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The integration of ontologies builds knowledge structures which brings new understanding on existing terminologies and their
associations. With the steady increase in the number of ontologies, automatic integration of ontologies is preferable over manual
solutions in many applications. However, available works on ontology integration are largely heuristic without guarantees on the
quality of the integration results. In this work, we focus on the integration of ontologies with hierarchical structures. We identified
optimal structures in this problem and proposed optimal and efficient approximation algorithms for integrating a pair of ontologies.
Furthermore, we extend the basic problem to address the integration of a large number of ontologies, and correspondingly we
proposed an efficient approximation algorithm for integrating multiple ontologies. The empirical study on both real ontologies
and synthetic data demonstrates the effectiveness of our proposed approaches. In addition, the results of integration between gene
ontology and National Drug File Reference Terminology suggest that our method provides a novel way to perform association
studies between biomedical terms.

1. Introduction

In recent years, ontologies are becoming increasingly impor-
tant in knowledge engineering. Generally speaking, an ontol-
ogy is a collection of concepts and their relations. It has wide
applications in computer science and life science. For exam-
ple, in computer science, semantic web uses web ontology
language (OWL) to represent knowledge bases [1]. In life sci-
ences, numerous important data structures and tools are built
on ontologies. One of the most popular ontologies is gene
ontology. Researchers use it frequently tomeasure the enrich-
ment of gene clusters and to identify potential biomarkers.
Two most famous ontology databases in the biomedical field
areUnifiedMedical Language System (UMLS) [2] andNCBO
BioPortal (https://bioportal.bioontology.org/). The former
has more than 100 ontology datasets and the latter has more
than 300 ontology datasets.

Although ontologies can be modeled as a directed graph,
many ontologies are in fact hierarchical trees or have hier-
archical tree-like structures. In the BioPortal website, users

can find basic hierarchical properties of an ontology, such as
the maximum depth and the maximum number of children.
In the UMLS, the hierarchical structure of an ontology is
documented in the “MRHIER.RRF” file with each line being
a path from a term to its root. We can build a hierarchical
tree from these paths by merging the common nodes starting
from the root. Because the hierarchical structures of some
ontologies are in fact directed acyclic graphs, the hierarchical
tree may contain some duplicated concepts. To simplify our
study, we treat them as independent concepts in this work.

An important knowledge discovery task is to identify
knowledge associations. In life science, this task includes
finding the associations between diseases and genes [3, 4] and
between phenotypes and genotypes [5]. With the presence of
ontologies, such a task has been extended from identifying
the associations between terms to the associations between
ontologies as a whole. For the latter, we should not only
consider the term associations, but also the term associations
in the context of their ontological structures. For example, if
the parent and children of term 𝑎 (𝑎 from ontology 𝐴) are

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 501528, 14 pages
http://dx.doi.org/10.1155/2015/501528

http://dx.doi.org/10.1155/2015/501528


2 BioMed Research International

Disease

Disease

Infectious 
disease

Infectious 
disease

Cancer

Cancer

Skin 
cancer

Skin 
cancer

Flu

Flu

Hepatitis B

Hepatitis B

Medicine

Medicine

Radiation

Radiation Vaccination

Vaccination

Brachy-
therapy

Brachy-
therapy

Radio-
isotape

Radio-
isotape

Influenza 
vaccine

Influenza 
vaccine

HBV 
vaccine

HBV 
vaccine

Thyroid 
cancer

Thyroid 
cancer

· · ·

· · ·

· · ·

Figure 1: A simple example of integrating two hypothetical ontologies.

similar to those of term 𝑏 (𝑏 from ontology 𝐵),Then 𝑎may be
a good choice to be associated with 𝑏.

Early studies on ontology integration relied on domain
experts to manually set up the integration rules [6]. However,
this approach cannot meet the ever increasing volume of
ontology datasets. Automatic ontology integration methods
have been developed to address this issue. However, as we
will see in the discussions of Section 1.3, these methods are
often heuristic or have not demonstrated the effectiveness
in integrating a large volume of ontology datasets. Thus,
our goal is to develop an ontology integration method that
is able to deliver optimal or close-to-optimal solutions for
integrating a large volume of ontology datasets (particularly
from the biomedical domain). As discussed above, we focus
on ontologies with hierarchical tree-like structures which
are often available in the biomedical domain. In addition,
we assume the ontology term closeness measurement is
available. This assumption is reasonable because many appli-
cations are able to identify ontology term similarities via
additional data sources. For example, a closeness matrix
between two sets of biomedical terms can be generated by
usingUMLS knowledge discoverymethods such as kDLS [7].
Our problem can be formally described as follows.

1.1. Problem Formulation. The basic ontology integration
problem in our work can be formulated as follows. Given
ontology tree structures 𝑇

𝐴
and 𝑇

𝐵
and a closeness matrix

𝑀
𝐴𝐵
, how can we efficiently generate an integrated ontology

tree structure 𝑇
𝐴𝐵

meeting the following two basic criteria?

(1) For any two vertices 𝑥 and 𝑦 in 𝑇
𝐴
(or 𝑇
𝐵
), the lowest

common ancestor LCA
𝑇𝐴
(𝑥, 𝑦) (or LCA

𝑇𝐵
(𝑥, 𝑦)) is

contained by LCA
𝑇𝐴𝐵
(𝑥, 𝑦).

(2) It holds that argmax
𝑇𝐴𝐵
𝑓(𝑇
𝐴𝐵
) = ∑

𝑋∈𝑉(𝑇𝐴𝐵)
𝑀
𝐴𝐵
(𝑋).

Here 𝑀
𝐴𝐵
(𝑋) is the entry value in the closeness

matrix for the corresponding two vertices (one from

𝑇
𝐴
and the other from 𝑇

𝐵
) contained in the node 𝑋.

𝑀
𝐴𝐵
(𝑋) = 0 if 𝑋, a node of 𝑇

𝐴𝐵
, contains only one

vertex from 𝑇
𝐴
or 𝑇
𝐵
.

We name 𝑓
𝑇𝐴𝐵

the cohesion function of the integrated ontol-
ogy𝑇
𝐴𝐵

and its value is the overall cohesion score of integrat-
ing 𝑇
𝐴
and 𝑇

𝐵
into 𝑇

𝐴𝐵
. Correspondingly, we define function

𝑔(𝑇
𝐴
, 𝑇
𝐵
) = max

𝑇𝐴𝐵
(∑V∈𝑉(𝑇𝐴𝐵)𝑀𝐴𝐵(V)) as the maximum

cohesion function for integrating the ontologies 𝑇
𝐴
and 𝑇

𝐵

and its value is the maximum overall cohesion score (or,
simply,maximum cohesion score). In a hierarchical ontology,
the common part of any two terms can be described by their
lowest common ancestor. For example, in Figure 1, flu and
hepatitis B are both infectious diseases, and flu and cancer
are both diseases. Thus, we use Criterion (1) to ensure that
the basic logic of an ontology is preserved after integration.

An example of integrating two hypothetical ontologies
that satisfy Criterion (1) is given in Figure 1. To facilitate the
understanding of our problem definition, we also provide
another example of integrating two ontologies in Figure 2. As
we can see in Figure 2, the lowest common ancestor of nodes
containing thyroid cancer and infectious disease is the node
containing cancer instead of disease. We conclude that the
integration is a violation of Criterion (1). In fact, we can easily
see that there aremultiple pairs of nodeswith incorrect lowest
common ancestors in Figure 2.

In Section 2.2, wewill extend the basic problemdefinition
to handle the integration of multiple (>2) ontologies.The two
basic criteria will be extended correspondingly.

1.2. Main Contributions. We made the following major con-
tributions in this work.

(i) We proposed a novel ontology integration problem
that optimizes the cohesion function. We identified
optimal structures in this problem and developed
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Figure 2: Another example of integrating the two ontologies in Figure 1. This integration violates Criterion (1).

optimal as well as efficient approximation solutions
for this problem.

(ii) We extended the basic problem to handle the integra-
tion of large number of ontologies, and we developed
both greedy and fast approximation algorithms for
the extended problem.

(iii) We studied the proposed algorithms on both real and
synthetic datasets and confirmed their effectiveness in
integrating large volume of ontology datasets.

1.3. Related Work. Automatic ontology generation and inte-
gration are desirable in many applications and have been
studied in the past decade. Although available methods for
automatic ontology generation produce ontologies from a
given type of data, such as gene networks [8], textual data [9],
dictionary [10], and schemata [11, 12], they do not contribute
to the integration of different types of ontologies which will
bring innovative results on annotation/knowledge reuse and
association studies. To address this issue, a number of studies
have been focused on ontology integration [13, 14] and its
medical domain applications [15]. The ontology integration
methods available and used in these works can be generally
classified into three categories.

Manually or Semiautomatic Setups. In [6], the authors pre-
sented a methodology for ontology integration by custom-
tailored integration operations which include algebraic-
specified 39 basic operations and 12 nonbasic operations
derived from them. The authors identified a set of criteria,
such as modularize, specialize, and diversify each hierarchy,
for guiding the knowledge integration. In [16], the authors
designed a semiautomatic approach for ontology merging.
The ontology developers will be assisted by the system and
guided to tasks needing their interventions.

Using Machine Learning Methods. Reference [17] describes
an ontology mapping system GLUE that uses machine
learning techniques for building ontology mappings. Specif-
ically, GLUE uses multiple learning strategies. Each type of
information from the ontologies is handled by a different

learning strategy. The authors demonstrate that GLUE works
effectively on taxonomy ontologies. Similarly, [18] also used
multistrategy learning in matching pair identification. How-
ever, the ontologies used in the experiments of [18] contain
less than 10 nodes. Although [17] studied the integration
of larger ontologies in the experiments, those ontologies
contain only around 34 to 176 nodes,much smaller thanmany
ontologies used in the biomedical field.

Using Heuristic Approaches. Many automatic ontology inte-
gration methods [19, 20] fall into this category.They perform
ontology integrations by using heuristic approaches from dif-
ferent perspectives. For example, [20] uses heuristic policies
for selecting axioms and candidate merging pairs. From a
quite different angle, [19] uses view-based query for guiding
the ontology integrations.

Thesemethods have a fewmajorweaknesses including (1)
lack of a systematicmeasurement to quantify the goodness for
the ontology integration; (2) being generally heuristic with
no theoretical results to show that the proposed integration
approach is globally optimal or close to optimal; (3) being not
for integrating large volume of ontologies. These weaknesses
motivated us to develop efficient and near optimal solutions
for integrating large ontology datasets.

2. Methods

2.1. Integrating a Pair of Ontologies. In this section, we
focus on the basic problem of integrating two ontologies as
formulated in Section 1.1. We will prove optimal structures
in the problem and propose an optimal and an efficient
approximation solution for this problem. These solutions are
also the basis for solving the problem of integrating a large
number of ontologies as described in Section 2.2.

2.1.1. Brutal-Force and Heuristic Solutions. Given Criteria
(1) and (2), a brutal-force approach will pick up a best solu-
tion fromall the solutions that startwith integration involving
at least one of the roots of the two ontology trees and iter-
atively integrate their descendants. Considering an extreme
case where each ontology tree is a path of 𝑛 vertices, we
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push (0, 0) into queue 𝑞; {Integrating virtual roots of the two ontologies}
while |𝑞| > 0 do
(𝑎, 𝑏) = 𝑝𝑜𝑝(𝑞);
for 𝑖 ∈ children of 𝑎 on 𝑇

𝐴
do

𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 = −1;
𝑡𝑜 𝑚𝑒𝑟𝑔𝑒 = 𝑁𝑈𝐿𝐿;
𝑡𝑜 𝑚𝑒𝑟𝑔𝑒 𝑟𝑜𝑜𝑡 = 𝑁𝑈𝐿𝐿;
for 𝑗 ∈ children of 𝑏 on 𝑇

𝐵
do

if 𝑗 is chosen then
continue; {The subtree rooted at 𝑗 can only be chosen once for integration, as illustrated in Figure 3.}

else
identify vertex 𝑘 in the subtree rooted at 𝑗 such that argmax

𝑘
(𝑀
𝐴𝐵
(𝑖, 𝑘)/𝛽

distance(𝑘,𝑗)
);

if 𝑀
𝐴𝐵
(𝑖, 𝑘) > 𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 then

𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒 = 𝑀
𝐴𝐵
(𝑖, 𝑘);

𝑡𝑜 𝑚𝑒𝑟𝑔𝑒 = 𝑘;
𝑡𝑜 𝑚𝑒𝑟𝑔𝑒 𝑟𝑜𝑜𝑡 = 𝑗;

end if
end if

end for
if 𝑡𝑜 𝑚𝑒𝑟𝑔𝑒 = 𝑁𝑈𝐿𝐿 then
break;

else
save merge pair (𝑖, 𝑡𝑜 𝑚𝑒𝑟𝑔𝑒) in 𝑇

𝐴𝐵
;

mark 𝑡𝑜 𝑚𝑒𝑟𝑔𝑒 𝑟𝑜𝑜𝑡 as chosen;
push (𝑖, 𝑡𝑜 𝑚𝑒𝑟𝑔𝑒) into queue 𝑞;

end if
end for

end while
return 𝑇

𝐴𝐵
;

Algorithm 1: HeuristicMerge(𝑇
𝐴
, 𝑇
𝐵
,𝑀
𝐴𝐵
).

conclude that such a brutal-force approach needs to pick up
a best solution from an exponential number of solutions.The
brutal-force approach is clearly not acceptable for integrating
large ontologies and may not even work for ontologies with
only a few dozens of vertices.

A heuristic solution can be developed by following an
idea similar to the above brutal-force approach. However,
instead of trying all possibilities, the heuristic solution will
greedilymerge vertices following the topological order.When
selecting a matching vertex for vertex 𝑎 from ontology
𝑇
𝐴
, the heuristic approach will greedily select a vertex 𝑏

from allowable candidates in 𝑇
𝐵
and iteratively apply such

selections to descendants of 𝑎. According to Criterion (1), if 𝑎
is associated with 𝑏, then none of 𝑎’s descendants are allowed
to be associated with vertices other than 𝑏’s descendants. In
addition, if 𝑎’s child 𝑎 is associated with 𝑏’s child 𝑏 or its
descendants, then none of 𝑎’s other children are allowed to
be associated with 𝑏 or its descendants any more. Given this,
a greedy choice may very easily end up in a local optimum by
choosing a best matching vertex at one step, while denying
integrating opportunities of other vertices that may lead to a
better final solution.

It is easy to see that the deeper a vertex being chosen for
integration is, the more integration opportunities are lost. To
alleviate such a situation, we propose a greedy approach by
considering the relative depth (rdepth) of a chosen vertex
with regard to an allowable vertex closest to the root. That is,

given a vertex 𝑎 from 𝑇
𝐴
, a vertex 𝑏 from 𝑇

𝐵
is chosen when

𝑀
𝐴𝐵
(𝑎, 𝑏)/𝛽

rdepth(𝑏) is maximized. When 𝛽 = 1, the depth
information does not take effective and when 𝛽 = ∞, each
vertex will only be associated with an allowable vertex closest
to the root.

Algorithm 1 describes the pseudocode of the heuristic
integration. It starts by integrating virtual roots of the two
ontologies. After that, the integration will be carried out
iteratively from top to bottom by following Criterion (1) and
the heuristic strategy described above. In the empirical study,
we will see that the heuristic algorithm works better when
the depth information is considered. However, in terms of
the overall cohesion score, it is no match for our optimal and
approximation solutions as described below.

2.1.2. Optimal and Approximation Solutions. By dividing the
integration of two trees into node merging and subtree
integrations, we have identified optimal structures in the
basic problem, as stated by Lemmas 1 and 2. These optimal
structures make it possible for us to develop efficient algo-
rithms (Algorithms 2 and 3) that achieve optimal or approx-
imation solutions. In the following, we first describe the
two important lemmas suggesting the optimal structures and
their proofs before describing our proposed algorithms.

Lemma 1. Let 𝑟
𝑎
be the root of tree𝑇

𝐴
and 𝑟
𝑏
the root of tree𝑇

𝐵
.

Let𝑇
𝐴−𝑟𝑎

and𝑇
𝐵−𝑟𝑏

represent two sets of sub trees rooted at 𝑟
𝑎
of
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Figure 3: An illustration of three cases in the proof of Lemma 2.

Sort vertices in 𝑇
𝐴
and 𝑇

𝐵
in the topological order;

for 𝑖 = |𝑉(𝑇
𝐴
)| to 0 do

for 𝑗 = |𝑉(𝑇
𝐵
)| to 0 do

𝑠𝑐𝑜𝑟𝑒 = 𝑀
𝐴𝐵
(𝑖, 𝑗) + 𝑀𝑎𝑥𝑀𝑎𝑡𝑐ℎ(𝑇

𝐴−𝑖
, 𝑇
𝐵−𝑗
);

𝑠𝑐𝑜𝑟𝑒
𝑎
= 𝑀𝑎𝑥𝑀𝑎𝑡𝑐ℎ(𝑇

𝐴−𝑖
, 𝑇
𝑗
);

𝑠𝑐𝑜𝑟𝑒
𝑏
= 𝑀𝑎𝑥𝑀𝑎𝑡𝑐ℎ(𝑇

𝑖
, 𝑇
𝐵−𝑗
);

𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥(𝑖, 𝑗) = max(𝑠𝑐𝑜𝑟𝑒, 𝑠𝑐𝑜𝑟𝑒
𝑎
, 𝑠𝑐𝑜𝑟𝑒

𝑏
);

end for
end for
return 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥;

Algorithm 2: BuildCohesionMatrix(𝑇
𝐴
, 𝑇
𝐵
).

𝑇
𝐴
and 𝑟
𝑏
of𝑇
𝐵
, respectively.𝑇

𝐴−𝑟𝑎
does not include 𝑟

𝑎
and𝑇
𝐵−𝑟𝑏

does not include 𝑟
𝑏
. One has 𝑔(𝑇

𝐴
, 𝑇
𝐵
) = max(𝑀

𝐴𝐵
(𝑟
𝑎
, 𝑟
𝑏
) +

𝑔(𝑇
𝐴−𝑟𝑎
, 𝑇
𝐵−𝑟𝑏
), 𝑔(𝑇
𝐴
, 𝑇
𝐵−𝑟𝑏
), 𝑔(𝑇
𝐴−𝑟𝑎
, 𝑇
𝐵
)).

Proof. We can divide the integration of tree 𝑇
𝐴
with tree 𝑇

𝐵

into two cases according to the merging of their roots.

(1) The roots of 𝑇
𝐴
and 𝑇

𝐵
are merged together.

(2) The roots of 𝑇
𝐴
and 𝑇

𝐵
are not merged together.

For case (1), it is clear that the cohesion score is𝑀
𝐴𝐵
(𝑟
𝑎
, 𝑟
𝑏
)+

𝑔(𝑇
𝐴−𝑟𝑎
, 𝑇
𝐵−𝑟𝑏
).

For case (2), we conclude that either 𝑇
𝐴
is integrated with

𝑇
𝐵−𝑟𝑏

(𝑟
𝑏
is out of integration) or 𝑇

𝐵
is integrated with 𝑇

𝐴−𝑟𝑎

(𝑟
𝑎
is out of integration). Otherwise, we will have a merged

tree 𝑇
𝐴𝐵

with two roots 𝑟
𝑎
and 𝑟

𝑏
, a contradiction to the

fact that 𝑇
𝐴𝐵

is a tree. Therefore, the cohesion score is either
𝑔(𝑇
𝐴
, 𝑇
𝐵−𝑟𝑏
) or 𝑔(𝑇

𝐴−𝑟𝑎
, 𝑇
𝐵
).

Combining cases (1) and (2) and according to Criterion
(2), we have

𝑔 (𝑇
𝐴
, 𝑇
𝐵
) = max (𝑀

𝐴𝐵
(𝑟
𝑎
, 𝑟
𝑏
) + 𝑔 (𝑇

𝐴−𝑟𝑎
, 𝑇
𝐵−𝑟𝑏
) ,

𝑔 (𝑇
𝐴
, 𝑇
𝐵−𝑟𝑏
) , 𝑔 (𝑇

𝐴−𝑟𝑎
, 𝑇
𝐵
)) .

(1)

Lemma 2. Let 𝑇
𝐴−𝑟𝑎

and 𝑇
𝐵−𝑟𝑏

represent two sets of trees
obtained by removing the root vertices 𝑟

𝑎
from 𝑇

𝐴−𝑟𝑎
and 𝑟
𝑏

from 𝑇
𝐵−𝑟𝑏

. One has

𝑔 (𝑇
𝐴−𝑟𝑎
, 𝑇
𝐵−𝑟𝑏
) = max( ∑

(𝑇𝑥 ,𝑇𝑦)∈𝑅

(𝑔 (𝑇
𝑥
, 𝑇
𝑦
))) . (2)

Here 𝑇
𝑥
∈ 𝑇
𝐴−𝑟𝑎

, 𝑇
𝑦
∈ 𝑇
𝐵−𝑟𝑏

, and 𝑅 is a matching of trees in
𝑇
𝐴−𝑟𝑎

with trees in 𝑇
𝐵−𝑟𝑏

.

Proof. To prove this lemma, we first prove that for any tree
𝑇
𝑥
∈ 𝑇
𝐴−𝑟𝑎

, it can be integrated with no more than one tree
in 𝑇
𝐵−𝑟𝑏

. We will prove this claim by contradiction. Assume
there are two trees 𝑇

𝑦1
∈ 𝑇
𝐵−𝑟𝑏

and 𝑇
𝑦2
∈ 𝑇
𝐵−𝑟𝑏

and they
integrate with a tree𝑇

𝑥
∈ 𝑇
𝐴−𝑟𝑎

into an integrated tree𝑇
𝑥,𝑦1,𝑦2

.
There are three cases for the root 𝑟 of 𝑇

𝑥,𝑦1,𝑦2
, as illustrated in

Figure 3:

(1) 𝑟 contains only the root of 𝑇
𝑥
;

(2) 𝑟 contains only the root of 𝑇
𝑦1
or 𝑇
𝑦2
;

(3) 𝑟 contains the root of 𝑇
𝑥
and the root of 𝑇

𝑦1
or 𝑇
𝑦2
.

For case (1), the lowest common ancestor of the roots of 𝑇
𝑦1

and 𝑇
𝑦2
in the integrated tree 𝑇

𝑥,𝑦1,𝑦2
will no longer contain

their lowest common ancestor in 𝑇
𝐵
, a contradiction to
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push (0, 0,𝑁𝑈𝐿𝐿) into queue 𝑞;
while |𝑞| > 0 do
(𝑎, 𝑏, 𝑐) = 𝑝𝑜𝑝(𝑞);
if 𝑎 = −1 then
make 𝑇

𝐵
(𝑏) as a subtree of 𝑇

𝐴𝐵
rooted at 𝑏; {𝑇

𝐵
(𝑏) is a sub tree of 𝑇

𝐵
rooted at 𝑏}

else if 𝑏 = −1 then
make 𝑇

𝐴
(𝑎) as a subtree of 𝑇

𝐴𝐵
rooted at 𝑎; {𝑇

𝐴
(𝑎) is a sub tree of 𝑇

𝐴
rooted at 𝑎}

else
let 𝑑 = (𝑎, 𝑏) and make 𝑑 a child of 𝑐 on 𝑇

𝐴𝐵
;

𝑠𝑐𝑜𝑟𝑒 = 𝑀
𝐴𝐵
(𝑎, 𝑏) + 𝑀𝑎𝑥𝑀𝑎𝑡𝑐ℎ(𝑇

𝐴−𝑎
, 𝑇
𝐵−𝑏
);

𝑠𝑐𝑜𝑟𝑒
𝑎
= 𝑀𝑎𝑥𝑀𝑎𝑡𝑐ℎ(𝑇

𝐴−𝑎
, 𝑇
𝑏
);

𝑠𝑐𝑜𝑟𝑒
𝑏
= 𝑀𝑎𝑥𝑀𝑎𝑡𝑐ℎ(𝑇

𝑎
, 𝑇
𝐵−𝑏
);

if 𝑠𝑐𝑜𝑟𝑒 >= 𝑠𝑐𝑜𝑟𝑒
𝑎
&& 𝑠𝑐𝑜𝑟𝑒 >= 𝑠𝑐𝑜𝑟𝑒

𝑏
then

push matching results of 𝑇
𝐴−𝑎
, 𝑇
𝐵−𝑏

with 𝑑 into 𝑞;
else if 𝑠𝑐𝑜𝑟𝑒

𝑎
>= 𝑠𝑐𝑜𝑟𝑒

𝑏
then

push matching results of 𝑇
𝐴−𝑎
, 𝑇
𝑏
with 𝑑 into 𝑞;

else
push matching results of 𝑇

𝑎
, 𝑇
𝐵−𝑏

with 𝑑 into 𝑞;
end if

end if
end while
return 𝑇

𝐴𝐵
;

Algorithm 3: BuildNewOnto(cohesion matrix, 𝑇
𝐴
, 𝑇
𝐵
).

Criterion (1). For cases (2) and (3), the root of 𝑇
𝑦2
(or the root

of 𝑇
𝑦1
) will be the descendant of the root of 𝑇

𝑦1
(or the

root of 𝑇
𝑦2
) in the integrated tree 𝑇

𝑥,𝑦1 ,𝑦2
, a contradiction to

Criterion (1). For integration involving more than two trees
from 𝑇

𝐵−𝑟𝑏
, we can still follow the above procedure to reach

contradictions. Thus, the claim is proven.
Without loss of generality, we can see that, for any

tree 𝑇
𝑦
∈ 𝑇
𝐵−𝑟𝑏

, it can be integrated with no more than
one tree in 𝑇

𝐴−𝑟𝑎
. Therefore, the integration between 𝑇

𝐴−𝑟𝑎

and 𝑇
𝐵−𝑟𝑏

corresponds to a matching in a weighted bipar-
tite graph in which two sets of nodes represent trees
from 𝑇

𝐴−𝑟𝑎
and 𝑇

𝐵−𝑟𝑏
, respectively, and edges represent

corresponding cohesion scores. According to Criterion (2),
𝑔(𝑇
𝐴−𝑟𝑎
, 𝑇
𝐵−𝑟𝑏
) = max(∑

(𝑇𝑥 ,𝑇𝑦)∈𝑅
(𝑔(𝑇
𝑥
, 𝑇
𝑦
))) and we con-

clude that 𝑔(𝑇
𝐴−𝑟𝑎
, 𝑇
𝐵−𝑟𝑏
) corresponds to the weight of amax-

imum weighted matching in the above bipartite graph.

Given Lemma 2, we can see that the following corollary is
correct.

Corollary 3. Define MaxMatch(𝑋, 𝑌) = ∑
(𝑇𝑥 ,𝑇𝑦)∈𝑅

𝑔(𝑇
𝑥
, 𝑇
𝑦
),

where 𝑅 is a maximum weighted matching of trees in forests
𝑋 and 𝑌 given 𝑔(𝑇

𝑥
, 𝑇
𝑦
) for any tree pair (𝑇

𝑥
, 𝑇
𝑦
) ∈ 𝑋 × 𝑌.

One concludes that, for any two forests 𝑇
𝐴
and 𝑇

𝐵
, 𝑔(𝑇
𝐴
, 𝑇
𝐵
) =

MaxMatch(𝑇
𝐴
, 𝑇
𝐵
).

With Lemma 1 and Corollary 3, we are able to design
an efficient dynamic programming algorithm achieving the
global optimum for the ontology integration problem. The
pseudocode for calculating the maximum cohesion score is
described in Algorithm 2, which visits ontology vertices in
reverse topological order when filling up the cohesionmatrix.

At the end of Algorithm 2, the cohesion matrix is filled
up with optimal cohesion scores and the maximum cohesion
score is saved at entry (0, 0), as described byTheorem 4.

Theorem 4. It holds that cohesion matrix(𝑖, 𝑗) = 𝑔(𝑇
𝐴−𝑖
,

𝑇
𝐵−𝑗
) and cohesion matrix(0, 0) = 𝑔(𝑇

𝐴
, 𝑇
𝐵
).

Proof. We will prove this theorem by mathematical induc-
tion.

Let |𝑉(𝑇
𝐴
)| = 𝑛 and |𝑉(𝑇

𝐵
)| = 𝑚; it is easy to see

that cohesion matrix(𝑛,𝑚) is optimal because 𝑛 and 𝑚
correspond to leaf nodes in the topological order. Thus
𝑇
𝐴−𝑛

and 𝑇
𝐵−𝑚

are empty sets and cohesion matrix(𝑛,𝑚) =
𝑀
𝐴𝐵
(𝑛,𝑚) = 𝑔(𝑇

𝑛
, 𝑇
𝑚
).

When 𝑖 = 𝑛 and 𝑗 < 𝑚, according to Lemma 1, to integrate
𝑇
𝑛
with 𝑇

𝑗
, either 𝑇

𝑛
(the leaf vertex) is merged with 𝑇

𝑗
or 𝑇
𝑛

is integrated with 𝑇
𝐵−𝑗

. The maximum score of integrating
𝑇
𝑛
with 𝑇

𝐵−𝑗
is available at the time cohesion matrix(𝑛, 𝑗) is

being calculated because of the reverse topological visit.Thus,
according to both Lemma 1 and Corollary 3, we conclude
that 𝑔(𝑇

𝑛
, 𝑇
𝑗
) = max(𝑀

𝐴𝐵
(𝑛, 𝑗),MaxMatch(𝑇

𝑛
, 𝑇
𝐵−𝑗
)) =

cohesion matrix(𝑛, 𝑗). Similarly, we can conclude that
𝑔(𝑇
𝑖
, 𝑇
𝑚
) = max(𝑀

𝐴𝐵
(𝑖, 𝑚),MaxMatch(𝑇

𝐴−𝑖
, 𝑇
𝑚
)) =

cohesion matrix(𝑖, 𝑚).
When 𝑖 < 𝑛 and 𝑗 < 𝑚, again, according to

Lemma 1 and Corollary 3, we have 𝑔(𝑇
𝑖
, 𝑇
𝑗
) = max(score,

score
𝑎
, score

𝑏
) = cohesion matrix(𝑖, 𝑗). Due to the reserve

topological visit, MaxMatch(𝑇
𝐴−𝑖
, 𝑇
𝐵−𝑗
), MaxMatch(𝑇

𝐴−𝑖
,

𝑇
𝑗
), and MaxMatch(𝑇

𝑖
, 𝑇
𝐵−𝑗
) are available at the time

cohesion matrix(𝑖, 𝑗) is being calculated.

Given the definition of 𝑔(𝑇
𝐴
, 𝑇
𝐵
), Theorem 4 in fact

proves that the proposed approach achieves the global opti-
mum. However, the global optimal solution is built upon
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themaximumweightedmatching (recall Corollary 3). As dis-
cussed in Section 2.1.3, the maximum weighted matching is
time-consuming and therefore we propose an approximation
solution in that section.

Although Algorithm 2 builds the cohesion matrix with
optimal cohesion scores, it does not construct the integrated
ontological knowledge structure. We may save the ontology
integration details along with the cohesion scores. However,
that will cost 𝑂(𝑛3) memory space (assuming each ontology
has 𝑂(𝑛) vertices) and significantly reduce the capacity of
the algorithm in handling large ontology integrations. Quite
interestingly, we find that it is not necessary to save the inte-
gration details in order to construct the integrated ontology.
The construction can be done by a process reverse to the
construction of cohesionmatrix, as described inAlgorithm 3.

Algorithm 3 uses the cohesion matrix constructed by
Algorithm 2 and builds the integrated ontology tree still by
following Lemma 1 and Corollary 3, but in a reverse way of
Algorithm 2. The construction is performed in a Breadth-
First fashion which uses a queue 𝑞 to maintain triples. Each
triple (𝑎, 𝑏, 𝑐) is an association of three elements: 𝑎 is the
matched vertex from ontology 𝑇

𝐴
; 𝑏 is the matched vertex

from ontology 𝑇
𝐵
; and 𝑐 is their parent on the merged

ontology 𝑇
𝐴𝐵
. By following the basic idea of the proof of

Theorem 4 we can show that Algorithm 3 builds an optimal
integrated ontology with the cohesion matrix provided from
Algorithm 2. We omit the proof for succinctness.

2.1.3. Time Complexity Analysis and an Approximation Solu-
tion. Assume an ontology size is 𝑂(𝑛). The cohesion matrix
has 𝑂(𝑛2) entries to fill up. The computation for each entry
is a matching whose time complexity depends on the imple-
mentation. The maximum weighted matching takes 𝑂(𝑛3)
using the famous Hungarian algorithm [21], and although
it achieves optimum, it is too costly for large ontologies.
The maximal weighted matching, however, takes 𝑂(𝑛2 log 𝑛)
time and, more importantly, results in an overall 𝑂(𝑛2 log 𝑛)
time complexity for Algorithm 2. The analysis is given in
the following. For each matching, the algorithm will access
previously filled entries and each entry will be accessed only
once and be involved only once in a sorting of 𝑂(log 𝑛)
time. This is because each entry corresponds to two vertices
whose cohesion score will be accessed when calculating the
cohesion score of their parents. Thus, we conclude that the
total time complexity of calculating the cohesionmatrix using
maximal weightedmatching is𝑂(𝑛2+𝑛2 log 𝑛) = 𝑂(𝑛2 log 𝑛).
Since building the new ontology has the same time com-
plexity as building the cohesion matrix, this is also the total
time complexity for integrating two ontologies by maximal
weightedmatching.Themaximal weightedmatching also has
a guaranteed lower bound on the results. It achieves a (1/2)-
approximation solution (i.e., the overall cohesion score will
be at least 1/2 of the optimal cohesion score) as pointed out in
[22].

Since themaximalweightedmatching results in an overall
good performance on time complexity and approximation
rate, we used the maximal weighted matching in our empir-
ical study for Algorithms 2 and 3. Readers may also choose

othermatching algorithms (such as the one described in [22])
to achieve slightly better approximation rates. However, the
weightedmatching is a replaceablemodule for our algorithms
and it is not the focus of this work to build a fast and close-
to-optimal weighted matching algorithm.

Compared to the time complexity of integrating ontolo-
gies by the dynamic programming approach as described
in Algorithms 2 and 3, the heuristic approach described at
the beginning of this section also has 𝑂(𝑛2) in the worst
case. However, we conjecture that the heuristic approach has
a much smaller average time complexity because, in each
step, the heuristic approach may exclude a large number of
matching opportunities.

2.2. Integrating Multiple Ontologies. In the previous section
we proposedmethods for integrating two ontologies. In some
biomedical applications [23, 24], we are interested in the
associations involving more than two objects. Integration
of multiple ontologies of these objects will generate an
innovative view on these complex relationships. Similar to
the basic problem formulation, we can formulate themultiple
ontology integration as follows.

Given 𝑘 ontology trees 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
and a closeness

matrix𝑀
𝑖𝑗
for any two trees 𝑇

𝑖
and 𝑇

𝑗
, how can we efficiently

generate an integrated ontology tree 𝑇
1,2,...,𝑘

meeting the
following criteria?

(1) For any two vertices 𝑥 and 𝑦 in a tree 𝑇
𝑖
, their

lowest common ancestor LCA
𝑇𝑖
(𝑥, 𝑦) is contained by

LCA
𝑇1,2,...,𝑘
(𝑥, 𝑦).

(2) It holds that argmax
𝑇1,2,...,𝑘
𝑓(𝑇
1,2,...,𝑘

) =

∑
𝑋∈𝑉(𝑇𝐴𝐵)

∑
𝑢∈𝑋,V∈𝑋,𝜎(𝑢)<𝜎(V)𝑀𝜎(𝑢),𝜎(V)(𝑢, V). Here

𝑀
𝜎(𝑢),𝜎(V)(𝑢, V) is the entry value in the closeness

matrix for two vertices 𝑢 and V (one from tree 𝑇
𝜎(𝑢)

and the other from tree 𝑇
𝜎(V)) contained in the node

𝑋. For a vertex V from an original ontology, 𝜎(V) is
defined as its original ontology ID.

Again, we name the function 𝑓
𝑇1,2,...,𝑘

the cohesion of the
integrated ontology 𝑇

1,2,...,𝑘
. For each node 𝑋 in the inte-

grated ontology, we define its weight as 𝑤𝑒𝑖𝑔ℎ𝑡(𝑋) =
∑
𝑢∈𝑋,V∈𝑋,𝜎(𝑢)<𝜎(V)𝑀𝜎(𝑢),𝜎(V)(𝑢, V). Correspondingly, we define

function𝑔(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) = max

𝑇1,2,...,𝑘
(∑
𝑋∈𝑉(𝑇1,2,...,𝑘)

𝑤𝑒𝑖𝑔ℎ𝑡(𝑋))

as the maximum cohesion function for integrating the
ontologies 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
. As we can see in the above formula-

tion, the overall cohesion score of integration is the summed
weight of each node, which is the sum of pairwise closeness
scores.

The formulation of multiple ontology integration is sim-
ilar to the basic version, and it is not difficult to show
that optimal structures described in Lemmas 1 and 2 can
be extended to a high dimension. However, the extension
of algorithms described in Section 2.1.2 for integrating two
ontologies is not feasible for solving the multiple ontology
integration.This is because if we need to extend Algorithms 2
and 3 to this problem, we need to build a cohesionmatrix of 𝑘
dimensions. It implies that we need at least 𝑂(𝑛𝑘) operations
to fill up the score matrix assuming the size of an ontology
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Figure 4: An example of the InterOntology matrix’s change at the first iteration in Algorithm 4 for integrating four ontologies.

build the 𝑘 × 𝑘 InterOntology matrix;
for 𝑖 = 1 to 𝑘 − 1 do
identify the active tree pair ⟨𝑇

𝑋
, 𝑇
𝑌
⟩ that corresponds

to the highest score in the InterOntology matrix;
integrate 𝑇

𝑋
and 𝑇

𝑌
into 𝑇

𝑋,𝑌
;

mark 𝑇
𝑋
and 𝑇

𝑌
as inactive;

update relationship matrices;
update InterOntology matrix;

end for
return 𝑇

1,2,...,𝑛
;

Algorithm 4: GreedyMultiInt(T = {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
}).

is 𝑂(𝑛). This is clearly not acceptable for high dimensional
ontology integration.

2.2.1. Greedy Approach. From the above discussion we can
see that direct extension of Algorithms 2 and 3 for integrating
two ontologies is practically not feasible for integrating a
large number of ontologies. However, we can still use these
algorithms for integrating multiple ontologies, by iteratively
integrating two ontologies and generating a new closeness
matrix. Given the ontologies 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
, we can first

integrate 𝑇
1
and 𝑇

2
into 𝑇

1,2
and then build the closeness

matrix between 𝑇
1,2

and 𝑇
3
using the relationship matrices

between 𝑇
1
and 𝑇

2
and between 𝑇

1
and 𝑇

3
. Specifically,

assume 𝑋 is a node on the integrated ontology 𝑇
1,2
, and 𝑋

contains a vertex 𝑎 from 𝑇
1
and a vertex 𝑏 from 𝑇

2
. Then,

the entry (𝑋, 𝑐) of the closeness matrix between 𝑇
1,2

and 𝑇
3

is 𝑀
𝑇1,2 ,𝑇3
(𝑋, 𝑐) = 𝑀

𝑇1 ,𝑇3
(𝑎, 𝑐) + 𝑀

𝑇2 ,𝑇3
(𝑏, 𝑐). After the new

closeness matrix is generated, we can continue integrating
𝑇
1,2

and 𝑇
3
into 𝑇

1,2,3
and generating another new closeness

matrix. We will eventually get the integrated ontology 𝑇
1,2,...,𝑘

by repeating the above process. To facilitate the following
discussions, we name the above approach the basic multiple
integration approach.

Although the basic multiple integration approach can
finish integrating multiple ontologies, it blindly integrates
ontologies without using any cohesion information between
ontologies that may lead to a better integration result.
To improve the basic multiple integration, we propose a
greedy approach that uses the cohesion information between
ontologies to guide the integration. The basic steps of the
greedy approach are outlined in Algorithm 4. To facilitate

the understanding of Algorithm 4, we use Figure 4 to
illustrate an example of the InterOntology matrix’s change at
the first iteration of integrating four ontologies A, B, C, andD.

The key idea in Algorithm 4 is to maintain an InterOn-
tology matrix which guides the integration. Initially, this
matrix is filled with the overall cohesion score of every
pair of ontologies. In each step, this matrix is updated with
overall cohesion scores between newly integrated ontology
and existing active ontologies. The integration will take place
between two active ontologies which have the highest score
in the InterOntology matrix.

When we used the overall cohesion score between two
ontologies to update the InterOntology matrix, we observed
an interesting phenomenon that the integration inmost cases
is a process continuously expanding an integrated ontology.
Consequently, the greedy approach is likely to yield a result
similar to the basic approach.

This phenomenon can be explained by the definition of
maximum cohesion function, which takes into account all
pairwise closeness between merged terms. Thus, the more
ontologies contained in an integrated ontology are, the more
likely it will have high overall cohesion scores with other
ontologies. As a result, it creates unfairness for the integration
selection. To fix this issue, we use the adjusted overall cohe-
sion scores in updating the InterOntology matrix as follows.

Given an ontology 𝑇
𝑋
and an ontology 𝑇

𝑌
where 𝑋 and

𝑌 are nonempty sets of ontology IDs, we define the adjusted
cohesion score between 𝑇

𝑋
and 𝑇

𝑌
as 𝐴𝑑𝑗𝐶𝑜ℎ(𝑇

𝑋
, 𝑇
𝑌
) =

∑
𝑍∈𝑉(𝑇𝑋𝑌)

∑
𝑥∈𝑍,𝑦∈𝑍,𝜎(𝑥)∈𝑋,𝜎(𝑦)∈𝑌

𝑀
𝜎(𝑥),𝜎(𝑦)

(𝑥, 𝑦)/|𝑋||𝑌|, where
𝑇
𝑋𝑌

is the integrated ontology built by Algorithms 2 and 3.
The adjusted cohesion score is in fact the weight increase by
integrating 𝑇

𝑋
and 𝑇

𝑌
, divided by the size of 𝑋 times the

size of 𝑌; that is,𝐴𝑑𝑗𝐶𝑜ℎ(𝑇
𝑋
, 𝑇
𝑌
) = ∑

𝑍∈𝑉(𝑇𝑋𝑌)
(𝑤𝑒𝑖𝑔ℎ𝑡(𝑍))−

∑
𝑋∈𝑉(𝑇𝑋)

(𝑤𝑒𝑖𝑔ℎ𝑡(𝑋)) − ∑
𝑌∈𝑉(𝑇𝑌)

𝑤𝑒𝑖𝑔ℎ𝑡(𝑌)/|𝑋||𝑌|. For each
node merging, closeness scores will be added to the total
weight when the merging takes place between vertices from
ontology set 𝑋 and vertices from ontology set 𝑌. Thus, the
weight increase by integrating 𝑇

𝑋
and 𝑇

𝑌
is proportional to

the number of ontologies in𝑋 times the number of ontologies
in 𝑌, and consequently we averaged the weight increase by
|𝑋||𝑌|.

2.2.2. Fast Approximation Algorithm. Although the basic
multiple integration and the greedy multiple integration
approaches discussed above are able to integrate multiple
ontologies, none of them provide any guarantee on the results
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Figure 5: An illustration of vertex/edge contraction and weight updates in an iteration of Algorithm 5. Each vertex represents an ontology.

for 𝑖 = 1 to 𝑘 − 1 do
for 𝑗 = 𝑖 + 1 to 𝑘 do
push ⟨𝑔(𝑇

𝑖
, 𝑇
𝑗
), 𝑖, 𝑗⟩ into a set 𝑆 ordered by the first element in descending order;

end for
end for
while |𝑆| > 0 do
⟨𝑧, 𝑥, 𝑦⟩ = 𝑝𝑜𝑝(𝑆);
if adding (𝑥, 𝑦) does not form a cycle inG then
adding (𝑥, 𝑦) toG;
integrate 𝑇

𝐶(𝑥)
and 𝑇

𝐶(𝑦)
into 𝑇

𝐶(𝑥)∪𝐶(𝑦)
; {𝐶(V) is a set of vertices including V that form a connected component inG.}

end if
end while
return 𝑇

1,2,...,𝑛
;

Algorithm 5: FastMultiInt(T = {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
}).

in comparison with the optimal solutions. By studying
the maximum cohesion scores between ontologies under
a graph setting, we identified an approximation structure
and developed an approximation algorithm for integrating
multiple ontologies.Wename it fast approximation algorithm
because it not only has a lower bound on the results, but also
runs faster than the greedy multiple integration algorithm
proposed above.

The fast approximation algorithm for integratingmultiple
ontologies is sketched in Algorithm 5. It only calculates the
maximum cohesion score between every pair of ontologies
once during the initial stage, and uses this information
throughout the integration process even after it becomes
stale.More importantly, this approach not only saves the time
for recalculating the maximum cohesion scores, but also pro-
vides a lower bound guarantee as stated inTheorem 5, whose
correctness is built on two important lemmas (Lemmas 6 and
7) which will be described subsequently.

Theorem 5. The tree weight of the integrated tree 𝑇
1,2,...,𝑘

obtained by FastMultiInt algorithm is at least 1/(𝑘 − 1) the
weight of the optimal solution.

Proof. We will use Lemmas 6 and 7 to prove this theorem.
The proofs of Lemmas 6 and 7 are provided after the proof
of this theorem. To facilitate the proof of this theorem, we

build a fully connected weighted graph G in which each
node corresponds to a tree for integration, and the weight
of each edge corresponds to the weight increase (initially,
this is the cohesion score) for integrating the corresponding
trees. According to Lemma 6, 𝑔(𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑘
) (i.e., optimal

cohesion score) is no more than the summed weight of edges
inG (Claim 1).

Given G, the integration by Algorithm 5 is a process
of 𝑘 − 1 node contractions. After each contraction, the
adjacent edge weights (cohesion scores) will be updated
accordingly. According to Lemma 7, the weight of an updated
edge will only increase over (or at least remain the same as)
the maximum weight of the two contracted edges (Figure 5
provides an illustration of vertex/edge contraction andweight
updates.) Thus, the overall cohesion score of the integration
by Algorithm 5 is no less than the weight of the maximum
spanning tree ofG (Claim 2).

It is easy to see that the weight of a maximum spanning
tree is no less than 1/(𝑘−1) of the summed edge weight ofG,
given the simple observation that each edge in G is either an
edge of the maximum spanning tree or adjacent to an edge of
the maximum spanning tree with an equal or heavier weight
(Claim 3).

Combining Claims 1, 2, and 3, we complete the proof of
this theorem.

Lemma 6. It holds that 𝑔(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
) ≤ ∑
1≤𝑖<𝑗≤𝑘

𝑔(𝑇
𝑖
, 𝑇
𝑗
).
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Proof. According to the problem definition,

𝑔 (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑘
)

= max( ∑

𝑋∈𝑉(𝑇1,2,...,𝑘)

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑋))

= max( ∑

𝑋∈𝑉(𝑇1,2,...,𝑘)

∑

𝑢∈𝑋,V∈𝑋,𝜎(𝑢)<𝜎(V)
𝑀
𝜎(𝑢),𝜎(V) (𝑢, V))

= ( ∑

1≤𝑖<𝑗≤𝑘

𝑓
𝑇1,2,...,𝑘

(𝑇
𝑖,𝑗
)) ≤ ∑

1≤𝑖<𝑗≤𝑘

𝑔 (𝑇
𝑖
, 𝑇
𝑗
) .

(3)

𝑓
𝑇1,2,...,𝑘
(𝑇
𝑖,𝑗
) is the cohesion score of 𝑇

𝑖,𝑗
whose integration is

induced from 𝑇
1,2,...,𝑘

.

Lemma 7. It holds that 𝑔(𝑇
𝑃,𝑄
, 𝑇
𝑆
) − 𝑓(𝑇

𝑃,𝑄
) ≥ max(𝑔(𝑇

𝑃
,

𝑇
𝑆
), 𝑔(𝑇
𝑄
, 𝑇
𝑆
)).

Proof. According to the problem definition, integrating 𝑇
𝑃,𝑄

with 𝑇
𝑆
will result in an integrated tree 𝑇

𝑈
where 𝑈 = 𝑃 ∪

𝑄 ∪ 𝑆, and 𝑔(𝑇
𝑃,𝑄
, 𝑇
𝑆
) = max

𝑇𝑈
(∑
𝑋∈𝑉(𝑇𝑈)

𝑤𝑒𝑖𝑔ℎ𝑡(𝑋)) =

max
𝑇𝑈
(𝑓(𝑇
𝑃,𝑆
) + 𝑓(𝑇

𝑄,𝑆
) + 𝑓(𝑇

𝑃,𝑄
)), where 𝑇

𝑃,𝑆
, 𝑇
𝑄,𝑆
, and

𝑇
𝑃,𝑄

are induced from 𝑇
𝑈
. Since 𝑇

𝑃,𝑄
has been determined,

we have 𝑔(𝑇
𝑃,𝑄
, 𝑇
𝑆
) = max

𝑇𝑈
(𝑓(𝑇
𝑃,𝑆
) + 𝑓(𝑇

𝑄,𝑆
)) + 𝑓(𝑇

𝑃,𝑄
).

Without loss of generally, let us assume max(𝑓(𝑇
𝑃,𝑆
)) ≥

max(𝑓(𝑇
𝑄,𝑈
)). Then, by restricting the integration between

𝑇
𝑃
and 𝑇

𝑆
in 𝑇
𝑈
following the integration that leads to

argmax
𝑇𝑃,𝑆
𝑓(𝑇
𝑃,𝑆
), we will get a cohesion score no less than

𝑔(𝑇
𝑃
, 𝑇
𝑆
). Thus, we complete the proof for 𝑔(𝑇

𝑃,𝑄
, 𝑇
𝑆
) −

𝑓(𝑇
𝑃,𝑄
) ≥ max(𝑔(𝑇

𝑃
, 𝑇
𝑆
), 𝑔(𝑇
𝑄
, 𝑇
𝑆
)).

2.2.3. Time Complexity Analysis. For the fast approximation
algorithm (Algorithm 5), the time complexity for generating
graph G (calculating the overall cohesion score for every
pair of ontologies) is𝑂(𝑘2𝑛2 log 𝑛), assumingwe usemaximal
weighted matching. Each integration will take 𝑂(𝑛2 log 𝑛)
with an update of at most 𝑘 closeness matrices which takes
𝑂(𝑘∗𝑛

2
). There are at most 𝑘 integrations; therefore the total

time complexity is still 𝑂(𝑘2𝑛2 log 𝑛).
Following the above analysis, we conclude that the time

complexity of the greedy multiple integration algorithm is
the same as the fast approximation algorithm. However, it
requires updating of InterOntology matrix which takes an
excessive 𝑂(𝑘2𝑛2 log 𝑛) time. The empirical study shows that
the fast approximation algorithm is much faster than the
greedy multiple integration algorithm.

Finally, it is easy to see that the basic multiple integration
approach takes 𝑂(𝑘𝑛2 log 𝑛) time and is the fastest, but its
overall cohesion scores are the worst as we will see in the
empirical study.

2.2.4. Limitations. Integrating multiple ontologies may face
two potential problems in real applications. First, how can
we efficiently generate a closeness matrix for every pair of
ontologies to be integrated? Our current method kDLS or

onGrid is efficient for generating the closenessmatrix for one
pair of ontologies in most cases, but not efficient enough for
generating closeness matrices for many pairs of ontologies.
Second, not every pair of ontologies can be meaningfully
integrated. It remains a problem to efficiently identify the
feasibility of integrating a pair of ontologies. Therefore, the
main purpose of Section 2.2 is to demonstrate that our
proposed approach can be extended to integrate multiple
ontologies, and we use synesthetic datasets in Section 3.3 to
study the performance of algorithms proposed in Section 2.2.

3. Results and Discussion

We would like to study the performances of the proposed
ontology integration methods by experiments on both real
and synthetic datasets. We implemented five approaches in
C++:

(1) Heuristic: heuristic approach for integrating two
ontologies as described in Section 2.1.1;

(2) Approximate: approximate approach (Algorithms 2
and 3) with maximal weighted matching for guaran-
teeing the (1/2)-approximation rate;

(3) Basic: basic multiple integration approach as de-
scribed in Section 2.2.1;

(4) Greedy: greedy multiple integration approach
(Algorithm 4);

(5) FastApproximate: fast approximation multiple
integration approach (Algorithm 5).

In the following, we report our study on the performances
of (1) and (2) for integrating two ontologies on real datasets
and (3), (4), and (5) for integrating multiple ontologies on
synthetic datasets. All the experiments are carried out on a
Linux cluster with 2.4GHz AMD Opteron processors.

3.1. Integrating a Pair of Ontologies. The knowledge of drug-
gene relationships is desirable in many pharmacology appli-
cations [25, 26]. By integrating the gene ontology and the
drug ontology, we will be able to obtain rich information on
the associations between drugs and genes under the ontology
structures. Thus, in this set of experiments, we simulate real
world knowledge discovery applications by integrating two
real ontologies, gene ontology (GO) and National Drug File
Reference Terminology (NDFRT). Both were obtained from
the Unified Medical Language System (version: 2012AA).
The closeness matrices between GO terms and drug terms
were generated using onGrid [27] with a 4-neighborhood
broadcast range (i.e., 𝑘 = 4 with regard to [7]). onGrid
follows the kDLS approach [7] and measures the closeness
between two concepts based on the discovered paths (with
length greater than one) between them. However, unlike
kDLS, onGrid takes into consideration of concept semantic
types in the closeness measurement. In the study performed
in [27], the advantages of onGrid over kDLS are well
illustrated.

The overall cohesion scores of Heuristic and
Approximate on integrating GO and NDFRT are listed
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Table 1: Cohesion scores of integrating real datasets.

Depth GO term number NDFRT term number Cohesion scores
Heuristic 𝛽 = 1 Heuristic 𝛽 = 6 Heuristic 𝛽 = 100 Approximate

3 66 6004 0.0505331 0.229958 0.21999 1.24696
4 710 6972 0.290392 0.284363 1.46585 9.3835
5 5355 14582 0.285923 1.37714 0.528289 33.9056
6 16231 32841 0.307941 0.341588 0.673406 74.0293

Table 2: Top 5 matched terms by the Approximate algorithm (depth = 6).

Rank GO terms NDFRT terms Closeness score
1 C1135918 smooth muscle contractile fiber C0282606 muscle neoplasms 1.63205
2 C0010813 cytokinesis C0086376 GTP-binding proteins 1.15967
3 C0027747 axon terminus C0030584 parovarian cyst 1.13352
4 C1155065 T cell activation C0007082 carcinoembryonic antigen 1.00879
5 C0007595 cell growth C0294028 BRCA2 protein 0.945284

Table 3: Top 5 matched terms by the Heuristic algorithm (depth = 6, 𝛽 = 100).

Rank GO terms NDFRT terms Closeness score
1 C0031845 biological process C0042890 VITAMINS 0.244862
2 C1166607 cellular component C1657248 apoptosome 0.142857
3 C0027540 tissue death C0065932 MENADIOL 0.0434219
4 C0025519 metabolic process C0042849 VITAMIN B 0.0370248
5 C0030012 oxidation-reduction process C0027996 NICOTINIC ACID 0.0327109

in Table 1. To observe the integration over the ontology
size change, in each experiment we use the ontology tree
structure from the root to the specified depth (first column
in Table 1) for integration. The sizes of the ontology terms
involved in the integration are listed in the second and third
columns of Table 1.

Recall in Section 2.1.1; 𝛽rdepth(𝑏) is used to regulate the
selection of vertices from high depths. Thus, we tested the
Heuristic under 𝛽 = 1 (depth information is nullified)
and 𝛽 = 100 (the vertex depth plays a critical role in
the selection). Since nonleaf vertices in these datasets have
around 6 children on average, we heuristically add a set of
experiments by setting 𝛽 = 6 so that 𝛽rdepth(𝑏) will be close to
the number of vertices excluded from the future integration.

From Table 1, we can see that Heuristic performs better
when using the depth information to regulate the selection
of vertices. However, Approximate is much better than
Heuristic at all settings. Compared to the best cohesion
scores of Heuristic in each row of Table 1, Approximate
constructs an integrated ontology with the overall cohe-
sion score ranging from 5.4 times to 109.9 times that of
Heuristic.This clearly demonstrates the effectiveness of the
proposed Approximate approach. Nevertheless, the heuris-
tic approach has a much faster average running time as a
result of excluding a large number of matching opportunities
in each step.

Although the running time of Approximate is longer
than Heuristic, it takes less than two hours to finish
integrating two ontologies with about 16𝑘 and 33𝑘 vertices.

Most of the biomedical ontologies are smaller than or similar
to these sizes and Approximate approach will benefit the
association study of these ontologies. For extremely large
ontology pairs in which Approximate is unable to finish the
integrationwithin a reasonable time, Heuristicmay provide
a quick view on their integration.

3.2. Understanding the Merged Ontology Terms. To under-
stand what terms are merged in integrating real ontologies,
we use the integration of GO and NDFRT at depth 6 as
an example. Tables 2 and 3 list the top 5 pairs of merged
terms (sorted by their closeness scores) by Heuristic
and Approximate, respectively. As mentioned above,
these scores are from the closeness matrix generated
by onGrid based on the discovered paths between
them. For example, “C1155065:T-Cell Activation − −
is physiologic effect of chemical or drug − − > C0393002:
Carcinoembryonic Antigen Peptide 1 − − has target − − >
C0007082:Carcinoembryonic Antigen” is such a path.

From Tables 2 and 3 we can observe that the
Approximate algorithm merges terms with much higher
similar scores than the Heuristic algorithm. Quite
interestingly, we observed that the top ranked merging in
Table 3 is between “biological process” and “VITAMINS.”
The “biological process” is an abstract term which is very
close to the root of the GO ontology. Such a fact suggests that
the top level terms will likely preempt the merging choices
over their descendants. As a result of this greedy approach,



12 BioMed Research International

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 100  200  300  400  500  600  700  800  900  1000

O
ve

ra
ll 

co
he

sio
n 

sc
or

e o
f i

nt
eg

ra
tio

n

Individual ontology size

FastApproximate
Basic

Greedy

Figure 6: The change of overall cohesion score over the increase of
the size of each ontology. The number of ontologies is fixed at 10.
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Figure 7: The change of overall cohesion score over the increase of
the number of ontologies. The size of each ontology is fixed at 100.

the Heuristic algorithm will end at a local optimum which
is far from being optimal.

A snapshot of ontology integration by Approximate as
shown in Figure 10 provides a good insight on the algorithm
work. In each bracket of two merged terms, the left part
is the closeness score and the right part is the cohesion
score. We can observe that most closeness scores are zero or
close to zero, while the corresponding cohesion scores are
much higher. This is understandable because the snapshot is
primarily on the top level terms of both ontologies. For these
terms, they have a large number of subclass (descendant)
terms, and optimizing the integration of their subclass terms
far outweighs integrating of themselves. The result of such
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Figure 8: The change of integration time over the increase of the
size of each ontology. The number of ontologies is fixed at 10.
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integration provides novel knowledge of association between
ontology terms. That is, even if two terms are not that close
according to some closeness measurement, they can be struc-
turally associated under their ontology context. For example,
the GO term “biological process” is merged with the NDFRT
term “chemical ingredients”; even their closeness score is
zero from the onGrid output. However, such integration
is interesting because it shows that the merging is trying
to link the chemical compounds with the biological/cellular
processes so that corresponding associations between the
cellular processes and chemical structures can be established.
This demonstrates the purpose of integrating two ontologies,
that is, identifying associations with respect to both term
similarities and structural contexts.
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Figure 10: A snapshot of ontology integration between GO and NDFRT by Approximate (depth = 6). Blue nodes are terms from GO and
red nodes are terms from NDFRT. Solid lines are edges and dashed lines are paths consisting of 1 or more edges. In each bracket, the left part
is the closeness score and the right part is the cohesion score.

In fact, there are multiple studies to justify the struc-
tural associations seen in Figure 10, such as the association
between “signaling” and “carbohydrates” [28] and the asso-
ciation between “extracellular region part” and “skin and
connective tissue diseases” [29].

In addition, we have noticed a number of meaningful
integrations betweenGO terms and neurological terms in the
NDFRT. For example, synapse is a brain related structure and
the term “symmetric synapse” is associated with “trauma,”
and the term “asymmetric synapse” is associated with “brain
neoplasms.” Similarly, it is reasonable to see that “neuronal
RNA granule” is integrated with “granulomatous disease,” a
granule associated disease. As another example, it is very
interesting to notice that “zyxin” is associated with “cell
adhesion involved in heart morphogenesis” and that provides
a link with the formation of heart.

The above observations suggest a novel way of using our
ontology integration method to perform association studies
between biomedical concepts.

3.3. Integrating Multiple Ontologies. In the following exper-
iments we will study the performances of Basic, Greedy,
and FastApproximate in integrating multiple ontologies.
All the three approaches are built upon Approximate, which
performs very well in the previous study for integrating two
real ontology datasets.

We use two sets of synthetic datasets in this study. In the
first set of datasets, we fix the number of ontologies to be 10
and vary the size of each ontology from 100 to 1000. In the
second set of datasets, we fix the size of each ontology to be
100 and vary the number of ontologies from 10 to 100. All the
ontologies are randomly generated by constructing aminimal
spanning tree from a randommatrix.The relationshipmatrix
between every pair of ontologies is also randomly generated
with entry values ranging from 0 to 1. For each experiment,

we generate 10 randomdatasets and the results reported in the
following are the average results over the 10 random datasets.

The overall cohesion scores of the three approaches
over different ontology sizes and over different numbers of
ontologies were reported in Figures 6 and 7, respectively.
FastApproximate outperforms all the other approaches
in Figure 6, which is consistent with the analysis of its
approximation rate. However, Greedy slightly outperforms
FastApproximate in Figure 7 especially when the ontology
number is large. This is understandable because when the
number of ontology (𝑘) increases, the approximation rate (as
stated in Theorem 5) decreases and becomes less significant.
This result also justifies the choice of adjusted cohesion score
for Greedy as described at the end of Section 2.2.1.

The integration time of the three approaches over differ-
ent ontology sizes and over different numbers of ontologies
was reported in Figures 8 and 9, respectively. These figures
are consistent with the time complexity analysis given in
Section 2.2.3. In particular, we noticed that the integration
time of Greedy deteriorates sharply over the ontology
number increase. In contrast, FastApproximate is much
more scalable and has a time curve similar to Basic.

These results suggest that FastApproximate has the best
overall performance in integrating multiple ontologies.

4. Conclusions

In this work, we started with a basic problem on integrating a
pair of ontology tree structures with a given closeness matrix,
and later we advanced the basic problem to the problem of
integrating large number of ontologies. We proved optimal
structures in the basic problem and developed both optimal
and efficient approximation solutions. Although the multiple
ontology integration problem has similar optimal structures,
it is not feasible to extend the optimal and efficient approx-
imation solutions for the basic problem to efficiently handle
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multiple ontology integration. To tackle the challenge of inte-
grating a large number of ontologies, we developed both an
effective greedy approach and a fast approximation approach.
The empirical study not only confirms our analysis on the
efficiency of the proposedmethod, but also demonstrates that
ourmethod can be used effectively for biomedical association
studies.
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