeline corrosion; BP neural network; uncertainty; corrosion growth model

1. Introduction

With the global economy and industrialization developing rapidly, the demand for oil
and natural gas gradually increases. The primary transportation method for the above two
resources is pipeline transportation. However, because of the long-distance transportation
of oil and gas pipelines, natural corrosion, third party damage, and other reasons, the
pipeline’s wall thickness will attenuate, thus affecting the service life of the pipelines [1–4].
Among many failure types, pipeline failure caused by corrosion defects accounts for a large
proportion. Many pipelines have been in service for more than ten years, and some of their
structures are seriously corroded. Pipeline accidents caused by corrosion defects occur
from time to time, becoming a significant threat of the pipeline. These pipeline failures
could potentially pollute the environment, waste energy, and threaten public lives and
property safety.

To ensure the integrity of corroded pipelines, it is necessary to take corresponding
measures to predict the remaining useful life (RUL) of the pipelines [3,5,6]. With the
exploration and research of many scientific experts, pipeline corrosion detection and life
prediction have been studied a lot. In recent years, breakthroughs have been made in data
acquisition, machine learning, and other fields, providing new theoretical support and
prognostics methods for the degradation of corrosion defects in pipelines. Continuously
improving the accuracy of pipeline corrosion depth prediction and RUL prediction can
provide additional benefits to the arrangement of inspection and maintenance actions of
pipelines, and further reduce life-cycle costs.

Inline inspection (ILI) tools are widely used to detect and inspect the location and
size of pipeline corrosion defects [7–10]. The accuracy of the ILI tool has a great impact on
the prediction results. Simple and improved Monte Carlo simulations (MCS) [11–13] are
used to calculate the failure probability of a section of corroded pipeline considering the
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uncertainty of corrosion process. The first-order reliability method (FORM) is also used to
evaluate the reliability of pipelines by linearizing the relationship between reliability and
parameters of pipelines [14,15]. With the increasing number of variables, MCS and FORM
methods can be relatively time-consuming. Aiming at the complex nonlinear relationship
between pipeline parameters and corrosion, Ozan [16] utilized artificial neural networks
(ANNs) to predict the remaining useful life. Tian [17] took the pipeline’s service life and
state detection value as the input of the neural network and the life percentage as the output.
The neural network model has the key advantage of dealing with nonlinear relationship
between pipeline parameters and corrosion growth.

Back propagation (BP) neural network is one kind of artificial neural network that has
high prediction accuracy and has been applied to predict the life of pipelines [18,19]. In
this paper, a method based on BP neural network is used to simulate and predict corrosion
defect growth. The related application of this method has been studied in some literature.
Kai et al. [20] used the artificial neural network method to simulate the growth of corrosion
defect, and evaluated the structural safety and reliability of pipeline. However, to simplify
the structure of the neural networks, they only consider the internal pressure of the cor-
roded pipeline. To assess the risk of the pipeline, Raeihagh et al. [21] established a fuzzy
inference system (FIS), and applied the selected factors to the artificial neural networks
(ANNs). Ben et al. [22] applied six artificial intelligence models, such as ANN, multivari-
ate adaptive regression splines (MARS), and M5 tree (M5Tree) to study the relationship
between the depth of corrosion and probable factors. These studies rarely consider the
uncertainty of corrosion size and mostly ignore the initial corrosion time of the pipeline,
which may produce inaccurate estimations. What is more, different manufacturing pro-
cesses at different positions of the pipeline will also affect the corrosion growth of the
pipeline. For example, high-speed particles will impact welded nodes [23], which have
a relatively high risk. Similarly, only a few pieces of literature have made research on
these factors. In this paper, we consider more diversified corrosion parameters, including
pipe parameters, corrosion type, service life, corrosion location, corrosion direction, and
corrosion size in a three-dimensional direction. In addition, considering the uncertainties
of inspection data and initial corrosion time of pipeline, we build an ANN model for the
degradation of corroded pipelines and consider the influence of other uncertainty sources
to verify the effectiveness of the methodology.

The rest of the paper is organized as follows. Section 2 describes the structure, the
modeling process, and the performance assessment of the BP neural network model. Section 3
presents data preprocessing and three prognostics models based on the BP neural network. In
Section 4, three case studies with different corrosion growth models are used to demonstrate
the effectiveness of the proposed models. Conclusions are presented in Section 5.

2. BP Neural Network Model

Since the relationship between input variables (including pipe properties, corrosion
location, corrosion size, corrosion type, etc.) and the corrosion growth is very complex,
finding a formula to describe the relationship is difficult. Considering that the BP neural
network has strong ability to deal with nonlinear problems, as well as strong self-learning
and self-adaptive abilities, a BP neural network is used to predict the corrosion growth
of the pipeline. In this section, the structure, the modeling process, and the performance
assessment of the BP neural network model will be described.

2.1. Structure of the BP Neural Network

Being composed of many neurons with operation functions, the structure of the BP
neural network includes the input layer, hidden layer, and output layer [19], which is shown
in Figure 1. The input layer consists of p neurons represented by xi, i = 1, 2, 3, ..., p, where
p is the number of input variables. The output layer consists of q neurons represented by
yj, j = 1, 2, 3, ..., q, where q is the number of output variables. Each node of the input layer is
connected to all the nodes of the first hidden layer. Each node of the previous hidden layer is
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connected with all the nodes of the next hidden layer. Similarly, each node of the last hidden
layer is connected to the all the nodes of the output layer. Each connection has a weight
associated with it. In this paper, 11 input variables (service life, pipe segment length, pipe
wall thickness, corrosion type, corrosion location (distance to upstream/downstream girth
weld, inner/outer, clock direction), and corrosion size (length, width, depth)) and 3 output
variables (corrosion growth coefficients (length, width, depth)) are used to construct the BP
neural network. Thus, the BP neural network has 11 input neurons and 3 output neurons,
which means p = 11, q = 3.

Figure 1. The structure of neural networks.

The output of the neuron in the first hidden layer, u1
k , k = 1, 2, . . . H1, where H1 is the

number of neurons in the first hidden layer, is expressed as follows.

p1
k =
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∑
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and the initial values of these weights are all within [−1, 1]. Similarly, the output of the neuron
in the i-th (i > 1) hidden layer, ui

k, k = 1, 2, . . . Hi, where Hi is the number of neurons in the
i-th hidden layer, is expressed as follows,
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a vector of weights whose initial values are within [−1,1]. The output of the model yj,
namely the output of the output neurons, is,

lj =
Hlast

∑
s=1

uHlast
s vsj (5)

yj = f
(
lj
)

(6)

where v =
[
v11, v21, . . . , vHlast1, v12, v22, . . . , vHlast2, . . . , v1q, v2q, . . . , vHlastq

]
is a vector

of weights within [−1,1], and Hlast is the number of neurons in the last hidden layer. In this
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paper, the sigmoid function is selected as the activation functions that can be used in (2),
(4), and (6). This function is expressed as follows.

f (x) =
1

1 + e(−x)
(7)

The construction of a BP neural network is essentially the process of determining
the weights of these connections. When a BP neural network works, it mainly transmits
two kinds of data: the forward propagating signal and the back-propagating error. After
the input data are obtained, its flow direction is taken from the input layer to the hidden
layer, and then to the output layer. Then, the BP algorithm compares the actual outputs
with the target outputs and the error is propagated in the opposite direction. The error is
shared with each node of each layer, and the weight of each connection is adjusted until
the objective function reaches the minimum value by using the back propagation learning
rule. Then, the process of establishing the BP neural network is finished.

2.2. Modeling Process

The BP neural network is a data-driven model, and the modeling process is as follows:

• Obtain the database and determine the number of neurons in the input layer and
output layer of the BP neural network;

• Randomly sort the collected data (data size = 11,103), and select = 70% of the samples
(viz. 7772 data points) as the training samples. Then, the remaining samples are used
as the testing samples;

• Train the BP neural network with the training samples and evaluate the performance
of the model on the testing samples.

The BP model has two main limitations. The first one is the overfitting problem, which
means the trained BP model has pretty high fitting precision on the training set, but has
a relatively large prediction error on the testing set. In the proposed method, the target
error of the BP model is not set too small, and the redundant samples are deleted. Then,
this limitation is avoided. The second limitation is the inherent defect of the BP model
and cannot be avoided. In the flat region of the gradient error surface, the variation of the
weight is quite small, which makes the convergence of the BP model relatively slow. It
spends more time in the training process.

In the process of establishing a BP neural network, the main content is to determine the
neural network parameters, including the number of hidden layers, the number of nodes in
each hidden layer, the learning rate, the learning objectives, and the frequency of training.

As for the determination of network parameters, we need to determine the number of
hidden layers firstly. Then, we can get the number of nodes in each hidden layer according to
the empirical formula, where Hi represents the number of neurons in the i-th hidden layer.

Hi = 2 × i + 3 (8)

In theory, the BP neural network of three hidden layers has a good fitting result. In this
paper, using the collected data and a simple linear growth model, the BP neural network
with one, two, three, four, five hidden layers are tested, respectively. The simulation result
is the best when the BP neural network has four hidden layers. When the number of hidden
layers is too large, such as five, the overfitting problem occurs. So, the number of hidden
layers is set as four in this paper. Then, the number of neurons in these four hidden layers
are 5, 7, 9, and 11.

Meanwhile, the other parameters of the BP neural network are proposed to use the
default value [24]. The parameter selection of the BP neural network is shown in Table 1.
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Table 1. Parameter selection of back propagation (BP) neural network.

Type Parameter Value

1 Number of hidden layer nodes 5,7,9,11
2 Learning rate 0.1
3 Learning objectives 10-7
4 Frequency of training 1000

Based on the chosen parameters, the initial BP neural network model is built. After
training the BP neural network with the training samples, the weights of the connections
between neurons are optimized and the final BP neural network structure is determined.
Then, the BP neural network is evaluated on the testing samples to verify its validity. After
that, the established BP neural network can be used to predict the corrosion growth of
the pipeline.

2.3. Performance Assessment

During the BP neural network training and testing process, a measure is needed to be
determined to represent the applicability of the model. Expected value and variance are
usually adopted in many papers. In this paper, using the corrosion depth of the pipeline in
a year as the contrast quantity, we draw the predicted value x̂i and the actual value xi on
the same picture, and estimate the proximity between the predicted value and the expected
actual value by analyzing the shape and trend of the curve. The mean square error (MSE)
is selected to represent the performance of the model. The definition of MSE is as follows.
The smaller this value is, the better the model is.

MSE =
1
n

n

∑
i=1

(x̂i − xi)
2 (9)

3. The Proposed Models Based on BP Neural Network

In this work, three kinds of pipeline corrosion growth models are constructed and
compared. The model 1 is a traditional corrosion model using ANN. The model 2 is a
proposed model considering the uncertainties of initial corrosion time and corrosion growth
rates. In addition, model 3 is a proposed model which also considers the uncertainties of
corrosion length, width, and depth. The traditional corrosion model is set up directly by
ANN which is introduced in Section 2. The other two proposed models are introduced in
this section.

3.1. Data Preprocessing

The data in this paper mainly come from the inspection and evaluation results of major
pipelines by Sinopec pipeline storage and Transportation Co., Ltd. from 2015 to 2017. It records
the corrosion type, service life, length of pipe segment, distance to upstream girth weld, size
and clock direction of the corrosion, and other information, which is shown in Table 2.

Table 2. Sample of field data.

Sample 1 2 3 4 5

Corrosion type Circumferential General Circumferential Circumferential General

Service life (year) 8 8 9 12 18
Length of a pipe segment (m) 12.0 5.7 11.0 11.0 11.9

Distance to upstream girth weld (m) 11.4 2.5 8.3 1.5 11.2
Distance to downstream girth weld (m) 0.6 3.2 2.7 9.5 0.7

Corrosion length (mm) 18.0 80.0 18.0 21.0 30.0
Corrosion width (mm) 87.0 68.0 62.0 75.0 106.0

Clock direction of corrosion 11:00 2:43 6:34 1:54 3:52
Pipe wall thickness (mm) 10.3 10.3 7.1 7.1 8.7

inner or outer outer outer outer inner inner
Corrosion percentage 4 7 4 5 4
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Before data processing, some field data, such as the corrosion type and the location of
the corrosion, cannot be quantified, so they are classified and numbered before processing.
Specifically, we classify four types of corrosion, pit corrosion is recorded as 1, general
corrosion is recorded as 2, and the circumferential groove is recorded as 3. The corrosion
position is marked as 1 for the inner wall and 2 for the outer wall. In industry, defect
direction is denoted by clock, namely hour (h) and minute (m). In our model, the clock
direction is converted to angle according to Equation (10).

θ = 720 × h × 60 + m
24 × 60

(10)

where θ is the angle of the corrosion defect. The corrosion depth d of the pipeline can
also be calculated by using the corrosion percentage a% multiplied by wall thickness t, as
shown in Equation (11).

d = t × a% (11)

After preprocessing the collected field data, we can use these data as input random
variables to construct the neural network model.

3.2. BP Neural Network Model Considering the Uncertainties of Initial Corrosion Time and
Corrosion Depth

Because the pipeline does not begin to corrode immediately after being put into use,
but takes time to begin to corrode, it is necessary to consider the uncertainty in initial
corrosion time. Here, it is assumed that the initial time Tinitial follows a normal distribution
when the pipeline begins to corrode. The detail is as follow [25].

Tinitial ∼ N
(

T0, stdT0
2
)

(12)

To construct this proposed ANN model, we first preprocess the input data, which
are introduced in last section. Then, we calculate the actual corrosion time Tactual using
Equation (13). To consider the real situation, the corrosion coefficient Oi related to corrosion
rate in a short time is obtained according to the established neural network model. The
corrosion amount of the pipeline is calculated and accumulated to obtain the corrosion
model of the pipeline. Considering the uncertainties of measured value and actual corrosion
rate, we assume that the corrosion coefficient follows the normal distribution represented
by Equation (14). Then, the corrosion depth can be calculated using Equation (15).

Tactual = T − Tinitial (13)

Õi ∼ N
(

Oi, 2.5 × 10−3Oi
2
)

(14)

D(t) = D0 +
t

∑
i=1

φ
(

Õi, i
)

(15)

where the variable T is the service time of pipeline; Oi represents the output corrosion
coefficient of the ith year from the neural network; and D0 is the initial corrosion depth.
The function φ represents the relationship between corrosion coefficient and corrosion
growth rate, so the corrosion coefficient can be taken as the corrosion rate especially for
linear growth corrosion. What is more, to reduce the accidental error, the neural network is
trained ten times, and the average of training results is used as the prediction result.

3.3. BP Neural Network Considering the Uncertainties in Corrosion Size

Due to the limitations in inline inspection tools, there exist measurement errors in
detected corrosion size. Hence, it is necessary to consider the uncertainties in corrosion
size. In this proposed model, in addition to considering the uncertainties mentioned in
model 2, the uncertainties in corrosion size (length, width, depth) are also added to the BP
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neural network model. The corrosion depth, width, and length can then be calculated by
Equations (16)–(18).

D(t) = D0 +
t

∑
i=1

φ
(

ÕD, i
)

(16)

L(t) = L0 +
t

∑
i=1

φ
(

ÕL, i
)

(17)

W(t) = W0 +
t

∑
i=1

φ
(

ÕW , i
)

(18)

where D, L, and W represent the corrosion amount of the pipeline in the direction of depth,
length, and width, respectively; and D0, L0, and W0 correspond to the initial corrosion
depth, length, and width, respectively.

According to a selected sample, we calculate the corrosion coefficient in three corrosion
directions firstly. We assume that there are fixed corrosion coefficients Õw and Õl in
the width and length directions, respectively. Here, we can calculate the corresponding
corrosion amounts of W(t) and L(t). Then, the variations of corrosion amount in these
two parameters are included in the input data of the BP neural network, and the corrosion
coefficient in the depth direction is the output parameter. By substituting the corrosion
coefficient into Equation (16), the corrosion depth can be obtained for further risk analysis.
In each simulation run, the variations in the corrosion length and width of the test sample
over time are added to the sample data. We use the same input data as training data to
obtain this proposed model 3 for future comparisons.

4. Case Studies
4.1. General Information

In this section, examples are used to demonstrate the effectiveness of the proposed
models. The comparison results for the three corrosion models can be used for the subse-
quent reliability evaluation and risk analysis of pipelines. Table 3 summarizes the differ-
ences among three BP neural network models. The pipeline failure caused by a corrosion
defect is mainly because the corrosion depth reaches the critical value. So, in the following
case studies, we mainly focus on the growth of corrosion depth rather than length and
width. Based on the field data, we investigate three types of corrosion depth growth models.
In the first case, the depth of corrosion increases with time linearly. In the second case,
corrosion growth follows an exponential distribution. As for the third case, the growth of
corrosion depth in each period conforms to the gamma growth process.

Table 3. Three gradually improved models.

Uncertainty Model 1 Model 2 Model 3

The initial time of corrosion no yes yes
Corrosion depth no yes yes

Corrosion length and width no no yes

4.2. Case Study 1: Uniform Corrosion Hypothesis

The growth of the defect depth is characterized by:

d(t) = d0 + gdt (19)

where d0 represents the initial corrosion amount and gd is the growth rate of corrosion
depth. gd is used as the output parameter in the neural network model. When considering
the uncertainty, we assume that gd follows the normal distribution, that the actual corrosion
depth growth rate conforms to the theoretical value, and that the variance is 0.05 times the
theoretical value.
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4.2.1. Traditional Linear Corrosion Growth Model (Model 1)

The BP neural network is used to simulate the corrosion depth of the pipeline, and
the results are shown in Figure 2.

Figure 2. Comparison results of pipeline life prediction: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

As can be seen from the figure, when the BP neural network method is used to predict
pipeline corrosion, the prediction results are promising. The predicted corrosion depth
growth rates are relatively close to the theoretical growth rate, which can illustrate the great
potential of the BP neural network method in predicting pipeline remaining useful life.

4.2.2. Linear Corrosion Growth Model Considering the Uncertainties of Initial Corrosion
Time and Corrosion Depth (Model 2)

With the uncertainties of initial corrosion time and corrosion depth in the model 2, and
the prediction results of the model 2 is observed and compared with model 1 in Figure 3.
The summary of comparison results is shown in Table 4.

After 20 simulation runs of the corresponding network, the service life of the pipeline
is shown in Table 4.

To facilitate the comparison, take the absolute value of error for calculation. It can be
obtained that the standard deviation of the error of model 2 is 1.1806, and that the standard
deviation of the uniform corrosion of model 1 is 1.7084. Thus, it can be concluded that the
neural network model 2 is better than the previous model 1. As can be seen from the above
figure and table, the prediction results of model 2 are closer to the real values than model
1, which fully illustrates that the proposed model 2 has better performance of predicting
pipeline corrosion growth and remaining useful life.
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Figure 3. Comparison results of real value, model 1 and model 2: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

Table 4. Analysis of the results of pipeline service life.

No. Real Service Life The Outcome of Model 2 The Outcome of Model 1 The Error of Model 2 The Error of Model 1

1 23.9248 25.4248 26.8248 1.5 1.4
2 30.9869 30.5869 32.2869 0.4 1.7
3 20.5586 21.3586 21.9586 0.8 0.6
4 37.4537 36.7537 39.2537 0.7 2.5
5 27.0945 28.8945 29.5945 1.8 0.7
6 25.8102 22.6102 28.6102 3.2 6
7 26.6273 26.0273 28.3273 0.6 2.3
8 35.5698 40.0098 38.0698 4.4302 1.9302
9 37.1356 35.7356 38.4356 1.4 2.7

10 19.6039 18.6039 21.3039 1 2.7
11 32.9597 32.1597 34.0597 0.8 1.9
12 39.095 38.495 40.1 0.6 1.605
13 25.6869 26.6869 26.8869 1 0.2
14 25.0132 26.0132 27.0132 1 1
15 30.8332 30.0332 31.6332 0.8 1.6
16 33.9482 33.0482 35.0482 0.9 2
17 21.4839 20.6389 23.7839 0.845 3.145
18 26.3141 23.1141 29.8141 3.2 6.7
19 21.0338 23.3338 23.6338 2.3 0.3
20 33.499 32.9099 33.1099 0.5891 0.2
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4.2.3. Linear Corrosion Growth Model Considering the Uncertainties of Corrosion Size (Model 3)

We build the model 3 based on the previous model 2 and add the uncertainties in
corrosion length and width in the BP neural network. The results are shown in Figure 4.
Furthermore, to compare the prediction results of the three models more clearly, the mean of
squared errors (MSE) between the predicted value and real values is calculated in Table 5.

Figure 4. Comparison results of the three models and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

Table 5. Mean of squared errors (MSE) between the predicted value and real value.

No The Outcome of Model 1 The Outcome of Model 2 The Outcome of Model 3

1 0.3593 0.2504 0.2026
2 0.2131 0.0846 0.0424
3 0.7162 0.1527 0.1077
4 0.7799 0.6848 0.3004

From the comparison results in the above figures, it can be seen that, after considering
the variations in the length and width of corrosion over time, the results of model 3 are
closer to the true values compared with model 1 and model 2. At the same time, the above
table shows that the MSEs of model 3 are smaller than model 2 and model 1. What is more,
the results of model 2 are better than model 1. Considering multiple uncertainty sources,
it can be explained that the simulated effects of the above three neural network models
are gradually getting closer to reality. Consequently, the proposed BP neural network
models produce better results and can make a more accurate pipeline remaining useful life
prediction than the traditional BP neural network model (model 1).
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4.3. Case Study 2: Exponential Model Hypothesis

The three BP neural network models can also be used to predict the exponential
corrosion growth model of the pipeline. The growth of the defect depth is characterized by:

d(t) = d0 + ktγ (20)

where d0 is the initial corrosion depth, and k and γ are the parameters of the exponential
corrosion growth model. Because the variability of k is usually large, and the variability
of γ is usually small [26], the value of γ is selected as 0.5. Then, the model parameter k is
used as the output of neural network models.

4.3.1. Traditional Exponential Growth Model (Model 1)

No uncertainty is considered in model 1. When constructing the exponential growth model
of the pipeline, it is assumed that the time index of the real corrosion rate obeys a normal
distribution with a mean value of 0.5 and a variance of 0.05. At the same time, a proportional
coefficient is constructed using real corrosion data. We obtain the simulation results every five
years. The corresponding results are shown in Figure 5. The simulated results accord with the
trend of actual value, but there are big differences as useful life increases.

Micromachines 2021, 12, 1568 12 of 19 
 

 

4.3.1. Traditional Exponential Growth Model (Model 1) 
No uncertainty is considered in model 1. When constructing the exponential growth 

model of the pipeline, it is assumed that the time index of the real corrosion rate obeys a 
normal distribution with a mean value of 0.5 and a variance of 0.05. At the same time, a 
proportional coefficient is constructed using real corrosion data. We obtain the simulation 
results every five years. The corresponding results are shown in Figure 5. The simulated 
results accord with the trend of actual value, but there are big differences as useful life 
increases. 

  
(a) (b) 

  

(c) (d) 

Figure 5. Comparison results of model 1 and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4. 

4.3.2. Exponential Corrosion Growth Model Considering the Uncertainties in Initial  
Corrosion Time, Corrosion Index, and Scale Factor (Model 2) 

In the proposed model 2, we consider the uncertainties of the initial corrosion time, 
the corrosion index, and the scale factor in the BP neural network. The simulation results 
are evaluated every five years, and the results are compared and analyzed, as shown in 
Figure 6 and Table 6. 

Figure 5. Comparison results of model 1 and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.



Micromachines 2021, 12, 1568 12 of 18

4.3.2. Exponential Corrosion Growth Model Considering the Uncertainties in Initial
Corrosion Time, Corrosion Index, and Scale Factor (Model 2)

In the proposed model 2, we consider the uncertainties of the initial corrosion time,
the corrosion index, and the scale factor in the BP neural network. The simulation results
are evaluated every five years, and the results are compared and analyzed, as shown in
Figure 6 and Table 6.

Figure 6. Comparison results of the two models and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

Table 6. Variance of the difference between the predicted value and real value.

Sample 1 Sample 2 Sample 3 Sample 4

Model 1 0.2963 0.3689 0.2957 0.4914
Model 2 0.2062 0.3416 0.2770 0.4319

It can be seen from the figures that, among the above four samples, the simulated
results of the four figures show that the prediction results generated by model 2 are closer
to the true value than model 1. In addition, from Table 6, the standard deviations of model 2
are smaller than model 1, which indicates that model 2 performs better than model 1 in the
pipeline corrosion depth growth prediction. However, the prediction results are still not
accurate enough for the pipeline remaining useful life prediction.
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4.3.3. Exponential Corrosion Growth Model Considering the Uncertainties of Corrosion
Size (Model 3)

In addition to considering the uncertainties of initial corrosion time and relevant
corrosion depth parameters, the variations in length and width over time are also added to
the BP neural network model. Then we compare the results of this new model (model 3)
with model 1 and model 2. The results are shown in Figure 7. The differences between the
predicted value and real values are also summarized in Table 7.

Figure 7. Comparison results of the three models and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

Table 7. Variance of the difference between the predicted value and real value.

Sample 1 Sample 2 Sample 3 Sample 4

Model 1 0.2963 0.3689 0.2957 0.4914
Model 2 0.2062 0.3416 0.2770 0.4319
Model 3 0.1664 0.3014 0.2664 0.2429

It also clearly shows that, after considering the changes in the length and width of
corrosion over time, the results of model 3 are closer to the true values. In other words,
from model 1 to model 3, accuracy and stability are gradually enhanced. Furthermore,
compared with model 1 and model 2, the prediction accuracy for model 3 increase a lot,
which concludes the uncertainties in corrosion length and width do affect the growth of
corrosion depth a lot.
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4.4. Case Study 3: Gamma Distribution Hypothesis
4.4.1. Traditional Gamma Corrosion Growth Model (Model 1)

In this gamma growth model, it is assumed that the amount of corrosion per year
obeys a gamma distribution. The growth of the defect depth is characterized by:

d(t) = d0 + dg(t) (21)

F(dg(t)
∣∣∣α, β, t) = βαt

(
dg)

αt−1exp(−βdg

)
/Γ(αt) (22)

where dg(t) denotes the homogeneous gamma process. The probability density function of
dg(t) is given by Equation (22), where α and β are shape and scale parameters of gammar
process, respectively. Moreover, in our paper, the scale parameter β is assumed to be
48 according to the specific value. We use the shape parameter α as the main output
parameter of the BP neural network. According to this notion, we establish a BP neural
network model, and the results are shown in Figure 8. Furthermore, the prediction results
have the same trend with the actual values, but there still are some prediction errors.

Figure 8. Comparison results of model 1 and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.
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4.4.2. Gamma Process Corrosion Growth Model Considering the Uncertainties of Initial
Corrosion Time and the Shape Parameters (Model 2)

In this model, the uncertainties of the initial corrosion time and the shape parameters
are considered in the BP neural network. We compare this model 2 with model 1 and the
actual value. These results are shown in Figure 9.

Figure 9. Comparison results of the two models and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

The tendency of the results is the same as the uniform corrosion model and exponential
model. The model which considers uncertainties of initial corrosion time and shape
parameters has better prediction results.

4.4.3. Gamma Corrosion Growth Model Considering the Uncertainties of Corrosion Size (Model 3)

The steps are the same as linear and exponential growth models, and we also consider
the uncertainties in corrosion size over time in the proposed BP neural network. The
comparison results for models 1, 2, and 3 are shown in Figure 10. The differences between
the predicted value and real values are also summarized in Table 8.

After considering the uncertainties in the length and width of corrosion over time, the
results of model 3 are closer to the actual values. Additionally, from model 1 to model 2 to
model 3, accuracy and stability are gradually enhanced. As linear, exponential and Gamma
corrosion growth models can be used to describe most corroded the pipelines’ degradation
working cases. So, we take these three hypothetical growth models as examples, and our
proposed BP neural network models’ rationality, effectiveness, and universal applicability
are verified.
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Figure 10. Comparison results of the three models and the real results: (a) sample 1; (b) sample 2; (c) sample 3; (d) sample 4.

Table 8. Variance of the difference between the predicted value and real value.

Sample 1 Sample 2 Sample 3 Sample 4

Model 1 0.1120 0.1681 0.1172 0.3019
Model 2 0.1057 0.1121 0.1028 0.1324
Model 3 0.0880 0.0858 0.0687 0.0754

5. Conclusions

This paper proposed BP neural network models for pipeline useful life prediction
considering the uncertainties in initial corrosion time and corrosion size. Furthermore,
we use the field data from the Sinopec Pipeline Storage and Transportation Co., Ltd. to
demonstrate the effectiveness of the proposed model. We first preprocess the collected field
data, and we can use these data (pipe parameters, corrosion location, corrosion size, etc.) as
input random variables to construct the neural network model. Three gradually improved
models are considered in the pipeline RUL prediction, and the uncertainties are added
to each model to make the hypothetical pipeline corrosion situation closer to reality. At
the same time, by comparing the results of the neural network with the real values, it
can be seen that the results are relatively close, which fully illustrates the effectiveness
and the rationality of the BP neural network method in predicting the corrosion degree
of pipelines. Three proposed BP neural network models are compared with actual values,
a corresponding comparative analysis of the results shows that the model 3 which considers
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the uncertainties from corrosion initial time and corrosion size produce more accurate
prediction results. Lastly, we use three case studies to demonstrate the effectiveness of the
proposed models. Three types of corrosion growth models, namely uniform, exponential
model, and gamma process models, are applied to the proposed models mentioned above.
The comparison results prove that the proposed models have universal applicability to
different working conditions.
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