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Background: The use of segmentation architectures in medical imaging, particularly for glioma 
diagnosis, marks a significant advancement in the field. Traditional methods often rely on post-processed 
images; however, key details can be lost during the fast Fourier transformation (FFT) process. Given 
the limitations of these techniques, there is a growing interest in exploring more direct approaches. 
The adaption of segmentation architectures originally designed for road extraction for medical imaging 
represents an innovative step in this direction. By employing K-space data as the modal input, this method 
completely eliminates the information loss inherent in FFT, thereby potentially enhancing the precision and 
effectiveness of glioma diagnosis.
Methods: In the study, a novel architecture based on a deep-residual U-net was developed to accomplish 
the challenging task of automatically segmenting brain tumors from K-space data. Brain tumors from K-space 
data with different under-sampling rates were also segmented to verify the clinical application of our method.
Results: Compared to the benchmarks set in the 2018 Brain Tumor Segmentation (BraTS) Challenge, our 
proposed architecture had superior performance, achieving Dice scores of 0.8573, 0.8789, and 0.7765 for the 
whole tumor (WT), tumor core (TC), and enhanced tumor (ET) regions, respectively. The corresponding 
Hausdorff distances were 2.5649, 1.6146, and 2.7187 for the WT, TC, and ET regions, respectively. 
Notably, compared to traditional image-based approaches, the architecture also exhibited an improvement of 
approximately 10% in segmentation accuracy on the K-space data at different under-sampling rates.
Conclusions: These results show the superiority of our method compared to previous methods. The direct 
performance of lesion segmentation based on K-space data eliminates the time-consuming and tedious image 
reconstruction process, thus enabling the segmentation task to be accomplished more efficiently.
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Introduction

Brain tumors, especially gliomas, seriously endanger the 
function of the human nervous system and are one of the 
most harmful diseases to human health. Pre-operative 
imaging examinations, especially magnetic resonance 
imaging (MRI), can provide detailed images of the brain, 
which are essential for glioma diagnosis and prognostic 
evaluations. Moreover, the accurate segmentation of brain 
tumors on MRI images is helpful for surgery planning.

Brain tumor segmentation (BraTS) is achieved by 
identifying abnormal areas that are different from normal 
tissue signals. Its main task is to detect the boundary 
between the tumor area and the surrounding normal tissues. 
Tumors, especially gliomas, are often diffused, with poor 
contrast and tentacle-like structures that make them difficult 
to segment. As a solution, some studies have used automatic 
segmentation models based on deep-learning methods, such 
as DeepMedic (1), fully convolutional networks (2), and the 
U-net (3), to complete this challenging task. These networks 
adopt the encoder-decoder structure of convolutional 
neural networks, and use an asymmetrically large encoder 
to extract image features, and a decoder to reconstruct the 
segmentation masks (4). The encoder extracts and computes 
increasingly complex features that are beyond the realm of 
human comprehension using convolution operations. The 
decoder then analyzes the complex features and reconstructs 
the features back into the in-domain data form. However, 
all such image-based networks are affected by a tedious 
image reconstruction process.

The reconstruction of diagnosable images from K-space 
data collected by MRI requires fast Fourier transformation 
(FFT) and image reconstruction algorithms. The 
quantitative error caused by FFT usually leads to image 
information loss and even image distortion. Previous studies 
by James (5), Weinstein (6), Tasche (7), and Kaneko (8) 
revealed this issue. These studies not only showed the error 
characteristics of the performance of FFT on white noise or 
sine wave inputs but also showed the coefficient rounding 
errors of FFT.

Further, different image reconstruction algorithms also 
cause various degrees of image quality loss, especially in 
highly under-sampled K-space data (9,10). All these factors 

significantly affect the image quality of reconstructed MRI 
images and the accuracy of image-based segmentation. In 
addition, to ensure accurate segmentation results, patients 
must be scanned for a relatively long time to collect enough 
K-space data to obtain high-quality reconstructed MRI 
images for segmentation, making disease diagnosis time 
consuming and costly. Additionally, some patients may 
not be able to tolerate the long imaging time due to their 
diseases, which may also cause motion artifacts in MRI 
images (11-13).

Thus,  we hypothesized that  performing lesion 
segmentation directly from K-space data would improve 
segmentation accuracy compared to traditional image-based 
segmentation. In this study, we proposed a new architecture 
that can accomplish the challenging task of automatically 
segmenting brain tumors directly based on K-space data. 
The architecture mainly uses the K-space data of two-
dimensional (2D) MRI images as the input of the semantic 
segmentation neural networks, eliminating the time-
consuming and tedious image reconstruction process. This 
significantly simplified segmentation process, which can be 
compared with the traditional image-based segmentation 
method, is shown in Figure 1.

In this study, we employed the BraTS data set, a widely 
recognized open-source data set in the medical imaging 
field. The BraTS data set comprises MRI scans of brain 
tumors sourced from multiple institutions. It is important 
to note that this data set was assembled under strict ethical 
guidelines (14-16), and comprises the following four types 
of contrast images: T1-weighted images (T1WIs), contrast-
enhanced T1WIs (cT1WIs), T2-weighted images (T2WIs), 
and fluid-attenuated inversion recovery (FLAIR) images, 
which enabled us to directly and quantitatively compare our 
method with a number of other methods.

Methods

BraTS data set

The primary MRI data set used in this study was the 2018 
BraTS Challenge data set. The data set comprised the 
following three sub-data sets: the training data set, test data 
set, and leaderboard data set. The training data set included 
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285 gliomas, comprising 210 patients with high-grade 
gliomas and 75 patients with low-grade gliomas. The data 
of each patient included four contrast images (i.e., a T1WI, 
cT1WI, T2WI, and FLAIR image), which were rigidly 
aligned, re-sampled to an isotropic resolution of 1 mm  
× 1 mm × 1 mm, and skull-stripped. All the patients had 
pixel-wise actual ground truth with the following four 
segmentation labels: non-tumor, edema [whole tumor 
(WT)], enhanced tumor (ET), and necrosis. As we did not 
participate in the 2018 BraTS Challenge, the test data set 
was unavailable. Thus, we divided the training data set into 
a smaller training data set and a test data set at a ratio of 8 
to 2 for this study.

We trained multiple models to accommodate different 
K-space input proportions; each model underwent the 
same single training phase. In the training phase, each 

example consistently included all four modalities (i.e., 
cT1WI, cT1WI, T2, and FLAIR images) to ensure the 
uniform representation of each modality and maintain data 
consistency throughout. Adopting the approach of Menze 
et al. (15,16), the tumor regions were categorized into three 
distinct classes: (I) WT, which encompassed all tumor 
structures; (II) tumor core (TC), which comprised all tumor 
structures with the exclusion of edema; and (III) ET, which 
included ET structures only. The study was conducted in 
accordance with the Declaration of Helsinki (as revised  
in 2013).

Data preparation

The 2D MRI scan slices were generated from the three-
dimensional (3D) MRI scans of gliomas. First, we 

Figure 1 The upper line depicts the traditional image-based segmentation procedure; the K-space data are first reconstructed into an 
image using the inverse FFT and reconstruction algorithm, and the lesion is then segmented based on the image. The lower line depicts 
our proposed segmentation method; the K-space data are directly input into the network, and the segmentation is performed based on the 
K-space data, which not only saves a great deal of time for image preprocessing, but also prevents image information loss. FFT, fast Fourier 
transformation; Rec., reconstruction; Res, residual; BN, batch normalization; ReLU, rectified linear unit; Conv, convolution.
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transformed the 2D MRI scans into 2D K-space data using 
FFT, which did not change the data size; thus, all slices kept 
the size of 160×160×4. The four channels of the input image 
indicate the four multi-contrast images: T1WI, cT1WI, 
T2WI, and FLAIR images. After the image data were 
transformed into K-space data through FFT, the image data 
became a complex number, including the real and imaginary 
parts. Thus, one image input channel corresponded to two 
K-space input channels (i.e., the real and the imaginary 
parts). We then composited the real and imaginary parts of 
the K-space data, setting the data size to 160×160×8. The 
eight channels of the input K-space data indicate the real 
and imaginary parts of the four multi-contrast images. We 
did not use any augmentation methods, as the K-space data 
did not have the same properties as the image data. Finally, 
the simulated under-sampled K-space data were generated 
by linearly eliminating part of the data. In this way, we were 
able to test the clinical application of our architecture.

Deep-residual U-net architecture

The primary architecture employed in this study was the 
deep-residual U-net (17), which was originally designed for 
road extraction tasks. This architecture combines the U-net’s 
encoder-decoder structure with residual blocks, offering 
dual advantages: ease of training and efficient information 
propagation (3,18).

The U-net’s architecture replaces fully-connected layers 
with convolutional layers (2,3) enhancing its performance 
on medical images. Its encoder consists of sequential layers 
of convolution, max-pooling, and rectified linear unit 
(ReLU) blocks, while the decoder employs deconvolution 
blocks for up-sampling. Skip connections between 
corresponding layers in the encoder and decoder facilitate 
backpropagation and preserve finer details.

Deeper neural  networks general ly  yield better 
performance than shallow neural networks, but they 
also complicate training and may lead to performance 
degradation. To address this issue, He et al. introduced 
residual networks that ease training by reformulating 
information flow (18). In a standard neural network block 
(Figure 2A), the output R(x) = y maps input x to output y 
through layers like convolution and ReLU. Conversely, a 
residual block (Figure 2B) includes batch normalization and 
ReLU layers, producing an output F(x). The final output is 
F(x) + x, which combines the identity mapping, x, with the 
specialized mapping, F(x).

Our deep-residual U-net combines these strengths. 
It comprises three main parts: an encoder, a bridge, and 
a decoder. The encoder and decoder each contain three 
residual units, while the bridge serves as a connecting layer. 
Up-sampling layers in the decoder and skip connections 
throughout the architecture, as shown by the dashed line in 
Figure 3, ensure efficient information flow. The details of 
the network layers are provided in Table 1.

Robustness assessment with varying under-sampling rates

In our evaluation, we compared the proposed architecture 
against traditional segmentation tasks using both the 
K-space data and corresponding image data. The K-space 
data were subjected to different under-sampling rates 
to assess the robustness of the segmentation methods. 
The traditional segmentation methods were found to be 
susceptible to information loss, particularly as the under-
sampling rate increased. Conversely, our architecture 

Figure 2 The building blocks of neural networks with different 
training units. (A) Plain neural unit in the classical U-net. (B) 
Residual neural unit in the deep-residual U-net. Conv, convolution; 
ReLU, rectified linear unit; BN, batch normalization.
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showed signs of stabilization even with the reduced K-space 
data, indicating its relative independence from data loss.

Segmentation performance evaluation

We compared our segmentation results with the ground-
truth masks to assess the performance of our architecture. 
To quantify the comparison precisely, we used four different 
evaluation metrics; that is, the Dice similarity coefficient 
(DSC), sensitivity rate, positive predictive value (PPV), 
and Hausdorff_95 distance. These metrics are represented 
below: TP means true positive, TN means true negative, 
FP means false positive, and FN means false negative.

The DSC is the spatial overlap index and represents 
the quantitative similarity between two samples. It is  

expressed as:

2
2

TPDSC
FP TP FN

=
+ +

 [1]

The sensitivity is the percentage of pixels correctly 
classified as brain tumor pixels, and is expressed as:

TPSensitivity
TP FN

=
+

 [2]

The PPV represents the percentage of pixels classified 
correctly over the total number of pixels classified as brain 
tumor pixels, and is expressed as:

TPPPV
TP FP

=
+

 [3]

Figure 3 The main architecture of the deep-residual U-net. Res, residual; BN, batch normalization; ReLU, rectified linear unit; Conv, 
convolution.
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The Hausdorff_95 distance refers to the difference 
between the borders of samples, and is expressed as:

( ) ( ){ }Hausdorff_95 Distance max sup , ,sup ,

s.t. ,

d x Y d X y

x X y Y

=

∈ ∈  
[4]

Loss function

In our study, we adopted a hybrid loss function that 
integrates both binary cross-entropy (BCE) and Dice 
loss, which were tailored for our segmentation task. This 
combination was adopted to harness the stability offered by 
BCE, while also leveraging the unique advantages of Dice 
loss for segmentation. By using both BCE and Dice loss, 
we sought to achieve a more effective optimization process 
tailored to our specific task.

BCE loss was defined as:

( ) ( ) ( ) ( )ˆ ˆ ˆ, log 1 log 1lossBCE y y y y y y= − × + − × −    [5]

Dice loss was defined as:

( ) ˆ2 1ˆ, 1
ˆ 1loss

y yDice y y
y y
× × +

= −
+ +

 [6]

where y is our results, and ŷ is the ground-true masks.
Thus, the BCE Dice loss was the average of BCE loss 

and Dice loss, and was defined as:

( )1
lossDice loss lossBCE BCE Diceα α= × + − ×  [7]

where α is defined as 0.5 in our work.

Experiment settings

In our experiments, the network was designed to produce 
segmentations 3×160×160 in size, where 3 indicates the 
channels and 160×160 represents the spatial dimensions. 
Of our data set, 20% was reserved for testing, while the 
remaining data underwent a 10-fold cross-validation. The 
deep-residual U-net employed for the task was initialized 
using the He Initializer, with a weight decay rate of 0.0001. 
Optimization was carried out using the Adam optimizer, 
with an initial learning rate of 0.0003, a batch size of 18, 
and a momentum of 0.9. To address potential overfitting, 
we incorporated a dynamic early stopping method (19), 
setting the initial number of epochs to 10,000. This 
method was used to monitor the performance metrics and 
halt the training if no improvement was observed over a 
predefined interval. Training was executed on an NVIDIA 
RTX 8000 GPU, with each epoch taking approximately 
four minutes for both the training and validation. For 
testing, the same GPU was used, and the predictions 

Table 1 The deep-residual U-net architecture

Unit level Operations Output size

Input – 8×160×160

L1 Conv + BN + ReLU + Conv + Add 64×160×160

Encoder

L2 Conv + BN + ReLU + Conv + Conv + BN + ReLU + Conv + Add 128×80×80

L3 Conv + BN + ReLU + Conv + Conv + BN + ReLU + Conv + Add 256×40×40

Bridge

L4 Conv + BN + ReLU + Conv + Conv + BN + ReLU + Conv + Add 512×20×20

L5 Upsample + concatenation + BN + ReLU + Conv + BN + ReLU + Conv + Add 256×40×40

Decoder

L6 Upsample + concatenation + BN + ReLU + Conv + BN + ReLU + Conv + Add 128×80×80

L7 Upsample + concatenation + BN + ReLU + Conv + BN + ReLU + Conv + Add 64×160×160

Output 1×1 Conv + sigmoid 3×160×160

The encoder part contains L1, L2, and L3 levels. The bridge part is the L4 level. The decoder part contains L5, L6, and L7 parts. Conv, 
convolution; BN, batch normalization; ReLU, rectified linear unit; Add, addition.
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for the entire data set were completed in 30 minutes (on 
average).

Results

To evaluate the performance of our proposed method, a 
total of 285 patients from the 2018 BraTS Challenge data 
set were used in the training and testing processes. Among 
the corresponding 285 lesions, 210 were high-grade 
gliomas, and 75 were low-grade gliomas, according to the 
pathological results.

Segmentation results based on fully sampled K-space data

The image data were first transformed into fully sampled 
K-space data, and the fully sampled K-space data were then 
used as the input for the deep-residual U-net. The training 
time was approximately 3 days. The training details are 
provided in Appendix 1. The training process is depicted 
in Figure S1. The results of the proposed method and the 
best results of the 2018 BraTS Challenge are shown in 
Table 2 (20). The mean Dice scores of the proposed method 
were 0.8573, 0.8789, and 0.7765 for the segmentation 
of the WT, TC, and ET regions, respectively. With the 
exception of the results for the WT region, our results 
were always better than the state-of-the-art (SOTA) of 
the 2018 BraTS Challenge, which had mean Dice scores 
of 0.8154, and 0.7664 for the segmentation of the TC and 
ET regions, respectively. However, for the segmentation of 
the WT region, the mean Dice score (0.8839) of the best 
results of the 2018 BraTS Challenge was slightly higher 
than our mean Dice score. However, the lower Hausdorff 
distance of our results indicates that our proposed 
architecture performed better than the best results of the 
2018 BraTS Challenge on segmenting details and edges. 
Figure 4 provides two examples of our segmentation results 
compared to the ground truth.

Segmentation results based on under-sampled K-space data

Our proposed architecture’s performance was assessed 
on K-space data that were under-sampled using a specific 
pattern: certain rows of the K-space data were zero-padded 
to emulate the effects of under-sampling. The quantitative 
results of the segmentations (for the WT, TC, and ET 
regions) are presented in Tables 3-5. As the results revealed, 
our architecture remained robust even in the face of K-space 
data loss. It consistently surpassed traditional segmentation 
methods, which involve first transforming the under-
sampled K-space data into the image domain using the 
FFT and then segmenting the reconstructed images. This 
superiority was particularly pronounced when the K-space 
data retention rate was below 68.75%. For example, at an 
under-sampling rate of 18.75%, our method achieved a 
Dice value that was 25% higher than that of the traditional 
approach. This trend was consistent across sensitivity 
and PPV metrics. The Hausdorff distances between the 
two techniques were somewhat similar; however, our 
architecture’s segmentations were more closely aligned 
with the ground-truth masks, suggesting a higher fidelity 
in representation. Visual evidence supporting these claims 
can be found in Figures S2-S4, with a representative 
segmentation displayed in Figure 5.

Discussion

This study highlights the feasibility of using K-space data 
for tumor segmentation. Our method shows promise in 
identifying borders between smaller malignant tissues 
and normal brain tissue, and thus may have potential in 
enhancing microscopic lesion detection. A noteworthy 
feature of our architecture is that directly solving the 
K-space data does not distort the image information, which 
makes our method more reliable for landmark detection, 
registration, brain lesion segmentation, and diagnosis 

Table 2 Mean Dice and Hausdorff values of the proposed method, and the best results of the 2018 BraTS Challenge on the testing data set

Testing data set
Dice Hausdorff (mm)

WT TC ET WT TC ET

Deep-residual U-net 0.8573 0.8789 0.7765 2.5649 1.6146 2.7187

Best results in 2018 0.8839 0.8154 0.7664 5.9044 4.8091 3.7731

BraTS, brain tumor segmentation; WT, whole tumor; TC, tumor core; ET, enhanced tumor.

https://cdn.amegroups.cn/static/public/QIMS-23-946-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-946-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-23-946-Supplementary.pdf


Quantitative Imaging in Medicine and Surgery, Vol 14, No 2 February 2024 2015

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):2008-2020 | https://dx.doi.org/10.21037/qims-23-946

Figure 4 Representative segmentation masks on 2D MRI slices under the condition of 100% K-space data. (A,B) The ground truth, while 
(C,D) the results obtained using our proposed method. In these images, all the visible labels (green, red, and yellow) represent the WT 
region collectively. The red and yellow highlighted regions represent the BraTS TC, and the area highlighted only in yellow represents the 
BraTS ET. 2D, two-dimensional; MRI, magnetic resonance imaging; WT, whole tumor; BraTS, brain tumor segmentation; TC, tumor 
core; ET, enhanced tumor.

Table 3 Comparison of the quantitative results of segmenting the WT based on the under-sampled K-space data with different under-sampling 
rates and corresponding image data, respectively

Under-
sample

Dice Sensitivity PPV Hausdorff

Image K-space Image K-space Image K-space Image K-space

81.25% 0.8065 0.8309 0.8454 0.8345 0.8242 0.8654 2.9091 2.8328

75% 0.8306 0.8407 0.886 0.8506 0.836 0.8688 2.7182 2.7619

68.75% 0.8269 0.8491 0.8778 0.8607 0.8377 0.8714 2.7409 2.7074

62.50% 0.8152 0.8355 0.8526 0.8529 0.8335 0.8564 2.8636 2.8008

56.25% 0.7941 0.8475 0.8393 0.8621 0.8077 0.8695 2.9953 2.6925

50% 0.7724 0.8443 0.8339 0.8595 0.7849 0.8653 3.0678 2.7275

43.75% 0.7858 0.8357 0.8241 0.8539 0.8101 0.8575 3.024 2.7855

37.50% 0.783 0.8268 0.8465 0.8444 0.7928 0.85 3.0056 2.833

33.30% 0.7331 0.8242 0.7898 0.8324 0.7552 0.8565 3.2782 2.8954

25% 0.7523 0.7803 0.8454 0.7743 0.7576 0.8398 3.107 3.133

18.75% 0.5232 0.7721 0.5694 0.7744 0.6064 0.8286 4.3101 3.1739

WT, whole tumor; PPV, positive predictive value.

A

B

C

D
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Table 4 Comparison of the quantitative results of the BraTS (TC) based on under-sampled K-space data with different under-sampling rates and 
corresponding image data, respectively

Under-
sample

Dice Sensitivity PPV Hausdorff

Image K-space Image K-space Image K-space Image K-space

81.25% 0.8541 0.8424 0.9045 0.8941 0.8671 0.8875 1.7754 1.7472

75% 0.8598 0.8656 0.9233 0.9047 0.8801 0.8845 1.664 1.7161

68.75% 0.8639 0.8607 0.9218 0.9041 0.8763 0.8921 1.6858 1.6803

62.50% 0.8562 0.8497 0.9179 0.9032 0.8634 0.8805 1.733 1.7251

56.25% 0.8702 0.8242 0.8947 0.9116 0.8539 0.8908 1.8422 1.6662

50% 0.8619 0.8134 0.9037 0.9126 0.8338 0.8801 1.8803 1.6895

43.75% 0.8563 0.8207 0.8961 0.9047 0.8454 0.8817 1.856 1.7234

37.50% 0.8477 0.8226 0.9108 0.8942 0.8386 0.8798 1.8364 1.7514

33.30% 0.8434 0.7678 0.878 0.9079 0.7957 0.8593 2.0506 1.7719

25% 0.8007 0.7996 0.9036 0.8728 0.8222 0.8399 1.9121 1.9547

18.75% 0.7948 0.5334 0.6981 0.8664 0.6635 0.8402 3.0091 1.9657

BraTS; brain tumor segmentation; TC, tumor core; PPV, positive predictive value.

Table 5 Comparison of the quantitative results of segmenting the ET core based on under-sampled K-space data with different under-sampling 
rates and corresponding image data, respectively

Under-
sample

Dice Sensitivity PPV Hausdorff

Image K-space Image K-space Image K-space Image K-space

81.25% 0.6928 0.7154 0.7319 0.7228 0.7217 0.7573 3.0639 3.008

75% 0.7385 0.735 0.7943 0.7436 0.7518 0.7754 2.8508 2.9288

68.75% 0.734 0.7492 0.7854 0.7665 0.7528 0.7779 2.8788 2.8538

62.50% 0.7073 0.7245 0.7405 0.7457 0.7395 0.7526 3.019 2.9656

56.25% 0.6668 0.7499 0.7138 0.7626 0.687 0.7847 3.1446 2.8545

50% 0.6441 0.744 0.7016 0.758 0.6686 0.7769 3.2298 2.8832

43.75% 0.6604 0.7258 0.694 0.7476 0.6989 0.7548 3.1863 2.9465

37.50% 0.6649 0.7116 0.7207 0.7363 0.6895 0.7389 3.1482 2.9907

33.30% 0.587 0.705 0.6331 0.7133 0.6267 0.7492 3.4362 3.0559

25% 0.6332 0.631 0.7191 0.6243 0.6505 0.7024 3.2105 3.3281

18.75% 0.3408 0.6208 0.3832 0.6269 0.4168 0.685 4.3552 3.3619

ET, enhanced tumor; PPV, positive predictive value.

prediction. Our findings also show that our method is 
adaptable to various rates of under-sampling, a crucial factor 
in accelerating MRI processes. This adaptability indicates 
the practical applicability of our approach in diverse MRI 
scenarios. In summary, our findings suggest that our 

architecture has the potential to complement traditional 
lesion segmentation methods, providing radiologists with 
an additional tool for more accurately assessing glioma 
severity. This approach, subject to further validation, could 
enhance diagnostic accuracy in clinical settings.
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Our analysis indicates that segmentation using fully 
sampled K-space data is potentially better than segmentation 
using image data. This suggests that direct K-space analyses 
might provide a more precise understanding of tumor 
characteristics. Our study reinforces the concept that 
tumor segmentation tasks can be effectively conducted 
independently of traditional image reconstruction 
processes, highlighting the innovative potential of K-space 
data analysis in MRI diagnostics. Using K-space data as 
input for our network appeared to minimize issues typically 
associated with the FFT and reconstruction processes, such 
as artifact generation and data loss. This approach may set 
new benchmarks in the precision of segmentation tasks, as 
evidenced by our comparative performance in the Medical 
Image Computing and Computer Assisted Interventions 
(MICCAI)-2018 BraTS Challenge.

Further, our method reduced the effect of image 
distortion caused by the FFT and reconstruction processes 
or super-resolution networks. Traditional segmentation 
methods that are reliant on processed image data carry 
the risk of introducing artificial anomalies. Conversely, 
using K-space data, our approach potentially offers a more 
accurate representation of actual tissue characteristics. 

Further research needs to be conducted to delve further 
into K-space data analysis to address its challenges and 
harness its unique advantages for MRI diagnostics.

Fully sampled methods are standard in many clinical 
contexts; however, there are challenges in consistently 
obtaining such data, especially given how difficult it is for 
patients to remain completely still during the imaging 
process. This has prompted investigations into under-
sampling techniques. Reconstructed images from under-
sampled K-space data are frequently marred by artifacts, 
which in turn affect the segmentation accuracy.

In our study, we examined the effects of linearly 
eliminating portions of K-space data using Cartesian 
sampling. This method aimed to investigate the balance 
between under-sampling and segmentation fidelity 
(10,21). Some K-space reconstruction methods, such 
as compressed sensing (22) and reconstruction network 
exist; however, the image data still face the difficulty of 
image information distortion or loss. As a solution, we also 
investigated the influence of the under-sampling method 
on our architecture. We eliminated part of the K-space data 
linearly, and then applied the Cartesian sampling method. 
We then compared the segmentation results from the 

Figure 5 Representative results of segmentation of different parts of brain tumors using the proposed K-space based segmentation 
architecture and the traditional image-based segmentation architecture for data with different under-sampling rates. The first row shows 
the cT1WI and the GT of the segmentation of the brain tumor, the second and third rows show the segmentation results based on K-space 
data with different under-sampling rates and corresponding image data, respectively. cT1WI, contrast-enhanced T1-weighted image; GT, 
ground truth.

GT 81.25 K 68.75 K 56.25 K 37.5 K 18.75 K

cT1WI 81.25 I 68.75 I 56.25 I 37.5 I 18.75 I



Li et al. K-space MRI segmentation for glioma diagnosis2018

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(2):2008-2020 | https://dx.doi.org/10.21037/qims-23-946

under-sampled K-space data and the under-sampled image 
data. Our findings indicate that segmentation from under-
sampled K-space data using our architecture can closely 
approximate the results from fully sampled K-space data. 
This is notable, as it reduces the extensive time required 
for K-space reconstruction, a significant factor in MRI 
processing (10,23).

Our analysis suggests that for tumor segmentation tasks, 
K-space data may be more suitable than traditional imaging 
data. The primary reasons for this include the preservation 
of complete information within each point of the K-space 
data and the absence of FFT in our architecture, which 
often leads to data loss in image processing. There are 
two main reasons of implementing our new architecture. 
First, any point of the K-space data contains the complete 
information of one image data slice (21,24). Thus, the 
under-sampling method does not greatly reduce the data 
information during the computation process. As for the 
image data, the reduction of K-space data causes artifacts 
that significantly lower the precision of segmentation 
tasks (24). Second, FFT is not part of our architecture. As 
mentioned above, FFT also causes image data loss.

Conclusions

Our results demonstrate the efficacy of a novel segmentation 
architecture that not only enhances the precision of 
segmentation tasks but also preserves image information 
integrity. This approach underscores both the feasibility 
and potential superiority of our methods, particularly in 
the context of clinical applications. We rigorously tested 
our method using emulated K-space data to establish its 
feasibility in MRI segmentation tasks. Our initial test results 
are promising and suggest a new avenue for segmentation 
approaches in medical imaging. However, it is crucial to 
acknowledge the limitations of our current approach. We 
did not use true K-space data in our experiments, and 
factors such as coil numbers and their sensitivity, which 
can significantly influence K-space data quality, were not 
considered. These limitations highlight important areas for 
future research.

Building on the insights gained from our current study, 
we are exploring the development of a 3D segmentation 
technique based on the V-net (25). This is a natural 
progression, given the 3D nature of most medical imaging 
data sets (26). Our aim is to extend the applicability of our 
architecture to more complex and clinically relevant 3D data.
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