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Background: Long-term cigarette smoke (CS) induces substantive extrapulmonary effects, 
including musculoskeletal system disorders. Exercise training seems to protect long-term 
smokers against fiber atrophy in the locomotor muscles. Nevertheless, the extracellular 
matrix (ECM) changes in response to aerobic training remain largely unknown. Thus, we 
investigated the effects of moderate treadmill training on aerobic performance, cross- 
sectional area (CSA), fiber distribution, and metalloproteinase 2 (MMP-2) activity on quad-
riceps muscle in mice exposed to chronic CS.
Methods: Male mice were randomized into four groups: control or smoke (6 per group) and 
exercise or exercise+smoke (5 per group). Animals were exposed to 12 commercially filtered 
cigarettes per day (0.8 mg of nicotine, 10 mg of tar, and 10 mg of CO per cigarette). The CSA, 
fibers distribution, and MMP-2 activity by zymography were assessed after a period of treadmill 
training (50% of maximal exercise capacity for 60 min/day, 5 days/week) for 24 weeks.
Results: The CS exposure did not change CSA compared to the control group (p>0.05), but 
minor fibers in the frequency distribution (<1000 µm2) were observed. Long-term CS 
exposure attenuated CSA increases in exercise conditions (smoke+exercise vs exercise) 
while did not impair aerobic performance. Quadriceps CSA increased in mice nonsmoker 
submitted to aerobic training (p = 0.001). There was higher pro-MMP-2 activity in the smoke 
+exercise group when compared to the smoke group (p = 0.01). Regarding active MMP-2, 
the exercise showed higher values when compared to the control group (p = 0.001).
Conclusion: Moderate treadmill training for 24 weeks in mice exposed to CS did not 
modify CSA, despite inducing higher pro-MMP-2 activity in the quadriceps muscle, suggest-
ing limited effects on ECM remodeling. Our findings may contribute to new insights into 
molecular mechanisms for CS conditions.
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Introduction
According to the World Health Organization (WHO), there are 1.3 billion tobacco 
users around the world.1 The tobacco epidemic is one of the biggest public health, 
killing more than 8 million people each year.1,2 Smoking is a major risk factor for 
premature non-communicable diseases, such as cardiovascular disorders, chronic 
obstructive pulmonary disease, and several cancers.3 Cigarette smoke (CS) can 
cause a reduction of functional ability and quality of life and thus represents an 
enormous healthcare and socioeconomic burden.2,3
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Long-term CS can induce substantive extrapulmonary 
effects, including musculoskeletal system disorders. Kok 
et al4 have shown that smoking 100g tobacco per week 
resulted in a reduction of 2.9% in knee muscle strength in 
young men, independent of daily physical activity and 
cardiopulmonary fitness. Studies in human and animal’s 
models also revealed that CS promotes a decrease of ~25% 
in the fiber cross-sectional area, indicating that CS is 
a potential risk factor for a low lean body mass and 
COPD-related muscle weakness. Consequently, smokers 
are more susceptible to acute or chronic muscle 
deterioration.5,6

Regarding molecular mechanisms, in vivo and in vitro 
studies have already reported that CS appears to stimulate 
protein breakdown through muscle-specific ubiquitin pro-
teolytic pathways, including muscle atrophy F-box 
(MAFBx),7 muscle ring finger-1 (MuRF1),8 p38 mitogen- 
activated protein kinase (MAPK) and extracellular signal- 
regulated kinase (ERK),9 besides up-regulation of myos-
tatin, which is responsible by inhibition muscle growth via 
protein kinase B inactivation. These regulatory mechan-
isms promote several detrimental responses in skeletal 
muscle,10 such as reduction of contractile function and 
protein synthesis process, which can lead to muscle loss, 
mainly in the lower limbs.5 CS has several toxins with 
immunomodulatory effects that might impair fatigue resis-
tance, exercise tolerance, and functional disability, culmi-
nating in fiber atrophy and skeletal muscle 
abnormalities.6,11 Such dysfunction is believed to be asso-
ciated with impairment of muscle structure (ie, cross- 
sectional area, fiber-type distribution, capillary density),6 

metabolic capacity, and cellular damage.12 However, the 
changes in muscle extracellular matrix (ECM) remain 
largely unknown in CS conditions.

The ECM is a 3-dimensional network of macromole-
cules connecting myofibers architecture and integrating 
them to ensure optimal force transmission within the 
skeletal muscle.13 The muscle ECM is essential for 
structural support, mechanical stability, and transmission 
signals from cells.14 Strategies to overcome possible 
harmful effects of ECM function might protect smokers 
from dysfunctional remodeling and musculoskeletal 
disorders.15 The modulation of ECM functions is regu-
lated by matrix metalloproteinases (MMPs), a family of 
zinc-dependent endoproteases that degrade or remodel 
the ECM proteins, including collagen, fibronectin, and 
laminin and glycoproteins.16–18 The MMP-2 promotes 
positive effects in skeletal muscle, such as the release 

of local growth factors and the stimulation of angiogen-
esis, proliferation,17 differentiation, and migration of 
satellite cells to injury sites, allowing tissue repair.19,20 

These adaptations are relevant to maintain the physiolo-
gical functions and functional integrity of skeletal mus-
cle in the setting of skeletal muscle hypertrophy.20

Exercise training modulates muscle ECM remodeling 
through MMP-2 activity.21 Previous studies showed that 
MMP-2 exerts essential regulatory roles in muscle fiber 
repair and connective tissue, controlling muscle plasticity 
after damage caused by exercise training.14,19,21 It has 
been shown that MMP-2 activation induces neoangiogen-
esis, muscle fiber growth via ECM remodeling, which 
facilitates physiological adaptations to exercise, such as 
aerobic performance capacity and muscle regeneration.13 

Presumably, up-regulated MMP-2 activity might represent 
a potential mechanism induced by exercise, to protect the 
peripheral muscle from abnormalities inherent to CS 
exposure.22 It is known that MMP-2 is considered 
a critical biomarker for cell signaling, muscle morphogen-
esis, hypertrophy processes and tissue homeostasis main-
tenance. Thus, whether aerobic training modulates MMP-2 
activity remains a valid question for muscle health and 
outlines treatment guidance for smokers.

Although mechanistic studies on muscular responses to 
exercise have increased in the past decade, the interaction of 
long-term smoking with aerobic exercise training in the per-
spective of muscle ECM remodeling processes is poorly 
understood. A better knowledge of the role played by the 
MMP-2 can help maximize the benefits of exercise in preven-
tion and therapy. This study aimed to investigate the effects of 
moderate treadmill training on aerobic performance, cross- 
sectional area (CSA), fiber distribution, and metalloproteinase 
2 (MMP-2) activity on the quadriceps muscle in mice exposed 
to chronic cigarette smoke. We hypothesize that CS would 
impair muscular performance accompanied by a decrease in 
the quadriceps muscle’s CSA and fiber distribution, while 
aerobic exercise training counterbalances such deleterious 
responses associated with muscle ECM remodeling.

Materials and Methods
Animals and Experimental Design
The current study was part of prior investigation.23 

Therefore, most of the methodology (animals, cigarette 
smoke exposure protocol and treadmill aerobic training) 
used on this secondary analysis was the same. The details 
of the experimental design have been reported 
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previously.23 Male C57BL/6 mice (weighing 22 ± 2g; 6–8 
weeks old) were randomly divided into four groups: 1) 
control (n=6); 2) smoke (exposed to cigarette smoke; n=6); 
3) exercise (submitted to treadmill training; n=5) and 4) 
smoke+exercise (submitted to both treadmill training and 
cigarette smoke exposure; n=5).

The animals were kept in plastic cages under controlled 
environmental conditions (12-hour light/dark cycles) with 
water and standard chow ad libitum (Socil, São Paulo). 
The present study was approved by the Animal Research 
Ethics Committee of the University of São Paulo (protocol 
number: CAPpesq/025/10). The research has been carried 
out in accordance with the Guide for care and use of 
laboratory animals24 and international principles for 
research involving animals (ARRIVE 2.0).25

Cigarette Smoke Exposure Protocol
Animals were exposed to 12 commercially filtered cigar-
ettes per day (0.8 mg of nicotine, 10 mg of tar, and 10 mg 
of CO per cigarette). The exposure was performed, placing 
the animals into a box (inhalation chamber), maintaining 
controlled CO levels (250 to 350 ppm) for 30 min/day,−1 5 
days/week for 24 weeks. Control animals were exposed to 
the same protocol but using room air.22,23 The experimen-
tal model increases the density of inflammatory cells 
(macrophages), MCP-1 expression, and ROS production 
in bronchoalveolar lavage while reducing IL-10 levels.23 

These effects were accompanied by reduced tissue damp-
ing and pulmonary elastance, hallmarks of emphysema.23

Treadmill Aerobic Training and Test
Before treadmill aerobic training, the animals were sub-
mitted to an exercise adaptation period (3 days, 15 min/ 
day, 25% inclination, and 0.2 km/h). Subsequently, the 
mice were submitted to a physical test to evaluate their 
maximal exercise capacity (100%) in physical training. 
The animals were trained at 50% of maximal exercise 
capacity for 60 min/day, 5 days/week, for 24 weeks. 
Both treadmill aerobic training and CS exposure started 
on the same day and continued for 24 weeks. CS exposure 
was accomplished after 1 hour of physical training.23

Euthanasia
The animals were euthanized using an intraperitoneal 
injection of xylazine solution (12 mg/kg of body weight) 
and ketamine (95 mg/kg of body weight) 48h after the end 
of the experimental period.

Histology
For histology analysis, we fixed the samples with 4% 
paraformaldehyde in PBS at room temperature for 24 
h. Samples were embedded in OCT (and histological mus-
cle cross-sections were obtained (one section of 10μm) in 
a cryostat microtome (Microm HE 505, Jena, Germany). 
Samples were kept in 70% ethanol. Sections were incu-
bated with a dual endogenous enzyme–blocking reagent 
(Dako, Carpinteria, CA, USA) to quench any endogenous 
peroxidases. Slides were incubated with a solution con-
taining the primary antibodies in 1% bovine serum albu-
min in 0.1M PBS overnight in the dark at 4°C. We 
performed immunohistochemical to evaluated the primary 
antibody (Mouse Anti-Collagen IL-10 Monoclonal 
Antibody, 1:100, Santa Cruz, Dallas, USA), but the pri-
mary antibody was not detected. A Universal LSAB + Kit/ 
HRP, Rabbit/Mouse/Goat (Dako) was used to detect 
immunoactivity according to the manufacturer’s instruc-
tions. To develop the signal, we used DAB (Dako) fol-
lowed by a hematoxylin counterstain. The slides were 
rinsed, dehydrated, and coverslipped with Permanent 
Mounting Medium (Thermo Fisher Scientific). Images 
from four different muscle regions of each animal (4 per 
group) were obtained by a digital camera Axioplan (Carl 
Zeiss, Oberkochen, Germany) at 10X amplification, 
coupled to a binocular microscope (Olympus® BX51). 
The CSA of 400 fibers was randomly chosen from each 
image. Boundaries of individual muscle fibers were deli-
neated, and fiber CSA was determined from the number of 
pixels within the outlined fiber using the ImageJ software 
(National Institutes of Health, Bethesda, MD). All images 
were analyzed by the same researcher in a blinded design, 
in which the analyzer was not aware of the experimental 
group. Fiber area-frequency histograms and cumulative 
frequency distribution were calculated as previously 
described.26,27

Zymography
Tissue extraction and zymography analysis have been 
performed according to the protocol used in other studies 
published by our laboratory.22,28 Quadriceps extracts 
(25 mg) was incubated in 2 mL of extraction buffer (10 
mmol.L–1 cacodylic acid (pH 5.0), 0.15mol.L–1 NaCl, 
1mol.L–1 ZnCl2, 20mmol. L–1 CaCl2, 1.5 mmol. L–1 
NaN3, 0.01% Triton X-100 (v/v)) at 4 °C overnight with 
continuous mixing. After this period, the solution was 
centrifuged for 20 min (13,000 g at 4 °C). Protein 
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concentrations were measured with a BCA protein assay 
kit (Thermo Scientific, USA).

Samples of six animals (control and smoke) or five 
(exercise and smoke+exercise) were evaluated, and each 
of them was normalized for the total amount of protein 
(30μg). The samples were analyzed by electrophoresis in 
a polyacrylamide gel containing 10% SDS and gelatin at 
a final concentration of 1 mg/mL. The gelatinolytic activ-
ity was manifested as horizontal white bands on a blue 
background. MMP-2 activity was determined by densito-
metric scanning of the bands (ImageScanner III, Lab- Scan 
6.0). The band intensity averages were measured using 
Image Master 2D Platinum 7.0 software and were con-
ducted by a blinded researcher, attenuating possible bias 
related to this process. MMP2 activity bands were identi-
fied according to their molecular weight (pro-MMP-2; 64 
kDa: 62 kDa: active-MMP-2) according to previous 
studies.14,21,29

The assurance of the analysis accuracy, the gels for 
zymography were prepared simultaneously using the same 
solutions. Gel electrophoresis was carried out simulta-
neously using fresh buffers at the same condition and 
temperature (inside the fridge) to minimize the variation 
between the gels. Furthermore, protein normalization, vol-
tage, and time during electrophoresis, and gel staining 
background have been carefully standardized. A same 
experienced researcher performed all gels to minimize 
the groups’ variation and generate a banding pattern. The 
band intensities were measured by a blinded researcher, 
attenuating possible bias related to this process.

Statistical Analysis
Data are presented as mean and standard deviation (SD). 
Shapiro–Wilk test was used to verify data normality. 
A two-way mixed ANOVA was used to compare body 
weight, time running, and speed evaluated in the baseline, 
8, 16, and 24 weeks. Compound sphericity was verified by 
the Mauchly’s test. When the assumption of sphericity was 
not met, the significance of F-ratios was adjusted accord-
ing to the Greenhouse–Geisser procedure. A two-way 
independent ANOVA (smoke and exercise training as fac-
tors) was used to compare groups. The Tukey post hoc test 
was used to identify differences. An alpha level of p ≤ 0.05 
was considered significant. The sample size power for all 
variables was verified post hoc using G*Power version 
3.1.3 (Kiel University, Kiel, Germany), with alpha level 
= 0.05 and power (1 - β) = 0.8. The software GraphPad 
Prism 7.0 for Mac (San Diego, CA, USA) was used for 

statistical analysis and graphics design. The Servier 
Medical Art and Mind the Graph web-based software 
was used to create the last figure.

Results
Bodyweight Gain and Aerobic 
Performance Analysis
There were no differences between experimental groups at 
baseline (p > 0.05). Exercise aerobic training induced body 
weight gain and improved the time running and speed in 
both exercise groups (exercise and smoke+exercise) in the 
8, 16, and 24 weeks compared to animals not submitted to 
moderate treadmill training (p =0.01; p =0.01 and p =0.01; 
Figure 1A–C). Regarding the time effect, we observed 
similar performance after 16 and 24 weeks of training (p 
> 0.05). There were no significant differences between 
control and smoke groups or between exercise and 
smoke+exercise groups (p > 0.05).

Cross-Sectional Area and Fibers Size 
Distribution
Figure 2A shows the CSA quadriceps muscle qualitative 
analysis of histological sections in all experimental 
groups. Cigarette smoke exposure for 24 weeks in 
a condition of physical inactivity did not promote change 
in quadriceps CSA compared to the control group 
(p<0.05, Figure 2B), but smaller fibers in the relative 
frequency (250 to 750 µm2) was observed in the smoke 
group compared to other groups (Figure 2C). 
Furthermore, there is a significant shift to the left in the 
cumulative frequency distribution for the Smoke group 
(Figure 2D). However, higher fibers in the relative fre-
quency (1250 to 1750 µm2) were observed in the smoke 
+exercise compared to the smoke group (Figure 2C). 
Moderate treadmill training induced an increase of CSA 
in the exercise group (p=0.001, Figure 2B), but this effect 
is not observed in mice exposed to CS (smoke+exercise vs 
smoke; p<0.05).

MMP-2 Activity
Figure 3A shows optical densitometry of zymographic 
bands in all experimental groups. There was higher pro- 
MMP-2 activity in the smoke+exercise group when com-
pared to the control and smoke groups (p = 0.01; 
Figure 3B). Regarding active MMP-2 activity, exercise 
and smoke+exercise groups showed the highest values 
compared to the control group (p = 0.001; Figure 3C).
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Discussion
This study demonstrates that long-term CS exposure did 
not change CSA compared to the control group, but 
minor fibers in the frequency distribution (250 to 
>1000µm2) were observed in the smoke group. 
Moreover, CS exposure attenuated quadriceps muscle 
CSA increases in the exercise condition (smoke+exer-
cise vs exercise) while it did not impair aerobic perfor-
mance indicators (speed and time running). Contrary to 
our hypothesis, moderate treadmill training did not 
appear to influence CSA and active MMP-2 activity in 
the CS condition (smoke+exercise vs Smoke), whereas 
it increased in nonsmoker mice. These data 
indicate limited effects of moderate aerobic exercise on 
ECM remodeling of skeletal muscle during CS expo-
sure. Our findings may contribute to new insights 
into molecular mechanisms and training adaptations 
for CS conditions and open new avenues for 
therapeutic interventions. A schematic representation of 

experimental groups, analysis, and main findings was 
created to clarify the results of the present study 
(Figure 4).

Interestingly, mice exposed to CS for 24 weeks did not 
present loss of quadriceps muscle mass. Moreover, no 
increase in CSA was observed after aerobic training in 
the mice exposed to CS, which might be explained by 
muscle fiber-type predominance of the quadriceps muscle. 
For instance, Montes de Oca et al30 reported in vastus 
lateralis that the harmful effects of CS on capillary num-
bers and CSA were more pronounced in type I fibers when 
compared to type II fibers. Nakatani et al31 also noted 
damages in the soleus muscle (predominance of slow- 
twitch-type 1) of spontaneously hypertensive rats exposed 
to CS. It has been also demonstrated that smokers exhibit 
a lower type I fibers proportion when compared to the 
healthy aging population.32 Collectively, these studies sug-
gest that the harmful effects of CS on CSA with 
a predominance of type II fibers, such as quadriceps, 

Figure 1 Bodyweight and performance aerobic analysis at baseline, 8, 16, and 24 weeks. Data are mean ± standard deviation. (A–C) represents body weight gain, time 
running, and speed. Statistically significant differences compared to: aControl; cSmoke. p < 0.05.
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Figure 2 Histological sections of the quadriceps muscle with hematoxylin–eosin (HE) staining (Scale bars, 50 μm). Data are mean ± standard deviation (A–D) represents 
a board of histological slides, quadriceps muscle cross-sectional area, and frequency. Statistically significant differences compared to: aControl; bExercise. p < 0.05.

Figure 3 MMP-2 activity in arbitrary units in the quadriceps muscle. Data are mean ± standard deviation. (A–C) represents optical densitometry of zymographic bands, Pro 
MMP-2 (~64 kDa), and active MMP-2 activity (~62 kDa). Statistically significant differences compared to aControl; cSmoke. p < 0.05.
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would have a later onset compared to slow-twitch fibers 
that seem to be more sensitive to cigarette toxicity.

It is possible to assume that fibers are not all the same 
size and might respond to stress or mechanical stimuli 
differently.11 So, the use of frequency histograms accord-
ing to diameter provides a more detailed and accurate 
quantitative analysis of fibers size distribution than reli-
ance on mean size, which is influenced by the size and the 
relative number of cells with any given diameter. The 
heterogeneity of fiber size in the present study is consistent 
with previous reports on human33 and rodent skeletal 
muscle after CS exposure.11 Such heterogeneous fiber 
size distribution is believed to be associated with the 
redistribution of muscle fiber types observed in CS expo-
sure, shifting from type I oxidative muscle fibers to type II 
glycolytic muscle fibers.11 A non-uniform atrophy 
response can be a considerable adaptation to the CS con-
dition, generally related to physiological character.

Although CS exposure did not appear to induce sub-
stantial muscle atrophy, we showed smaller fibers in the 
relative frequency (250 to >1000µm2) for mice exposed to 
CS when compared to all groups (Figure 2). Furthermore, 
there is a significant shift to the left in the cumulative 
frequency distribution for the smoke group. Thus, one 
possibility that CS might trigger intracellular catabolic 
pathways responsible for muscle degradation signaling 
should not be ruled out. Other studies reinforce this sug-
gestion, which showed that modulation of cell metabolic 

pathways could precede the muscle atrophy process.34,35 

For instance, muscle-specific E3 ligases (Atrogin-1/ 
MuRF1) were up-regulated in patients with COPD, but it 
has not been possible to see changes in CSA. This fact 
could clarify the absence of CSA modifications in the 
current study.

The extra-pulmonary changes inherent to CS could also 
reduce muscle endurance and strength, ultimately leading to 
diminished exercise capacity and regenerative response.11 

Curiously, the speed and time running did not differ sig-
nificantly between mice nonsmokers and smokers, which 
could be partially explained by similar body weight 
between groups and substantial metabolic adjustments. 
Optimal body weight maintenance may compensate the 
skeletal muscle energy metabolism during exercise to main-
tain exercise capacity and tolerance.36 Another possible 
explanation is that long-term aerobic training (24 weeks) 
may enhance tolerance of metabolic acidosis due to 
increased muscle buffer capacity and improved ionic reg-
ulation (26), thereby enabling power output maintenance 
during exercise and aerobic performance even in adverse 
conditions like CS exposure. Additionally, Chen et al37 

explain that although skeletal muscle capacity is exhausted 
on the treadmill, reducing performance exercise induced by 
smoking occurs only when cardiopulmonary systems reach 
their maximal capabilities.

Previous studies have noticed that aerobic training 
might induce muscle hypertrophy, like those observed in 

Figure 4 Overview of quadriceps muscle remodeling exposed to smoke and aerobic exercise training. (A–C) represents experimental groups, analysis, and main results. 
Moderate treadmill training for 24 weeks in mice exposed to cigarette smoke did not promote CSA gain, despite inducing higher pro-MMP-2 activity in quadriceps muscle 
mass. The figure was created in the Servier Medical Art (www.smart.servier.com) licensed under a Creative Commons Attribution 3.0 Unported (free) and Mind the Graph 
platform (www.mindthegraph.com) licensed under the Attribution-Share Alike 4.0 International license.
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resistance training, but in minor magnitude.38,39 This plau-
sible mechanism reduces satellite cell pool activation, 
which promotes muscle mass increase post-exercise.40,41 

Nogueira et al6 reported that mice exposed to tobacco for 8 
weeks displayed a reduced number of quiescent satellite 
cells, transcription factor PAX7 (paired box 7), and capil-
laries in isolated slow-twitch type I fibers (soleus muscle) 
when compared with the non-smoking group. These adap-
tations may explain cellular saturation in which skeletal 
muscles become less mechanically sensitive with aerobic 
training. Future studies may wish to compare the effects of 
different exercise modalities (resistance, aerobic, and com-
bined) on molecular mechanisms after CS exposure.

Accumulating evidence suggests that ECM remodeling 
enables the fiber to expand in girth to afford satellite cell 
incorporation.42–44 Regulation of MMP-2 activity is 
a significant factor for successful muscle regeneration. It 
seems plausible to speculate that compounds and toxins in 
the CS may hinder MMP-2 secretion or attenuate optimal 
ECM remodeling, promoting a delay in the MMP-2 activa-
tion cascade, which potentially restricts the proliferation, 
differentiation, and migration of satellite cells. Collectively, 
these mechanisms might explain why there were no changes 
in the MMP-2 activity in response to CS exposure. We also 
observed that moderate treadmill training for 24 weeks was 
an inefficient stimulus to induce active MMP-2 upregulation 
in mice exposed to CS. The responsiveness to exercise 
includes characteristics of the exercise regimen or dose and 
the response or effect characteristics. These hypotheses are 
supported by previous studies that showed higher MMP-2 
activities in type II fibers following high-intensity aerobic 
and resistance exercise.14,19,21 Furthermore, Handler-Olsen 
et al45 showed a significant decrease in intracellular gelati-
nolytic activity in skeletal muscles of mice exposed to high- 
intensity interval training, suggesting that exercise 
intensity is a critical factor capable of reprogramming intra-
cellular MMP-2. Thus, a mechanical-molecular set point 
may exist for MMP-2 induction in CS conditions.

Recent observations indicate that MMPs are regulated at 
transcriptional and post-transcriptional levels through their 
inhibitors (TIMPs).46,47 In the present study, moderate tread-
mill training for 24 weeks in mice exposed to cigarette smoke- 
induced higher pro-MMP-2 activity in the quadriceps muscle, 
but this effect was not observed in the active isoform. It has 
been demonstrated that higher TIMP-2 activity blocks the pro- 
MMP-2 activation in skeletal muscle.16 Thus, it may suggest 
that TIMPs molecular pathways could be involved in the 
smoke+exercise group. These mechanisms might clarify the 

distinct MMP-2 isoforms presented here and open the possi-
bility that ECM remodeling may differ between smokers and 
nonsmokers. Additionally, it is essential to emphasize that the 
pleiotropic effects of aerobic exercise and the complexity of 
responses at the molecular level suggest no singular pathway 
mediating exercise adaptation. Thus, cellular homeostasis is 
achieved by a delicate balance between multiple pathways.

In a recent review, Marillier et al12 explained a potential 
regulatory mechanism for limited muscle hypertrophy in smo-
kers. It is well established that hypoxemia and cachexia are 
debilitating comorbidities associated with CS that indicate the 
progression towards a more degenerative status and predict 
lower responses to exercise training once dampen the improve-
ment in oxidative metabolism and muscle endurance.12 These 
harmful adaptations may clarify lower myoblast regenerative 
capacity in response to moderate aerobic exercise during CS 
exposure. The development of effective exercise should 
include creative protocols based on muscle mechanosensitivity 
to counterbalance harmful effects inherent to CS condition.

It is essential to point out some limitations of the present 
study. It was not possible to evaluate the type of muscle fibers 
and immunohistological analysis of ECM markers and atro-
phy/hypertrophy signaling pathways. These factors are rele-
vant for muscle hypertrophy modulation in response to 
exercise training. The evaluation in a single time point also 
is a considerable limitation since molecular regulations 
involving MMP-2 activity at different time points might be 
present since the beginning of CS exposure. Therefore, future 
studies are necessary to clarify time-course effects on sub-
stantial muscle adaptations. The investigation of other pro-
teins and regulatory molecules (eg, intracellular signal 
transducer and transcription factors) that participate directly 
in muscle hypertrophy needs to be included in future studies 
to clarify adjacent mechanisms. Additionally, studies invol-
ving different training protocols could help comprehend the 
potential mechanism involved in muscle plasticity to protect 
muscle mass from cigarette toxicity.

Conclusion
Moderate treadmill training for 24 weeks effectively 
increased active MMP-2 activity and CSA in quadriceps 
muscle in the nonsmoker mice; however, it did not pro-
mote CSA increases in CS condition despite inducing 
higher pro-MMP-2 activity, which suggests limited effects 
on ECM remodeling. Our findings may contribute to new 
insights into the molecular mechanism for smokers and 
open new avenues for therapeutic interventions to treat 
locomotor muscle dysfunctions.
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