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1  |  INTRODUC TION

Since the discovery of immunoglobulin E (IgE) as the antibody iso-
type responsible for immediate hypersensitivity reactions1–3 our 

understanding of the network of cells and cytokines that drive al-
lergic pathology has greatly expanded.4 These insights have been 
derived from basic research and confirmed by clinical programs 
targeting core pathways in the allergic cascade. This review will 
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Summary
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately 
leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of 
many allergic conditions. At a high level, initial allergen exposure disrupts epithelial in-
tegrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which 
activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 
cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruit-
ment. Th2 cell dependent B cell activation promotes the production of allergen-specific 
IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells 
upon allergen re-exposure leads to allergic symptoms. Recent advances in our under-
standing of the molecular and cellular mechanisms underlying allergic pathophysiol-
ogy have significantly shaped the development of therapeutic intervention strategies. 
In this review, we highlight key therapeutic targets within the allergic cascade with a 
particular focus on past, current and future treatment approaches using monoclonal 
antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown vary-
ing degrees of clinical benefit in different allergic indications including asthma, chronic 
spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food 
allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been 
approved for clinical use, scientists are still working on ways to improve on current 
treatment approaches. Here, we provide context to understand therapeutic targeting 
strategies and their limitations, discussing both knowledge gaps and promising future 
directions to enhancing clinical efficacy in allergic disease management.
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introduce key therapeutic targets in allergic disorders and the in-
sights gained from these interventions, with a focus on monoclonal 
antibodies.

Defining the etiology of allergy has remained a challenge in part 
because of the diverse stimuli capable of driving type 2 inflamma-
tory responses. Allergic disorders have overlapping inflammatory 
patterns with parasitic diseases and have thus been framed as the 
dysregulation of immune responses evolved to expel parasites or 
neutralize noxious agents at the host-environment interface like the 
airway, gut and skin.5 Within this framework the evolution of allergic 
pathology can be broken down into several stages. First, after the 
loss of epithelial integrity, exposure to allergens initiates adaptive 
immune responses6,7 (Figure  1). Insult to epithelial barrier tissues 
triggers rapid local inflammatory responses driven by the release of 

the alarmins IL-25, IL-33, and TSLP from the epithelium and proximal 
immune cells. These alarmins work in concert to induce dendritic 
cells expression of OX40-ligand and type 2 cytokines,8,9 activate 
ILC2s to secrete IL-13 and IL-5, and ultimately promote T helper 2 
cells (Th2) development and eosinophil recruitment.10 Antigen acti-
vated mature Th2 cells then serve as a key source of the canonical 
type 2 cytokines, including IL-4, which is essential for promoting B 
cell class switching and the production of allergen-specific IgE. In the 
periphery, allergen-specific IgE is bound by basophils and mast cells 
where it can trigger rapid inflammatory responses, including ana-
phylaxis, upon allergen re-exposure. Ultimately the aforementioned 
cascade of events must be considered in the context of the chronic 
nature of allergy, which is marked by numerous allergen exposures 
and prolonged inflammation. Therefore, in many cases, the allergic 

F I G U R E  1  The allergic cascade. Allergens enter our body through damaged epithelial barriers, where they are recognized, taken-up, 
processed, transported to the draining lymph node and displayed by dendritic cells via MHC II to naïve T cells. In the presence of type 2 
inflammation, which is induced by epithelium derived alarmins and IL-4, these naïve T cells polarize into T helper 2 cells and instruct B cells 
to undergo isotype switching to IgE. The IgE is systemically distributed and binds to basophils and mast cells both in local tissue and in the 
periphery. Allergen re-exposure triggers degranulation of these allergic effector cells and results in the release of multiple soluble mediators 
inducing allergic symptoms. Ba, basophils; B, B cell; DC, dendritic cells; FcεRI, high-affinity IgE receptor; ILC2, type 2 innate lymphoid cells; 
IL, interleukin; IgE, Immunoglobulin E; MC, mast cells; Th0 cell, naïve T cell; Th2 cell, t helper 2 cell; TSLP, thymic stromal lymphopoietin.
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mediators listed above act to perpetuate and reinforce pathology at 
multiple levels via multiple cell types as discussed below.

1.1  |  Alarmins

Epithelial cells, fibroblasts, and immune cells positioned at barrier 
surfaces are able to secrete the alarmins TSLP, IL-25, and IL-33 in 
response to danger signals or cellular damage.11 TSLP release can 
be triggered by mechanical stress, proteases, and a host of patho-
gen associated molecular patterns (PAMPs).12 IL-25 is both consti-
tutively released by keratinocytes and can be induced by pathogen 
proteases and PAMPs in epithelial tissues.13 In contrast the alarmin 
IL-33 is constitutively expressed in the nucleus of epithelial cells 
and other cells and is primarily released following cellular damage. 
IL-33 released from cells can be further processed by host or ex-
ogenous proteases into highly active isoforms.14,15 Once released 
these alarmins are not required for the clonal expansion of T cells in 
response to antigen exposure, but they are critical for subsequent 
Th2 polarization,16 and the blockade of all three alarmin pathways 
greatly attenuates local type 2 inflammation and tissue remodeling 
in models of parasitic infection and allergy.17

Similar to the diverse molecular mechanisms that initiate alarmin 
release, the alarmins themselves exhibit significant structural vari-
ability. TSLP is a member of the IL-2 family of cytokines and signals 
through a heterodimer of TSLPR and IL-7Ra,18 IL-33 is a member of 
the IL-1 cytokine family and signals via binding to ST2 (IL-1RL1) and 
subsequent recruitment of the IL-1 receptor accessory protein (IL-
1RAcP),19 and IL-25 is a member of the IL-17 family and binds with 
two IL-17RB subunits to form a complex which subsequently en-
gages IL-17RA to drive downstream signaling.20

Despite their molecular diversity, alarmins appear to have 
evolved partially redundant pathways to induce inflammation at 
barrier surfaces in response to environmental stimuli, and to trig-
ger similar downstream events, such as the production of IL-13 from 
ILC2s.17 This redundancy could be one reason that the most pro-
found effects on type 2 inflammation occur when multiple alarmin 
pathways are suppressed. However, individual targeting of alarmin 
pathways has been reported to be sufficient in reducing type 2 in-
flammation in many models of allergic disease.21

1.2  |  Type 2 cytokines

The canonical type 2 cytokines IL-4, IL-5 and IL-13 are produced by 
multiple innate and adaptive immune cells. IL-4 is primarily secreted 
by basophils and Th2 cells, while IL-13 is predominantly expressed by 
Th2 cells and ILC2s and can be quickly induced by alarmin mediated 
activation of ILC2s.22–24 IL-4 signals through type I receptor com-
plexes composed of the IL-4 receptor (IL-4Ra) and common gamma 
chain (ɣc) or type II receptor complexes composed of heterodimers 
of IL-4Ra and IL-13 receptor 1 (IL-13Ra1).25 In contrast IL-13 can sig-
nal via type II receptors mentioned above as well as the IL-13Ra2 

receptor, which can negatively regulate IL-13 function and has also 
been implicated in IL-13 mediated upregulation of TGF-β1 expres-
sion in fibrosis.26 Although these cytokines share some common 
receptor components, their biologic functions are diverse. For exam-
ple, IL-4 depletion greatly impairs Th2 development and IgE produc-
tion owing in part to distribution of type I receptors on lymphocytes, 
while IL-13 depletion does not impact IgE production but does limit 
tissue fibrosis and goblet cell hyperplasia.25 Importantly class switch 
recombination to IgE requires IL-4. It has recently been suggested 
that allergen-specific IgE reservoirs are sustained by memory IgG1 
memory B-cells that continually class switch to express IgE.27 IL-5, 
produced by activated ILC2s, Th2 cells, and other cells, recruits and 
promotes the survival and proliferation of eosinophils in tissues. IL-5 
signals via complexes of IL-5Ra and the common beta chain (βc),28 
and targeting soluble cytokine and receptor have both been shown 
to effectively block IL-5 signaling.29

1.3  |  Immunoglobulin E (IgE)

IgE is best known for its key role in immediate hypersensitivity reac-
tions upon allergen exposure and is the primary driver of allergen 
induced anaphylaxis. However, IgE plays an underappreciated role in 
facilitating antigen acquisition and presentation (IgE-FAP), amplify-
ing adaptive immune responses, and triggering the release of multi-
ple cytokines including the canonical type 2 cytokines and alarmins 
described above.

The biology of IgE is best understood in the context of its high-
affinity receptor FcεRI, expressed as a stable tetramer (αβɣɣ) on 
mast cells and basophils,30 and as a trimer (αɣɣ) on dendritic cell (DC) 
subsets and monocytes, where it is steadily endocytosed and recy-
cled.31 The FcεRI alpha chain (FcεRIα) binds IgE in a similar orien-
tation as other Fc receptors, however the kinetics of IgE and FcεRI 
interactions are unique. FcεRI is the highest affinity immunoglobu-
lin receptor,32–34 and the dissociation of IgE from this receptor is at 
least 10-fold slower than IgG1 from FcγRI35 and multiple orders of 
magnitude slower than other immunoglobulin Fc interactions. This 
allows IgE:FcεRI complexes to imbue mast cells in tissue with mem-
ory for antigens targeted by IgE. In human transfusion studies in 
patients with hypogammaglobulinemia, the half-life of exogenously 
provided IgE is only ~2 days in the absence of endogenous IgE, yet 
patient reactivity to allergens recognized by exogenous IgE persists 
for 50 days.36 Likewise, in IgE deficient mice, injected IgE is unde-
tectable after 6 days in the blood, yet systemic allergen reactivity is 
detectable for well over a month.37

The remarkable stability of IgE:FcεRI complexes is compounded 
by the extreme sensitivity of basophils and mast cells expressing 
FcεRI. Paradoxically, partial loss of surface IgE in these cells can even 
increase effector cell sensitivity to stimulation via the remaining IgE 
receptor complexes,38,39 and low levels of allergen-reactive IgE are 
sufficient to drive cellular activation.40,41 Recent studies also sug-
gest that allergen-reactive IgE is produced at high concentrations 
locally,38,39,42–44 exposing long-lived tissue resident mast cells to an 
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abundance of allergen-specific IgE. This combination of high affin-
ity binding, high cellular sensitivity, and local production of IgE in 
tissues works in concert to make rapid and complete inhibition of 
IgE challenging. Even in the presence of highly potent IgE inhibi-
tors, which effectively eliminate free IgE from the serum, reactivity 
to allergens in skin prick testing persists for months.45 The durable 
sensitization of FcεRI bearing mast cell and basophils, and their sub-
sequent activation, sustains an allergy permissive milieu with the re-
lease of cytokines and mediators that recruit, remodel, and sustain 
adaptive responses to allergens.

Beyond the sensitization of mast cells and basophils, trimeric 
FcεRI on plasmacytoid DCs (pDCs), has been shown to enhance 
antigen presentation and pDC activation.46,47 Likewise, removal of 
IgE from pDC populations has been shown to enhance the gener-
ation of regulatory T cells in human peripheral blood mononuclear 
cell (PBMC) cultures.48 Prior studies have demonstrated that antigen 
induced activation and subsequent IL-4 release from mast cells can 
promote regulatory T cell (Treg) dysfunction, and IgE knockdown or 
inhibition can rescue Treg activity.49,50 These studies suggest IgE 
signaling in pDCs can directly skew T cell responses. Therefore, en-
gagement and activation of IgE receptor complexes on DC subsets 
may potentiate IgE focused antigen-specific responses, while block-
ade of this pathway may facilitate reestablishment of antigen toler-
ance. This agonistic effect of IgE on T-cell responses does not appear 
to be simply mediated by recruitment of antigen to DCs via IgE, as 
soluble monomeric IgE-antigen fusions that do not crosslink recep-
tors induce systemic tolerance.51 Instead, these studies demonstrate 
that IgE not only potently traffics antigen to pDC subsets via high 
affinity binding to FcεRI, but that IgE crosslinking and signaling can 
work in concert to enhance, suppress, or skew T-cell responses via 
FcεRI on DCs and mast cells. This multifaceted nature of FcεRI al-
lows the receptor to perpetuate the production of more antigen 
reactive T cells, and mediate terminal effector functions that drive 
anaphylaxis and allergy.

While the aforementioned studies highlight the emerging role 
of FcεRI in potentiating and regulating adaptive responses, the 
role of the low-affinity IgE receptor CD23 in antigen presentation 
and amplification of adaptive immune responses has also been 
extensively studied. Starting at sites of antigen exposure in the 
lung and gut, CD23 is expressed at the epithelium and facilitates 
bidirectional transcytosis of IgE and IgE:antigen complexes.52–55 In 
the tissue these immune complexes readily bind CD23 positive B 
cells and serve as extremely potent antigen sources. This effect, 
termed IgE-FAP, has been shown to amplify antibody responses by 
greater than 100-fold and dramatically enhance antigen specific T 
cell proliferation.56,57 IgE-FAP is driven by IgE transport on CD23+ 
B cells to follicles in spleen, where IgE:antigen complexes can be 
captured by CD11c+ dendritic cells58,59 and internalized, degraded, 
and presented to T cells.60 This diverse set of potential outcomes 
for IgE:antigen complexes is enabled by two distinct CD23 iso-
forms (CD23a and b) that act in concert with IgE and immune cells 
to surveille the lumen of the airway and gut and collect antigens 
for efficient antigen presentation. This underappreciated role of 

IgE serves to initiate and potentiate allergic disease in tissues and 
demonstrates that an effective IgE blockade should be able to in-
hibit IgE interaction with multiple receptor types across multiple 
tissues and physiologic spaces.

1.4  |  Other important regulatory receptors on 
allergic effector cells

Several other receptors including stem cell factor receptor (KIT) 
and sialic-acid-binding immunoglobulin-like lectins (Siglecs) are ex-
pressed on allergic effector cells. KIT is the principal receptor for 
stem cell factor (SCF) and plays central roles in multiple biologic 
processes including hematopoiesis as well as melanocyte, germ and 
gut cell development.61 It is a type III receptor tyrosine kinase which 
consists of five extracellular Ig-like domains and is activated via by 
soluble or cell bound dimeric SCF isoforms that promote receptor 
dimerization.62 Blockade of SCF binding to KIT or targeting of the 
fourth and fifth Ig-like dimerization domains of KIT, prevent KIT di-
merization and suppress KIT signaling. KIT is expressed at very high 
levels on the surface of mast cells, is required for mast cell devel-
opment and survival, and synergizes with other mast cell activating 
receptors to enhance mast cell responses.63

Siglecs are a diverse family of sialic-acid-binding lectins that are 
broadly expressed across many hematopoietic lineages and other 
cells. Siglecs primarily serve to modulate signaling via intracellular 
immunoreceptor tyrosine-based inhibitory (ITIM) motifs following 
ligation, crosslinking, or receptor co-localization,64 yet the biology of 
Siglec receptors and their glycan ligands is complex and capable of in-
ducing a wide range of downstream events depending on the cellular 
context and distribution of their glycan ligands.65 Of the Siglec family, 
Siglec-8 and Siglec-6 have emerged as therapeutic targets in allergy 
as each are expressed mast cells and basophils among other cells.66 
Ligation of Siglec-8 or 6 is primarily thought to stimulate ITIM me-
diated recruitment of phosphatases and subsequent suppression of 
multiple allergic pathways including IgE mediated FcεRI signalling,65 
however antibody ligation of Siglec-8 has also been shown to induce 
apoptosis in eosinophils and promotes antibody-dependent cellular 
cytotoxicity/phagocytosis (ADCC/ADCP) of Siglec positive cells.67

2  |  THER APEUTIC ANTIBODIES IN 
ALLERGY

Over the last two decades, the therapeutic use of monoclonal an-
tibodies has gained significant momentum across various diseases, 
including allergic disorders. This advancement is largely due to the 
continuously increasing understanding of molecular and cellular 
mechanisms involved the allergic cascade, which has enabled the 
identification of specific targets for therapeutic intervention. While 
several monoclonal antibodies have been developed, only a few 
have been approved for clinical use in allergy management to date 
(Figure 2).
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2.1  |  Classical anti-IgE antibodies

2.1.1  |  Omalizumab

The original conceptual framework for developing anti-IgEs as a 
treatment for allergies was based on defining three desired func-
tional characteristics: (i) high-affinity IgE binding able to compete 
with FcεRI interactions; (ii) lack of binding to IgE:FcεRI complexes on 
mast cells or basophils to prevent receptor crosslinking and activa-
tion and (iii) lack of binding to IgE:CD23 complexes.68 Omalizumab 
was the first anti-IgE antibody approved for clinical use, although 
parallel clinical studies were contemporaneously carried out with an-
other anti-IgE (CGP51901/CGP56901/TNX-901/talizumab) that did 
not advance into phase III clinical trials at that time.68 Omalizumab 
was developed from a murine anti-human IgE monoclonal antibody 
(MAE11) and was selected based on its binding to free IgE and lack 
of binding to IgE:FcεRI complexes on mast cells.69 Humanization of 

MAE11 was carried out by grafting MAE11 CDRs onto consensus 
human framework sequences with 5 human-murine framework mu-
tations required to recapitulate MAE11 affinity.69 The resulting hu-
manized antibody (rhuMAb-E25) was advanced into clinical trials for 
the treatment of allergic rhinitis and asthma70–73 and approved for 
therapeutic use in 2003 for moderate to severe asthma under the 
tradename Xolair. Xolair has since been approved for the treatment 
of chronic spontaneous urticaria (CSU) in 2014, allergic asthma in 
children in 2016, chronic rhinosinusitis with nasal polyps (CRSwNP) 
in adults in 2020, and food allergies in children and adults in 2024.

Omalizumab treatment in patients results in the reduction of 
free IgE levels and blocks IgE binding to mast cells and basophils, 
as expected from its competitive binding with FcεRI. Omalizumab 
forms immune complexes with IgE, with some preference to assem-
ble into 3:3 hexamers rather than larger immune aggregates.68 These 
complexes are not cleared from serum and their formation results in 
unexpected increases in the total IgE in serum, which accumulates at 

F I G U R E  2  Approved therapeutic monoclonal antibodies in allergy. The six monoclonal antibodies (in red) omalizumab (anti-IgE), 
dupilumab (anti-IL-4Ra), benralizumab (anti-IL5Ra), mepolizumab (anti-IL-5), reslizumab (anti-IL-5), lebrikizumab (anti-IL13) and tezepelumab 
(anti-TSLP) interfere at different levels in the allergic cascade. Many of them target multiple cells or mechanisms, which might be beneficial 
for their therapeutic efficacy.
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up to six to ten times basal IgE levels. The accumulation of “neutral-
ized” IgE in immune complexes that is still able to bind allergen may 
contribute to the protective therapeutic benefit of omalizumab.68 
Omalizumab treatment also results in the downregulation of FcεRI 
levels on circulating basophils and dendritic cells,74–76 reducing their 
ability to be sensitized by IgE and activated by allergens. The down-
regulation of FcεRI in basophils likely occurs through two contribut-
ing mechanisms: (i) the intrinsic, more rapid degradative turnover of 
FcεRI in cells in the absence of IgE binding and (ii) the turnover and 
production of new basophils, also occurring in the absence of free 
IgE and therefore lacking stabilized FcεRI levels. While omalizumab 
treatment results in relatively rapid decline in free IgE levels, clinical 
benefit emerges over much longer periods, indicating that the ab-
solute reduction in free IgE is a rather poor indicator of therapeutic 
efficacy.

Omalizumab engages an IgE epitope in the constant epsilon (Cε) 
3 domains, adjacent to the binding site for FcεRIα,77,78 with only 
2 IgE amino acids in common between the omalizumab and FcεRI 
interaction sites. However, omalizumab binding to IgE sterically 
blocks FcεRI binding. In addition, one of the omalizumab epitopes 
is also buried by Cε2 domains in their folded-back, bent conforma-
tion. Binding of omalizumab interferes with this bent IgE confor-
mation, which could also contribute to inhibiting FcεRI binding.78 
Omalizumab also inhibits the binding of CD23, through significant 
overlap of their respective binding sites on IgE and through sub-
stantial steric clashes of the two IgE ligands.77 Although omalizumab 
was originally selected for therapeutic development because it 
competes with FcεRI but does not engage IgE:FcεRI complexes on 
effector cells, recent studies have demonstrated that omalizumab 
can form transient complexes and actively dissociate IgE from the 
receptor.79–81 Initially, this observation was only described for high 
omalizumab concentrations, which raised the question of how phys-
iologically relevant the additional mode-of-action might be in vivo.79 
However, additional experimentation has revealed that the mecha-
nism was not only concentration but also time dependent.80 In other 
words, over prolonged exposure periods removal of IgE from FcεRI 
could even be observed at physiological omalizumab concentrations.

2.1.2  |  Ligelizumab

Ligelizumab is a more recent anti-IgE therapeutic candidate de-
veloped by Novartis that has its roots in earlier clinical studies. 
Ligelizumab is a high-affinity variant (KD ~ 17 pM) based on the 
CGP51901/CGP56901/TNX-901/talizumab series of anti-IgE an-
tibodies developed in the 1990s. CGP51901 was a murine/human 
chimeric IgG1 antibody that underwent phase I and phase II clini-
cal trials for allergic rhinitis and allergic asthma.68,82–84 CPG56901 
(TNX-901/talizumab) was a humanized variant of CGP5190185 that 
underwent additional Phase II clinical trials for the treatment of 
peanut allergy,86,87 providing the first promising indication that anti-
IgE therapeutics could be effective in treating food allergies. These 
studies showed that peanut allergic patients treated with TNX-901 

exhibited an increase resistance to peanut exposure from roughly 
half a peanut to nine peanuts—a level of resistance that could pro-
tect against most accidental exposures. Although TNX-901/tali-
zumab was not developed further, ligelizumab builds on these prior 
promising studies, with the expectation that its high affinity for IgE 
would lead to increased clinical benefit over both TNX-901 and 
omalizumab. This expectation follows naturally from the concept 
that the sequestration of free IgE by anti-IgEs would represent a key 
correlate of therapeutic efficacy. Surprisingly, this expectation for 
ligelizumab has not been borne out by multiple phase III clinical stud-
ies (in CSU and asthma),88,89 raising important mechanistic questions 
about the pharmacologic basis of anti-IgE therapy.

Initially, ligelizumab showed significant promise in early phase 
II clinical trials for allergic asthma and CSU, consistent with its po-
tential to outperform omalizumab due to its higher IgE binding af-
finity.45,90 Compared to omalizumab, it led to greater suppression 
of free IgE as well as longer lasting suppression of IgE levels in pa-
tients. Surprisingly, these results and promising clinical observations 
have been followed by disappointing phase II and III clinical trials of 
ligelizumab in allergic asthma,89 CSU,88 chronic inducible urticaria 
(CIndU; NCT05024058) and food allergy (NCT04984876), although 
a long-term extension study is ongoing (NCT05678959) and a food 
allergy trial with higher dosing is planned for late 2024. While ligeli-
zumab is more effective than omalizumab at blocking IgE-binding to 
its high-affinity receptor and more effectively suppresses free IgE 
in allergic patients, it is striking that this increased potency has not 
translated into improved therapeutic efficacy. These findings clearly 
challenge the original conceptual framework for anti-IgE therapeutic 
development.

Key mechanistic differences between ligelizumab and omali-
zumab have emerged through structural and functional studies of 
these antibodies, which have contributed to understanding the clin-
ical observations.77,78,80,89 Ligelizumab and omalizumab engage IgE 
through overlapping, but distinct, epitopes on IgE. While the omal-
izumab epitope lies within a single Cε3 domain,77,78 the ligelizumab 
epitope is shifted such that ligelizumab binds IgE across two Cε3 do-
mains.80 This difference in positioning on IgE of ligelizumab relative 
to omalizumab results in key differential structural and functional 
attributes. While ligelizumab binding more substantially interferes 
with FcεRI binding through steric blocking, IgE-bound omalizumab 
is offset to one side of the receptor complex in a position that has a 
substantially smaller volume of overlap with FcεRI binding. One func-
tional consequence of this positioning difference is that ligelizumab 
exhibits no observable activity in transiently engaging IgE:FcεRI 
complexes and activating their dissociation.80 A second functional 
outcome of the ligelizumab binding epitope and Fab binding pose, 
is that ligelizumab is a significantly weaker inhibitor of IgE:CD23 in-
teractions as compared to omalizumab.80,89 The clinical studies of 
ligelizumab clearly indicate that increasing anti-IgE potency in block-
ing IgE:FcεRI binding does not provide a simple correlate for ther-
apeutic efficacy. These additional functional differences between 
ligelizumab and omalizumab, due to the way in which they each 
engage IgE, could potentially account for the disappointing clinical 
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impact of ligelizumab. On the other hand, while studies support a 
role for IgE:CD23 complexes in allergic asthma55,91–94 and food al-
lergies,52,95–99 it is unclear whether this would be true for CSU and 
could explain ligelizumab's generally disappointing clinical outcomes. 
Further studies are needed to address these questions.

2.1.3  |  HAE1

HAE1 (PRO98498) was developed by Genentech as an affinity-
matured, potential second generation anti-IgE therapeutic. HAE1 
was engineered using a phage display approach yielding a variant 
with 9 amino acid differences that has an ~25-fold higher binding 
affinity compared to omalizumab (Fab KD ~0.6 nM vs. ~15 nM), as a 
result primarily of a slowed dissociation rate.100,101 HAE1 showed 
more potent inhibition of IgE binding to FcεRI and inhibition of 
huFcεRI-RBL cell activation than omalizumab in vitro.100 Preclinical 
efficacy was further assessed by observing the suppression of free 
IgE in cynomolgus monkeys, and free IgE was used as a biomarker 
for pharmacodynamic behavior of HAE1 and its potential for thera-
peutic efficacy. HAE1 showed a greater ability to suppress free IgE 
levels, as compared to omalizumab, and resulted in the accumulation 
of higher levels of IgE:drug complexes.101 Modeling of the ability of 
HAE1 to suppress free IgE was used to guide the clinical develop-
ment program, based on the expectation that the higher HAE1 af-
finity would allow for lower drug:IgE dosing ratios to achieve the 
desired level of free IgE suppression. However, we now have, in 
hindsight, substantial evidence from ligelizumab clinical trials that 
indicate that free IgE suppression is not the sole contributor to anti-
IgE clinical efficacy. Phase I and Phase II clinical studies with HAE1 
incorporated designs based on this foundation, but development of 
HAE1 was halted after two people developed hypersensitivity reac-
tions during the Phase II studies.

At the time that the HAE1 development program was underway, 
the idea that omalizumab, or its derivatives, could potentially inter-
act with and dissociate IgE:FcεRI complexes was antithetical to the 
founding concepts of the original anti-IgE drug development pro-
grams. Thus, it was not until over a decade later in studies that were 
specifically designed to re-engineer omalizumab disruptive activities 
that the impact of the HAE1 program on IgE:FcεRI complex dissoci-
ation was assessed.102 In these studies, omalizumab disruptive ac-
tivity was re-engineered using a yeast-display approach, revealing 
a direct link between omalizumab binding affinity and disruptive 
potency (see below). At this time, it was discovered that HAE1 anti-
body could more potently dissociate IgE:FcεRI complexes and more 
rapidly desensitize human basophils than omalizumab. These obser-
vations indicate that HAE1 not only achieved increased potency in 
blocking IgE:FcεRI interactions, similar to ligelizumab, but it had the 
potential to more rapidly desensitize allergic effector cells and main-
tain potent CD23 blockade. It remains to be established whether 
these improved functional attributes, and in particular the more 
rapid desensitization of allergic effector cells, could have yielded a 
more effective and safe anti-IgE therapeutic.

2.2  |  Alternative approaches to targeting the IgE 
pathway

While targeting free serum IgE in allergic diseases has become 
a clinically validated strategy, it requires frequent dosing every 
2–4 weeks depending on body weight and IgE levels of the patient. 
Furthermore, dosing limitations restrict the use of omalizumab 
in adults (>12 years) to patients with IgE levels <700 kU/L. These 
obvious constraints of the classical anti-IgE approach to blocking 
free serum IgE prompted researchers to investigate other possibili-
ties, including direct targeting of the cellular source of IgE produc-
tion, namely IgE-expressing B cells.103 Isotype switching to IgE in B 
cells leads to a transient expression of membrane IgE (mIgE).104,105 
Several strategies to target such IgE producing B cells by engaging 
mIgE or other specific IgE+ B-cell markers with monoclonal antibod-
ies have been developed in various research programs. Even though 
none of these approaches have been approved for clinical use yet, 
we will highlight several interesting strategies here.

2.2.1  |  Quilizumab (h47H4)

Compared to soluble IgE, mIgE contains an additional 52 amino 
acid long domain, known as M1′ (or M1 prime, me.1, or CemX), lo-
cated between the constant heavy chain 4 (CH4) domain and the 
C-terminal membrane-anchor peptide of the epsilon chain on human 
B cells.106 The monoclonal mouse anti-human IgE antibody 47H4, 
which recognizes the M1′ domain of mIgE, has been developed at 
Genentech. In an experimental allergy mouse model using trans-
genic mice carrying the human M1′ domain in the mouse IgE locus, 
47H4 demonstrated a reduction in serum IgE levels and number of 
IgE-producing plasma cells in vivo.107,108 The authors concluded that 
47H4 most likely induces apoptosis in mIgE+ B cells. Following these 
studies, an afucosylated humanized version of the antibody, known 
as quilizumab, was generated.109 The removal of fucose from the IgG 
antibody increases binding affinity to FcγRIIIa, enhancing ADCC by 
NK cells and increasing quilizumab's efficacy to drive mIgE+ B cells 
into programmed cell death. A phase I clinical trial for allergic rhini-
tis (NCT01160861) and a phase II clinical trial for allergen-induced 
asthma (NCT01196039) revealed encouraging results, with quili-
zumab treatment reducing total and allergen-specific IgE levels by 
35% and 40%, respectively.110 The treatment also improved clini-
cal signs of allergen-induced asthma. Surprisingly, quilizumab treat-
ment only partially reduced serum IgE levels and did not significantly 
improve clinical outcomes in subsequent phase II clinical trials 
with allergic asthma patients (NCT01582503)111 or CSU patients 
(NCT01987947).111 The unexpected results of these trials may be 
attributed to the infrequent and transient presence of short-lived 
mIgE+ B cells, along with increasing evidence that the memory of the 
IgE compartment originates in a CD23-positive IgG memory B cell 
pool (i.e., MBC2), which undergoes sequential and potentially repeti-
tive isotype switching to IgE.112,113 To our knowledge the quilizumab 
program is no longer being actively pursued.
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2.2.2  |  Xmab7195

The anti-IgE antibody XmAb7195 is a humanized, affinity-enhanced 
variant of MaE11,114 the murine parental antibody of omalizumab, 
with an altered Fc-region to improve binding to the inhibitory recep-
tor FcγRIIb implemented with the goal of accelerating clearance of 
anti-IgE:IgE immune complexes from the circulation. Initially devel-
oped at Xencor, XmAb7195 aims to neutralize free serum IgE and 
reduce IgE production by promoting the aggregation of FcγRIIb 
and mIgE on the B cell surface.115,116 In a severe combined immu-
nodeficiency (SCID) mouse model engrafted with human PBMCs, 
XmAb7195 decreased free IgE levels and prevented the formation of 
IgE-secreting plasma cells. The effectiveness of this dual-targeting 
strategy was also assessed in a phase Ia clinical trial with 72 healthy 
volunteers and individuals with high IgE levels (NCT02148744). 
Several subjects with high IgE levels (300–3000 kU/L) reached un-
detectable free IgE levels (<9.59 ng/mL = <4 kU/L) following single 
dose intravenous XmAb7195 infusion. Additionally, soluble free 
and total IgE, basophil surface IgE and FcεRI levels showed pro-
nounced reductions. As for the most important adverse events, 
transient dose-dependent thrombocytopenia and one drug-related 
severe bronchospasm with trial discontinuation was reported. A 
subsequent phase Ib clinical trial (NCT02881853) for subcutane-
ous administration was conducted and completed in 2017. However, 
no results have been communicated to date. In February 2020 
Aimmune Therapeutics acquired an exclusive license from Xencor to 
develop and commercialize the antibody (renamed to AIMab7195). 
While they planned to develop AIMab7195 as an adjunct treatment 
to oral immunotherapy, to explore treatment outcomes in patients 
with food allergies, Aimmune Therapeutics was subsequently ac-
quired by Nestlé in October 2020.

2.2.3  |  UB-221 (8D6)

In 2012, a new monoclonal anti-IgE antibody named 8D6 was de-
veloped at United BioPharma, which was reported to bind the Cε3 
domain of IgE with fourfold higher affinity than omalizumab (appar-
ent KD ~59 pM versus KD ~230 pM, as measured with intact IgG 
antibodies). 8D6 has a unique binding feature in that it blocks the 
interaction between IgE and FcεRI but does not interfere with IgE 
binding to CD23.117 Similar to ligelizumab, 8D6 can recognize CD23-
IgE complexes on the cell surface.80,117 However, 8D6:IgE unlike 
ligelizumab:IgE complexes can still interact with CD23. In a recent 
follow-up study a humanized version of 8D6, termed UB-221, has 
been characterized and tested in a phase I clinical trial in patients 
with CSU.118 UB-221 exhibited the same binding characteristics as 
its murine predecessor. With higher affinity for free IgE compared 
to omalizumab, UB-221 showed equal effectiveness to ligelizumab 
in neutralizing IgE levels ex  vivo in sera from patients with atopic 
dermatitis—some of which contained total IgE levels >10,000 kU/L 
(24 μg/mL). In  vitro, UB-221 suppressed IgE-mediated degranu-
lation of rat basophilic leukemia cells expressing human FcεRIα 

(i.e., RBL SX-38) with sevenfold higher efficacy than omalizumab. 
Additionally, UB-221 was shown to markedly reduce the synthesis of 
IgE in PBMC cultures from healthy donors stimulated with IL-4 and 
anti-CD40 antibody at both the protein and mRNA level. In direct 
comparison, this inhibition was superior to that achieved with omali-
zumab or ligelizumab. The exact mechanism of how UB-221 achieves 
inhibition of IgE production in B cells, however, remains elusive. The 
authors speculate that the effect might result from modulating the 
CD23 pathway possibly by directly cross-linking the receptor and 
thereby reducing IgE production. As CD23 lacks intracellular sign-
aling domains more research is needed to confirm this hypothesis. 
In nonhuman primates and human IgE (IGHE) knock-in mice, single 
application of UB-221 rapidly reduced serum IgE levels to >90%. In 
the mice, IgE suppression lasted for ~14 days before IgE levels gradu-
ally rebounded back to baseline, whereas IgE levels in cynomolgus 
monkeys were maximally reduced for less than 1 day and reached 
baseline in <10 days. In the phase I, open-label, dose-escalation trial 
single intravenous infusion in CSU, UB-221 was found to be safe and 
well-tolerated. With an estimated serum half-life of 16–22 days at 
doses between 0.6 and 10 mg/kg, UB-221 led to a significant reduc-
tion in serum free IgE levels and a rapid, dose-dependent decrease 
in the weekly UAS7 scores, which measure disease symptoms. In 
summary, the current data warrants evaluation of UB-221 in further 
clinical trials.

2.2.4  |  IgETrap-Fc protein (YH35324)

IgETRAP is a fusion protein consisting of two extracellular domains 
of FcεRIα linked to a hybrid IgD/IgG4 Fc domain.119 While the ex-
tracellular FcεRIα domains were incorporated with the aim to bind 
and neutralize IgE, the engineered Fc-domain has been chosen 
to potentially reduce the likelihood of IgG1 Fc-mediated side ef-
fects such as ADCC, complement-dependent cytotoxicity (CDC), 
and IgG-mediated anaphylaxis. IgETRAP retains the neonatal Fc-
receptor (FcRn) binding site, which is crucial for in  vivo half-life 
extension. However, as its eight N-linked glycosylation sites might 
enhance clearance, IgETRAP was sialylated by co-transfecting a α-
2,6-sialyltransferase in CHO DG44 cells, which led to capping of the 
glycans with sialic acids. Compared to omalizumab IgETRAP showed 
superiority in certain functional features. IgETRAP showed a 69-fold 
higher binding affinity for human IgE compared to omalizumab in 
surface plasmon resonance measurements, which was mainly driven 
by a slower dissociation rate. Using the human mast cell line LAD2, 
IgETRAP was more effective than omalizumab in inhibiting IgE-
mediated degranulation. In cynomolgus monkeys, IgETRAP reduced 
free serum IgE levels more effectively and for a longer duration than 
omalizumab. A single dose of IgETRAP decreased IgE levels below the 
detection limit and maintained IgE suppression for 10 days, while 
omalizumab failed to fully reduce free IgE levels and its suppressive 
effect lasted only 3 days. In a mouse model of IgE-mediated passive 
systemic anaphylaxis, IgETRAP fully suppressed the allergic reaction 
as measured by drop in body core temperature.
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Recently, a first in human study examining IgETrap in a random-
ized, double-blind phase I clinical trial to assess safety, tolerability, 
pharmacokinetics, and pharmacodynamics was conducted in indi-
viduals with atopy.120 In a first assessment, healthy or atopic adults 
with mild allergic conditions and IgE levels between 30 and 700 
kU/L were treated with different doses IgETrap, omalizumab, or a pla-
cebo. In the second part of the study subjects with IgE levels >700 
kU/L received either IgETrap or omalizumab. The study results indi-
cate that treatment-emergent adverse events occurred in 38.5% of 
participants in the first part and 62.5% in second part of the study. 
These events were primarily mild or moderate, with no serious ad-
verse events, treatment discontinuations due to adverse effects, or 
anaphylaxis reported. IgETrap showed a dose-proportional increase 
in peak concentration and total exposure over the dosage range. The 
drug also significantly reduced free serum IgE levels, with a greater 
and longer-lasting effect compared to omalizumab. In conclusion, 
these data suggest that IgETrap is mostly safe and warrant further 
investigation as to whether IgETrap might be suitable to treat subjects 
with atopic conditions.

2.2.5  |  Lumiliximab (IDEC-152)

In the 1990's Fujiwara et al. observed that CD23 deficient mice have 
increased and sustained antigen-specific IgE levels compared to 
wild-type mice, while T and B cell development seemed normal.121 
Their findings provided strong evidence that CD23 is involved in 
negative regulation of IgE synthesis. On the other hand, monoclo-
nal antibodies against human CD23 have been reported to inhibit 
the production of IgE in IL-4 stimulated human PBMC cultures by 
several groups122–124 further substantiating the regulatory role of 
CD23 in this context. While anti-CD23 antibodies can potentially 
affect multiple aspects of the allergic cascade, different in  vitro 
studies have suggested that crosslinking of membrane CD23 with 
an IgG receptor could be a key mode-of-action to downregulate IgE 
synthesis.125–127 In  vivo, anti-CD23 antibodies inhibited antigen-
specific IgE responses128 and blocked lung eosinophil infiltration in 
murine asthma models.91 A chimeric macaque/human anti-CD23 
monoclonal antibody consisting of cynomolgus macaque variable 
regions and human IgG1 constant regions, known as Lumiliximab 
(IDEC-152), has been developed at IDEC Pharmaceuticals125 and 
tested in a phase I, singledose, dose-escalating clinical trial with 
allergic asthma patients.129 The antibody showed a favorable 
safety profile and dose-dependently decreased mean IgE levels. 
However, no clinical disease amelioration as measured by change 
in FEV1, was observed upon single dose application. Interestingly, 
the study found a reduction in total CD19+ B cell counts, since 
CD23 is not exclusively expressed on IgE-producing B cells. While 
the assessment of its use in allergic disorders was ceased after 
this phase I trial, lumilixumab was further tested in chronic lym-
phocytic leukemia (CLL), to deplete CD23+ B cells. However, this 
program has also been halted as the study failed to meet primary 
endpoints in a phase II/III clinical trial.130

2.3  |  Anti-cytokine receptor antibodies

2.3.1  |  Dupilumab (Dupixent)

Dupilumab is a humanized monoclonal IgG4 antibody against the 
alpha subunit of the interleukin-4 receptor (IL-4Rα), which is the 
common chain of the IL-4 and IL-13 receptor. The antibody has been 
co-developed at Regeneron Pharmaceuticals and Sanofi. To date, it 
has been approved for the treatment of several allergic and inflam-
matory conditions, including moderate-to-severe atopic dermatitis, 
asthma, chronic rhinosinusitis with nasal polyposis, eosinophilic es-
ophagitis, prurigo nodularis and most recently for chronic obstruc-
tive pulmonary disease (COPD) with raised blood eosinophils. While 
the positive results of two phase III clinical trials with dupilumab in 
CSU have recently been published,131 it has already been approved 
as add-on therapy to standard-of-care H1 antihistamines for CSU 
in Japan. Dupilumab works by inhibiting the biological activity of 
both IL-4 and IL-13, which are key drivers of the Th2 response. By 
doing so, dupilumab targets multiple molecular and cellular mech-
anisms in the allergic cascade, which has been demonstrated in 
human in vitro culture systems and humanized mouse asthma mod-
els.132 Interestingly, dupilumab has been shown to prevent isotype 
class switching to IgE in B cells in vitro and to suppress IgE levels 
in vivo.132,133 In that sense, it blocks IgE pathophysiology upstream 
of monoclonal antibodies directly targeting IgE. However, IgE sup-
pression is less effective, incomplete and requires long treatment 
periods (1 year for approximately 70% reduction).132 While direct 
comparison with omalizumab in a prospective clinical trial is lack-
ing, no clinically significant differences in efficacy outcomes were 
reported in indirect retrospective evaluations.134

2.3.2  |  Benralizumab (Faserna)

Benralizumab is a humanized, afucosylated, monoclonal IgG1 anti-
body that targets the IL-5 receptor alpha chain (IL-5Rα) on the sur-
face of eosinophils and basophils.135 Developed by AstraZeneca's 
biologics research and development branch, MedImmune, it has 
been approved as add-on maintenance treatment of severe eo-
sinophilic asthma. Besides blocking the biological activity of IL-5, 
benralizumab has been shown to drive eosinophils into apoptosis 
via ADCC.29 IL-5 is a crucial cytokine for the growth, differentia-
tion, recruitment, and survival of eosinophils, which play a signifi-
cant role in the pathophysiology of eosinophilic asthma and other 
allergic conditions. Benralizumab mediated elimination of these 
cells, reduces inflammation and helps to control asthma symptoms 
and exacerbations. Clinical studies have shown that benralizumab 
is highly effective in reducing eosinophil counts, improving lung 
function, and decreasing the frequency of asthma exacerbations 
in patients with severe eosinophilic asthma.136,137 Its ability to tar-
get and deplete eosinophils makes it a powerful therapeutic op-
tion for patients with difficult-to-control asthma characterized by 
elevated eosinophil levels.
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2.4  |  Approved anti-Th2 cytokine antibodies

2.4.1  |  Mepolizumab (Nucala) and Reslizumab 
(Cinqair)

Mepolizumab is a fully humanized monoclonal IgG1 antibody from GSK 
targeting IL-5. The antibody binds IL-5 with high affinity and inhibits its 
interaction with the IL-5 receptor, which is predominantly expressed 
on eosinophils. This approach has been shown to result in a reduction 
of eosinophil counts in blood and tissues.138 A single intravenous in-
jection led to a remarkable reduction of blood eosinophils, which per-
sisted for 30 days.139 While initial studies in asthma did not show the 
expected clinical effectiveness,140 Mepolizumab has in the meantime 
been approved for the treatment of severe eosinophilic asthma,141 eo-
sinophilic granulomatosis with polyangiitis (EGPA), hypereosinophilic 
syndrome (HES) and as an add-on therapy to intranasal corticosteroids 
in CRSwNP. Clinical trials have demonstrated its efficacy in decreasing 
the frequency of asthma exacerbations,142 improving lung function,143 
and managing symptoms in other eosinophilic conditions.144

Reslizumab is a fully humanized monoclonal IgG4 antibody 
also targeting IL-5 initially developed at Cephalon, which was ac-
quired by Teva Pharmaceuticals in 2011. It is approved as add-on 
maintenance treatment of severe eosinophilic asthma.145 While 
a direct comparative in  vitro study has demonstrated that resli-
zumab features an 11–26 fold higher affinity and neutralization 
potency for IL-5 than mepolizumab146 indirect comparisons of clin-
ical outcomes did not show major differences between the two 
antibodies.

2.4.2  |  Tezepelumab (Tezspire)

Tezepelumab is a fully human monoclonal IgG2 antibody that inhib-
its the epithelial-cell–derived alarmin TSLP. The antibody which has 
been co-developed by Amgen and AstraZeneca binds TSLP with high 
affinity (~60 pM),18 preventing its interaction with the TSLP receptor 
complex. This blockade interrupts the signaling cascade that leads 
to the production and release of pro-inflammatory cytokines and 
chemokines, reducing inflammation and hyperresponsiveness in the 
airways. Tezepelumab is approved as an add-on maintenance treat-
ment for patients with severe asthma, particularly those who are 
inadequately controlled with standard therapies such as inhaled cor-
ticosteroids and long-acting beta-agonists.147 Interestingly, tezepe-
lumab is effective irrespective of baseline eosinophil counts.148 The 
findings that tezepelumab reduced blood eosinophil count as well as 
levels of fractional exhaled nitric oxide (FeNO) and IgE, indicate that 
the antibody is able to suppress multiple inflammatory pathways. 
The effect of tezepelumab on these biomarker levels may be related 
to decreased interleukin-5 and interleukin-13 levels.149 Reduction in 
total IgE levels may be linked to suppression of IL-4 and IL-13 con-
centrations, leading to less efficient B cell isotype class switching to 
IgE. Clinical trials have demonstrated that tezepelumab significantly 
reduces the rate of asthma exacerbations, improves lung function, 

and enhances asthma control compared to placebo.150 Further, a 
phase IIb clinical trial has recently demonstrated promising results 
for the treatment of CSU.151 These data support the concept that 
TSLP inhibition may have broader physiological effects than target-
ing individual type 2 cytokines.

2.4.3  |  Lebrikizumab (Ebglyss)

Lebrikizumab is a humanized IgG4 anti-IL-13 monoclonal antibody 
developed by Almirall and Eli Lilly. The antibody binds IL-13 with an 
affinity <10 pM.152 Lebrikizumab-bound IL-13 is still able to bind its 
cell surface receptors, but the antibody sterically prevents the het-
erodimerization of IL-4Rα/IL-13Rα1 (Type 2 receptor) and thus its 
downstream signaling. However, it does not affect the binding of 
IL-13 to the IL-13Rα2 decoy receptor.153 Lebrikizumab has been as-
sessed for the treatment of both atopic dermatitis and asthma. Initial 
phase III clinical trial data in moderate-to-severe asthma did not dem-
onstrate consistent efficacy.154 However, reanalysis in a well-defined 
type 2 asthma population with elevated blood eosinophils, elevated 
FeNO,155 reported a successful outcome with reduced asthma ex-
acerbations. In two identically designed phase III clinical trials for 
atopic dermatitis, Lebrikizumab therapy demonstrated significantly 
improved skin clearance, itch, and interference of itch with sleep.156 
Currently, its use is restricted to the treatment of atopic dermatitis.157

2.4.4  |  Antibodies in clinical trials for the 
treatment of allergy

Apart from the clinically approved monoclonal antibodies to treat 
different allergic conditions, additional drug candidates are currently 
undergoing clinical evaluation in a variety of allergic indications 
(Table  1). While some of them are directed against pre-validated 
targets such as IL-4R⍺, IL-5, IL-13 or TSLP, others explore new 
therapeutic routes for example, by (i) neutralizing the alarmin IL-33, 
an important driver of type 2 immunity, (ii) blocking inflammatory 
cytokine signaling involved in allergic itch (e.g., IL-31R), or (iii) pre-
venting interaction between T cells (e.g., OX40) and TSLP-activated 
DCs (e.g., OX40L) to inhibit Th2 cell mediated immune responses. 
While this topic has been covered extensively in other reviews,170,171 
the table provides an overview of current efforts and strategies to 
develop more effective monoclonal antibody-based drugs for the 
treatment of allergies.

2.5  |  Other therapeutic antibodies under 
development

2.5.1  |  Barzolvolimab (CDX-0159)

Barzolvolimab, also known as CDX-0159, is a humanized monoclonal 
IgG1 antibody designed to target KIT with high picomolar affinity and 
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inhibit its function. While Celldex has developed its predecessor CDX-
0158 (KTN0158) for the treatment of KIT-positive neoplasms such 
as advanced refractory gastrointestinal stromal tumors (GIST),172,173 
they subsequently started to implement CDX-0159 to target mast 
cells in allergic diseases. Compared to CDX-0158, CDX-0159 carries 
modifications in its Fc portion to abolish FcγR and C1q receptor bind-
ing to prevent unwanted FcγR-dependent mast cell activation poten-
tially leading to infusion reactions. Further mutations (i.e., YTE) were 
introduced to increase the binding affinity for FcRn, reducing the 

rate of in vivo clearance and extending the antibody's serum half-life. 
CDX-0159 has been reported to inhibit SCF-dependent KIT activa-
tion in vitro.174 In a phase Ia clinical trial it demonstrated a systemic 
and prolonged mast cell ablation upon in healthy volunteers. Further 
CDX-0159 treatment reduced skin mast cells and substantially ame-
liorated disease activity in a phase Ib with chronic inducible urticaria 
and systemic dermographism patients.175 While a phase II clinical trial 
in CSU is currently still ongoing (NCT05368285), top line results on 
angioedema relief have been communicated.176

TA B L E  1  Anti-cytokine and cytokine receptor antibodies in Phase 2 and 3 clinical trials for the treatment of allergic conditions.

Target/antibody Clinical stage Company References

IL-4R⍺

MG-K10 Phase 2 in asthma and AD Shanghai Mabgeek Biotech NCT05382910, NCT05466877

CM310 Phase 2/3 in asthma, AD and 
CRSwNP

Keymed Biosciences NCT05186909, NCT05715320, 
NCT05436275158

AK120 Phase 2 in asthma Akeso NCT05155020159

Rademikibart Phase 2 in asthma Simcere Pharmaceutical NCT06488755160

IL-5

Depemokimab Phase 3 completed in asthma GSK NCT04718389161

Varokibart Phase 2 in asthma Teva Pharmaceutical Industries NCT04847674

SHR-1703 Phase 2 in asthma Jiangsu Hengrui Pharma NCT05522439

IL-13

Tralokinumab Phase 3 in AD Leo Pharma NCT03526861162

Cendakimab Phase 3 completed in AD Celgene/Abbvie NCT04800315163

IL-31R

Nemolizumab Phase 3 completed in AD Galderma jRCT2031230174164

IL-33

Etokimab Phase 2 completed in severe 
eosinophilic asthma and peanut 
allergy

Anaptys Bio NCT02920021165

Itepekimab Phase 2 completed in asthma Regeneron/ Sanofi NCT03387852166

Tozorakimab Phase 2 in asthma AstraZeneca NCT04570657167

TSLP

AIO-001 Phase 2 ready in asthma GSK/ Aiolos Bio NCT06170827

BSI-045B Phase 2 in AD Biosion NCT05114889

TQC2731 Phase 2 in CRSwNP Chia Tai Tianqing Pharmaceutical 
Group

NCT06036927, NCT05472324

UPB-101 Phase 2 in asthma, CRSwNP Upstream Bio NCT06196879, NCT06164704

CSJ117 Phase 2 in asthma Novartis NCT04410523168

SHR-1905 Phase 2 in asthma and CRSwNP GSK NCT05593250, NCT05891483

CM326 Phase 2 in asthma, AD and 
CRSwNP

Keymed Biosciences NCT05774340, NCT05671445, 
NCT05324137

OX-40

Rocatinlimab Phase 2/3 in asthma and AD Amgen NCT06376045, NCT05633355

BAT6026 Phase 2 in AD Bio-Thera Solutions NCT06094179

OX-40L

Amlitelimab Phase 2/3 in asthma and AD Sanofi NCT06033833, NCT06130566169

Abbreviations: AD, atopic dermatitis; CRSwNP, chronic rhinosinusitis with nasal polyps.
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2.5.2  |  Lirentelimab (AK002) and other anti-Siglec 
antibodies

A humanized non-fucosylated monoclonal IgG1 antibody, AK002, 
targeting Siglec-8 has been developed by Allakos and analyzed for 
treatment of diseases associated with mast cell and eosinophil-
driven inflammation. The ITIM-containing inhibitory Siglec-8 is 
selectively expressed on mast cells, eosinophils and basophils. 
Different studies have shown that AK002 depletes eosinophils by 
ADCC and prevents mast cell activation through inhibitory signal-
ing via Siglec-8.177–180 Initially, AK002 showed safety, tolerability 
and bioavailability in a phase I clinical trial with healthy volunteers 
(NCT04324268). However, despite successful depletion of eo-
sinophils (95–96%), Lirentelimab failed to meet primary endpoints 
in two phase II clinical trials with CSU (NCT05528861) and Atopic 
Dermatitis (NCT05155085) patients. While this Siglec-8 program 
with AK002 has been stopped, Allakos has developed the agonis-
tic humanized IgG1 monoclonal antibody AK006 against Siglec-6. 
AK006 has been reported to induce strong inhibitory signaling in 
human mast cells181 and to trigger ADCP leading to a reduction in 
mast cell numbers in vivo.67 A phase I clinical trial in healthy volun-
teers and subjects with CSU has been initiated (NCT06072157).

2.5.3  |  Anti-Orai1 (DS-2741a)

ORAI1 is a transmembrane pore-forming subunit forming the hex-
americ structure of the calcium release-activated calcium (CRAC) 
channel. It regulates cellular uptake of calcium, which is critical 
for several biological processes in various cell types including ac-
tivation of T cells and mast cells. While mutations in the Orai1 
gene can cause severe combined immunodeficiency (SCID), char-
acterized by impaired T cell function and a compromised immune 

system,182 Orai1 knockout mice exhibit reduced T cell cytokine 
production and mast cell activation.183 Thus, targeted approaches 
to specifically inhibit ORAI1 have been assessed. Daiichi Sankyo 
has developed DS-2741a, a humanized anti-ORAI1 IgG1 anti-
body, which attenuated bone marrow derived mast cell (BMMC) 
degranulation in  vitro and the passive cutaneous anaphylaxis 
reaction in vivo in human Orai1 transgenic mice.184 Further, DS-
2741a induced suppression of cytokines release triggered by 
store-operated Ca2+ entry in a variety of T helper subsets. In vivo, 
DS-2741a treatment resulted in an amelioration of dermatitis in a 
mouse model of mite antigen-induced atopic dermatitis.184 Since 
Orai1 is widely expressed, it remains to be investigated whether 
such an approach could be associated with overt unwanted side 
effects. Further studies are needed to assess the therapeutic po-
tential of targeting ORAI1 in allergic diseases.

3  |  COMPAR ATIVE ANALYSIS OF 
THER APEUTIC ANTIBODIES

The availability of many different biologicals for the treatment of 
allergic conditions (Table 2) enables the possibility of tailoring the 
therapy for a patient's disease phenotype/endotype in a person-
alized manner. At the same time, it requires a detailed diagnostic 
work-up and informed therapeutic decision-making based on well-
established biomarkers. As reviewed in detail elsewhere,195 ad-
ditional factors such as patient co-morbidities, practical aspects 
surrounding drug delivery (e.g., frequency of injection, location 
of administration, ability to receive delivery and properly store 
medication) and personal situation of the patient (e.g., age, work 
hours, caretaker demands and travel frequency) can influence the 
choice of the most suitable treatment. There are clear guidelines 
from EAACI196,197 and GINA198 for the use of biologicals in asthma. 

TA B L E  2  Overview of clinically approved monoclonal antibodies across different allergic indications.

mAb Target Asthma CSU AD CRSwNP
Food 
allergy EoE

Omalizumab IgE Approved Approved Limited efficacy185 Approved Approved Limited 
efficacy186

Dupilumab IL-4Rα Approved Approved 
(add-on)*

Approved Approved - Approved

Benralizumab IL-5R Approved (add-on, severe 
eosinophilic)

Limited 
efficacy187

Limited efficacy188 Limited 
efficacy189

- Limited 
efficacy190

Mepolizumab IL-5 Approved (add-on, severe 
eosinophilic)

- - Approved 
(add-on)

- Limited 
efficacy191

Reslizumab IL-5 Approved (add-on, severe 
eosinophilic)

- - - - Limited 
efficacy192

Tezepelumab TSLP Approved (add-on) Promising 
phase 2b151

Limited efficacy193 - - ODD

Lebrikizumab IL-13 Limited efficacy194 - Approved - - -

Abbreviations: AD, atopic dermatitis; CRSwNP, chronic rhinosinusitis with nasal polyps; CSU, chronic spontaneous urticaria; EoE, eosinophilic 
esophagitis; ODD, orphan drug designation.
*In Japan.
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Moreover, EAACI provided guidelines on the use of biologicals in 
CSRwNP199 and urticaria.200

Patients with IgE-driven disease pathology benefit from omal-
izumab treatment across different allergic conditions, as indicated 
by its broad success and approval across indications (Table 2). The 
assessment of allergen-specific and total IgE levels can be an import-
ant indicator in this context. However, there are exceptions in which 
high or extreme levels of IgE were associated with worse treatment 
responses such as in AD.201 Furthermore, omalizumab has shown 
limited efficacy in AD, which might be due to the observation that 
these patients often exhibit non-IgE mediated aspects of chronic 
skin inflammation.

IL-4Rα targeting therapy with dupilumab can act at multiple 
points along the allergic cascade and has also shown clinical effi-
cacy across multiple indications.202 It is recommended in conditions 
with prominent type 2 inflammation characterized by elevated blood 
eosinophils and/or increased fractional exhaled nitric oxide (FeNO). 
IL-4 and IL-13 share many biological actions, which can likely be 
attributed to the overlapping use of the IL-4Rα subunit and down-
stream activation leading to activation of signal transducer and 
activator of transcription (STAT) pathways. This molecular pharma-
cology is one reason why approaches targeting IL-4Rα chain, such as 
dupilumab, have proven more successful than isolated approaches 
that inhibit only IL-13 or IL-4.203

As the development, recruitment and survival of eosinophils is 
highly dependent on IL-5, blocking its biological activity with benrali-
zumab, mepolizumab or reslizumab has proven to bring clinical bene-
fit in patients with inflammatory eosinophil in the lung.204 However, 
these anti-IL5/5Ra biologicals target a narrower patient population 
as they were only approved as add-on maintenance therapy in se-
vere eosinophilic asthma.

Consistent with basic disease models, therapeutic blockade of 
alarmin pathways has shown promise in settings where eosinophil 
recruitment and tissue remodeling are key drivers of pathology. 
TSLP targeted therapies modulate lung function, inflammation, 
and reduce exacerbation rates in allergic asthma.11 In contrast the 
same intervention has been less successful in atopic dermatitis (AD), 
where IL-13 induced tissue remodeling and IL-5 driven eosinophil re-
cruitment are less central to disease pathophysiology.12,151

Currently, there is only limited information available from 
head-to-head trials of approved biologicals in a specific allergic 
indication. A prospective direct comparison between dupilumab, 
mepolizumab, and reslizumab, however, has been performed in 
severe eosinophilic asthma.205 The study, which included 141 pa-
tients, reported comparable clinical outcomes regarding time-to-
first exacerbation, exacerbation rate, forced expiratory volume in 
1 s, and asthma control test score within a 12-month treatment 
period. An indirect comparison based on meta-analysis of 14 ran-
domized clinical trials (RCTs) in uncontrolled persistent asthma 
reported greater reductions in annualized severe exacerbation 
rates for dupilumab as compared to benralizumab, mepolizumab, 
reslizumab, and omalizumab treatment.206 Additionally, a greater 
improvement in FEV1 was described for dupilumab at week 12, 

24, or 52 than for the other biologics. In another indirect com-
parison between tezepelumab, mepolizumab, benralizumab, and 
dupilumab in eosinophilic asthma including 9201 patients from 10 
RCTs, it has been reported that tezepelumab and dupilumab were 
associated with greater improvements in exacerbation rates and 
lung function than benralizumab or mepolizumab.207 Results from 
such indirect comparisons should, however, be interpreted with 
caution until there is reliable data available from direct head-to-
head clinical trials.

4  |  FUTURE DIREC TIONS AND 
INNOVATIONS

The continued authorization of omalizumab for treating additional 
allergic indications, more than 20 years after its initial approval for 
asthma,72 underscores the pivotal role of IgE biology in a wide range 
of allergic diseases. With food allergy as the most recent example,208 
many clinical investigations have demonstrated that targeting and 
neutralizing IgE remains one of the most important cornerstones of 
allergic disease management. Current clinical limitations for anti-IgE 
approaches such as dosing restrictions and frequency of injections, 
however, call for further improvements in this approach. Given the 
broad treatment success of omalizumab, we will particularly focus 
on future directions of anti-IgE treatment strategies in the next 
sections.

4.1  |  Molecular engineering of next-generation IgE 
inhibitors

Over time it has become evident that developing a next generation 
anti-IgE treatment that achieves clinical improvement over omali-
zumab anti-IgE treatment is more difficult than initially anticipated. 
This has especially been exemplified by the termination of the HAE-1 
development program, and disappointing clinical results obtained 
with both ligelizumab and Xmab7195. For ligelizumab, two phase III 
clinical trials in asthma and CSU88,89 with side-by-side comparison 
to omalizumab did not yield anticipated improvements in clinical 
outcome. These studies provide accumulating evidence that solely 
increasing the affinity of an anti-IgE antibody is insufficient to over-
come current therapeutic limitations. Instead, the data rather sug-
gest that other binding characteristics such as IgE epitope specificity 
and the ability to actively dissociate IgE from FcεRI might represent 
important contributors to clinical efficacy.

4.1.1  |  Improving existing anti-IgE approaches

With the development of an efficiency screen based on yeast display 
to simultaneously increase affinity and disruptive potency, we re-
cently laid the experimental and conceptual foundation for the selec-
tion and engineering of potent omalizumab variants.102 In this work, 
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we characterized a range of anti-IgE antibodies with distinct epitopes, 
affinities, and disruptive potencies. Clone C02 resulted from such a 
screen and showed high affinity as well as improved disruptive potency. 
It completely desensitized basophils from allergic donors within hours 
at therapeutically relevant doses ex vivo. Insertion of flexible Glycine 
linkers at each Fab elbow (VH/VL) in C02 (C02-H2L2) further increased 
its disruptive potency. Importantly, we observed that the dwell time of 
disruptive anti-IgE antibodies on intact IgE:FcεRI complexes prior to 
disruption is a critical parameter that correlates with their ability to 
safely remove IgE from human allergic effector cells. Another group 
has engineered an omalizumab variant, termed FabXol3, by structure 
guided insertion of three point mutations, two in the VL domain frame-
work region and one in the C𝜅 domain.78,209 FabXol3 featured slightly 
higher affinity than the unmutated omalizumab Fab and was more ef-
ficient in accelerating the dissociation of IgE-Fc from FcεRI. Overall, 
these findings illustrate the potential of kinetically active disruptive 
anti-IgE antibodies to enhance therapeutic efficacy of omalizumab. 
Furthermore, they provide a structural and conceptual framework for 
engineering optimized next-generation anti-IgE antibodies featuring 
both highly efficient neutralization and disruptive potency.

Another study described the development of an omalizumab 
biobetter, AB1904Am15, through the optimization of stability, 
immunogenicity, affinity and bioavailability.210 First the authors 
replaced two aspartic acid isomerization hotspots in the comple-
mentary determining regions (CDRs) and mutated multiple murine 
framework residues to the homologous human germline antibody 
sequence. Using yeast display technology in conjunction with a de-
signed mutation library of each CDR in the variable domains they 
further screened for increased affinity. Additionally, the previously 
described YTE mutation211 was inserted into the Fc region of the 
antibody to prolong its serum half-life. The resulting anti-IgE anti-
body AB1904Am15 showed favorable biophysical properties with 
improved molecular stability. The twofold improved affinity re-
sulted in enhanced in  vitro inhibition of IgE binding to FcεRI and 
enhanced suppression of IgE induced histamine release in human 
FcεRI-expressing rat basophilic leukemia cells compared to omali-
zumab. Further, AB1904Am15 showed a more than twofold longer 
serum half-life in human FcRn transgenic mice. Finally, the optimized 
antibody outperformed the original omalizumab antibody in terms 
of free IgE suppression efficacy in a cynomolgus monkey asthma 
model in vivo. This study further demonstrated the possibilities of 
improving anti-IgE biologicals. Overcoming current limitations as-
sociated with molecular stability and dosing restrictions may hold 
great promise to optimize clinical efficacy.

4.1.2  |  Exploring novel mechanisms and alternative 
scaffolds

The first systematic description of active IgE dissociation from FcεRI 
using a disruptive IgE inhibitor has been published in 2012.79 In this 
study, we characterized the binding kinetics of an alternative scaffold 
molecule, the designed ankyrin protein (DARPin) E2_79, featuring 

this accelerated dissociation mechanism. As E2_79 engages a subset 
of ligand attachment points on IgE, which become exposed during 
partial IgE:FcεRI complex dissociation, it accelerates the intrinsic dis-
sociation rate and fully removes IgE from the receptor. This work 
laid the conceptual foundation to develop more potent inhibitors 
through targeted screening approaches and molecular engineer-
ing. In subsequent studies, we generated bispecific DARPins, such 
as bi53_79, by genetic fusion79 and a bispecific antibody-like hybrid 
molecule between two DARPins and an IgG Fc-domain, KIH_E07_79, 
using the knobs-in-hole techniques.81 The latter example represents 
an interesting molecule as it integrates important functional features 
from the initially described disruptive DARPin with classical charac-
teristics of IgG antibodies, including a potentially prolonged serum 
half-life. These studies highlighted the remarkable potency of KIH_
E07_79 to neutralize free IgE, rapidly dissociate preformed IgE:FcεRI 
complexes, terminate IgE-mediated signaling in preactivated human 
blood basophils in vitro, and shut down pre-initiated allergic reac-
tions and anaphylaxis in mice transgenic for human FcεRIα in vivo.

A disruptive nanobody, called sdab 026 was reported several 
years later in 2018.212 The authors described an allosteric mech-
anism for sdab 026, in which both blocking of the IgE:FcεRI in-
teraction as well as disruption of IgE:FcεRI are based on trapping 
the IgE-Fc Cε3-4 domains in a closed conformation incompatible 
with FcεRI binding.213 While not yet officially peer-reviewed, var-
ious bispecific IgG4 Fc-fusion proteins have been published (pat-
ent WO2024003376A1) with sdab 026 (i.e., A1) and an additional 
less potent or nondisruptive anti-IgE nanobody (i.e., A2-G1), in an 
analogous approach as previously described for the DARPin Fc-
fusions. Several of the bispecific nanobody Fc-fusion molecules, 
such as NIgG4B1A1(G4S), were shown to efficiently inhibit allergen-
mediated reactions in passive cutaneous or systemic anaphylaxis 
models in mice transgenic for human FcεRIα in vivo.

Compared to classical antibodies, the described alternative scaf-
folds or fusion molecules feature smaller binding sites, which may 
be advantageous when targeting of specific epitopes important in 
disruption of high-affinity protein:protein interactions is essential. 
As such they represent promising approaches for the generation of 
next-generation anti-IgE biologicals. However, clearly more work 
needs to be done in order to assess their developability, manufac-
turability and in vivo efficacy as well as safety.

4.1.3  |  Unifying different modes-of-action in one 
molecule

There is a growing body of evidence suggesting that the therapeu-
tic efficacy of anti-IgE biologicals could be significantly increased, if 
the treatment simultaneously interfered at multiple levels in the al-
lergy cascade.214 This could potentially be achieved by developing 
next-generation anti-IgE molecules exerting multiple modes-of-action 
(Figure 3). Theoretically, such a novel drug candidate should ideally 
combine the following molecular characteristics: (i) bind free serum 
IgE with high affinity to neutralize its biological activity, (ii) efficiently 
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and rapidly disrupt IgE from its high-affinity receptor FcεRI on the sur-
face of allergic effector cells in the blood (i.e., basophils, dendritic cells) 
and in tissues (i.e., mast-cells), (iii) inhibit IgE:CD23 interactions to pre-
vent IgE facilitated antigen presentation on dendritic cells or B cells, 
(iv) suppress IgE production in B cells or eliminate IgE switched B cells.

While a lot of effort has focused on maximizing free IgE neu-
tralization in previous anti-IgE development programs, more recent 
approaches are starting to optimize additional modes-of-action 
(Table 3). At this stage, however, more research is needed to evalu-
ate how these functional characteristics will translate into improved 
therapeutic potential and clinical benefit in vivo in humans.

4.2  |  Combination and repurposing of existing 
strategies

4.2.1  |  Omalizumab and allergen-specific 
immunotherapy

Allergen-specific immunotherapy (AIT) is a clinical procedure 
aimed at re-establishing immunological tolerance against culprit 
allergens. The treatment involves administration of incremen-
tally increasing doses of allergen extract, which can be deliv-
ered via different routes (i.e., subcutaneous, sublingual, oral or 

F I G U R E  3  Monoclonal anti-IgE antibodies with multiple modes-of-action. Binding of IgE and blocking its interaction with both the high-
affinity receptor FcεRIα and the low-affinity receptor CD23 is the most classical characteristic of a therapeutic anti-IgE antibody (left panel). 
More recently, anti-IgE antibodies have been described, which can actively remove (dissociate) pre-complexed IgE from its high-affinity 
receptor FcεRIα on allergic effector cells including basophils, mast cells and dendritic cells (middle panel). Some anti-IgE antibodies suppress IgE 
production in B-cells, most likely through a mechanism involving the binding of IgE:CD23 complexes on the cell surface (right panel). Next-
generation anti-IgE antibodies should ideally feature a combination of all these modes-of-action to exhibit maximal therapeutic efficacy.

Anti-IgE biological
Blocking of 
IgE:FcεRIα

Blocking of 
IgE:CD23

Disruption of 
IgE:FcεRIα

Suppression of 
IgE production

Omalizumab ++ ++ + −

Ligelizumab +++ + − ++

HAE1 +++ ++* ++ n.a.

Quilizumab − − − +++

Xmab7195 +++ ++ + ++

UB221 +++ − n.a. +++

IgETrap-Fc +++ − + n.a.

C02-H2L2 +++ ++* ++ n.a.

AB1904Am15 ++ ++* n.a. n.a.

KIH_E07_79 ++ ++ +++ ++

NIgG4B1A1(G4S) ++ n.a. +++ n.a.

Note: * inferred from shared epitope with omalizumab.
Abbreviations: efficacy scale: − = absent; + = moderate; ++ = strong; +++ = very strong; n.a., not 
available.

TA B L E  3  Modes-of action comparison 
for different anti-IgE biologicals.
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intralymphatic). Starting out with minute concentrations of al-
lergen, decreases the risk of a systemic reaction. Once a cer-
tain maintenance dose is achieved repetitive administration is 
required to achieve clinical benefit. The overarching goal of the 
treatment is to shift the allergy prone Th2-dominated immune re-
sponse towards protective Th1 immunity including the induction 
of regulatory T cells and allergen-specific IgG antibodies. As sug-
gested in the guidelines, the treatment duration typically spans 
3–5 years.215 This long-term therapy, results in sustained unre-
sponsiveness and prolonged amelioration of allergic symptoms in 
a fraction of patients.216,217 To increase the safety of AIT and to 
investigate whether there might be synergistic effects between 
anti-IgE therapy and AIT, Kuehr et al.218 conducted the first clini-
cal trial in which omalizumab was combined with AIT. This ran-
domized, double-blind, placebo-controlled, multi-site study 221 
patients suffering from birch and grass pollen-induced seasonal 
allergic rhinitis. Their results demonstrated that omalizumab con-
ferred a protective effect with different types of allergens and 
significantly increased the clinical benefit when compared to AIT 
alone. Many follow-up studies used omalizumab as pretreatment 
and/or adjunct therapy for AIT mainly in aero, hymenoptera and 
food allergy,219 with the rational of reducing IgE levels before 
introducing the allergen to reduce the risk of adverse reactions. 
Increased safety of AIT upon omalizumab combination has been 
reported for several of these investigations,220–222 however, omal-
izumab is not yet officially approved for such combination therapy. 
The OUtMATCH study, a large multicenter clinical trial in food al-
lergy, is currently assessing the benefits of omalizumab adjunct 
therapy in AIT in a systematic manner.223

The efficacy of combined anti-IL-4 therapy with a suboptimal 
dose of grass pollen subcutaneous immunotherapy to induce sus-
tained tolerance to allergen in seasonal allergic rhinitis patients was 
assessed in a randomized, double-blind clinical trial. Using allergen-
induced skin late-phase response as surrogate marker of therapeutic 
response, no additional benefit over SCIT alone could be found.224 
Compared to combination therapy using anti-IgE and AIT, current 
data indicate that IL-4 targeting in conjunction with AIT appears less 
promising.

4.2.2  |  BCMAxCD3 bispecific antibody

B cell maturation antigen (BCMA) is a tumor necrosis factor (TNF) fam-
ily receptor specifically expressed on plasma B cells (PCs) playing a 
major role in their survival. The bispecific anti-BCMA/anti-CD3 an-
tibody linvoseltamab (BCMAxCD3) developed at Regeneron to treat 
multiple myeloma simultaneously engages PCs and T cells inducing T 
cell mediated killing of the PCs.225 Recently a novel concept using this 
antibody to broadly target and remove long-lived PCs in an isotype 
independent manner combined with blockade of the IL4Rα to durably 
reverse IgE-mediated allergy has been suggested.226 In a long-term 
house dust mite sensitization model (>15 weeks) in mice expressing 
human BCMA and human CD3, application of linvoseltamab efficiently 

depleted bone marrow plasma cells (BMPCs). Importantly, all immu-
noglobulin isotypes (i.e., IgA, IgM, IgE and IgG1) were significantly 
reduced 1 week following the treatment. Antibody levels recovered 
to pre-treatment baseline values within 3–5 weeks under continua-
tion of HDM-sensitization. To specifically prevent this rebound effect 
for IgE, BCMAxCD3 treatment was combined with anti-IL4Rα anti-
body injections. Indeed, sustained suppression of IgE levels was ob-
served, while the other antibody levels reached baseline levels within 
9 weeks post BCMAxCD3 application. Systemic challenge of mice 
undergoing a 14-week HDM sensitization and combined treatment 
of BCMAxCD3 with anti-IL4Rα antibodies did not show any signs of 
anaphylaxis. Further, the combination of BCMAxCD3 and anti-IL4Rα 
antibody treatment on resting IgE levels in cynomolgus monkeys was 
tested. In line with results in the mice, an initial drop in IgE and IgA 
levels with the BCMAxCD3 single treatment was observed. The lev-
els normalized to baseline between 50 and 100 days post injection. 
Prolonged suppression of IgE was only achieved in the combination 
treatment. The bispecific BCMAxCD3 antibody was assessed for its 
ability to eliminate PCs from human PBMCs and BM samples. The an-
tibody specifically ablated PCs but not other B cell subsets in these 
samples, which is in line with specific BCMA expression on PCs. When 
culturing BM samples from allergic and nonallergic donors in vitro IgE 
only accumulated in the culture supernatants of allergic donors. The 
production of IgE in these samples was fully suppressed upon bispe-
cific BCMAxCD3 antibody treatment. Additionally, initial human data 
from clinical trials in multiple myeloma patients who received weekly 
administration of bispecific BCMAxCD3 antibody indicated that IgE 
levels are completely reduced as early as 4 weeks posttreatment. 
These data suggest that transient PC ablation using a BCMAxCD3 
bispecific antibody combined with persistent inhibition of IgE class 
switching using an anti- IL4Rα antibody might be a promising strategy 
to achieve IgE depletion. However, there are many questions remain-
ing about the potential risks associated with transient depletion of all 
immunoglobulins.

4.2.3  |  Combination of approved biologicals

When a single biologic is ineffective or insufficient for the manage-
ment of a given allergic condition within 4 months of treatment, 
guidelines generally recommended switching to an alternative op-
tion197 instead of adding another therapy. However, interfering with 
multiple pathophysiological pathways could be beneficial in some pa-
tients with mixed allergic phenotypes and/or endotypes. While sys-
tematic studies about efficacy and safety of combination therapies 
are still missing, there are currently around 38 case reports and case 
series227–234 providing insight into the use of dual biologics in co-
occurring asthma and atopic dermatitis. These mostly include com-
binations of (i) omalizumab with add-on dupilumab/mepolizumab 
or (ii) benralizumab with add-on dupilumab. Improved efficacy of 
dual biologic therapy has been reported in 21 cases and no major 
adverse events or safety signals were observed so far.235 However, 
further systematic trials and cost-effectiveness evaluations236 are 
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required to make a conclusive statement about the usefulness of 
these approaches.

5  |  CONCLUSIONS

The increasingly detailed understanding of the molecular and cel-
lular mechanisms underlying allergic disorders has significantly 
shaped and advanced the development of therapeutic interven-
tion strategies. Monoclonal antibodies are particularly interesting 
in this context due to their favorable properties, including long 
serum half-life, high specificity, customizable affinity and efficacy 
as well as generally favorable safety profile.237 Compared to more 
traditional treatment approaches, such as the use of corticoster-
oids, monoclonal antibodies can target key components involved 
in the allergic cascade with higher precision, resulting in fewer 
side effects and potentially more favorable clinical outcomes. 
Moreover, molecular engineering has enabled the structural fine-
tuning of monoclonal antibodies for specific therapeutic actions 
and at the same time helped to minimize immunogenicity.238,239 
Additionally, the production and manufacturing of monoclonal 
antibodies have significantly evolved over the years.240 Today, 
there are established, standardized procedures and protocols 
that ensure consistency and quality in antibody production. The 
increasing expertise and advancements in biotechnology have 
streamlined manufacturing pipelines, allowing for the efficient 
production of monoclonal antibodies used to treat a wide range 
of diseases.241 This standardization and accumulated know-how 
have enabled the reliable and scalable production of these thera-
peutic agents, ensuring their availability and effectiveness in clini-
cal settings.

Different monoclonal antibody-based therapies have demon-
strated efficacy across a spectrum of allergic conditions, including 
asthma, atopic dermatitis, chronic spontaneous urticaria, chronic 
rhinosinusitis with nasal polyps, eosinophilic esophagitis and food 
allergies, underscoring the central role of IgE, type 2 cytokine path-
ways and alarmins in allergy pathophysiology. Having the choice 
between multiple approved treatment options enables tailoring 
therapeutic strategies to individual disease endotypes in a personal-
ized medicine approach. Whether combination therapies will be ap-
proved and implemented on a routinely basis in this context is rather 
unlikely due to associated costs and uncertainties about potential 
risks of such co-treatments. However, there might be an opportunity 
for newly developed multispecific drugs that simultaneously target 
different pathways in the allergic cascade. In addition, the combina-
tion of anti-IgE therapy with AIT presents a promising therapeutic 
avenue. Clinical studies have shown that adjunct use of omalizumab 
can enhance the safety and efficacy of AIT by reducing the risk of 
adverse reactions during allergen exposure. This combination strat-
egy holds potential for achieving more durable tolerance to allergens 
and improving clinical outcomes.

Targeting type 2 cytokine pathways, specifically functions of 
IL-4, IL-5, and IL-13, holds considerable promise for the treatment 

of allergic disorders. This approach has already demonstrated sub-
stantial potential in effectively controlling allergic inflammation 
with dupilumab, benralizumab mepolizumab and reslizumab. By 
modulating the activity of these cytokines, therapies can signifi-
cantly reduce symptoms and enhance the quality of life for pa-
tients. However, our understanding of type 2 cytokine signaling is 
still evolving, and there are gaps in knowledge regarding the full 
range of functions and interactions of these cytokines. Therefore, 
the long-term safety profile of cytokine-targeted therapies should 
remain under investigation. While short-term benefits are evident, 
potential risks associated with chronic use need to be thoroughly 
evaluated.

By blocking the activity of alarmins, it is possible to disrupt early 
stages of allergic inflammation. While targeting TSLP signaling path-
ways has demonstrated successful treatment outcomes, alarmins 
are also involved in various physiological processes beyond allergic 
inflammation and their inhibition could potentially disrupt homeo-
static immune functions. While generally providing a promising ap-
proach, potential risks, such as impaired tissue repair mechanisms 
should be further evaluated in this context, especially upon long-
term treatment.

The identification of allergen-specific IgE as a crucial factor in 
the pathogenesis of most allergic conditions led to the concep-
tualization of therapeutic anti-IgE antibodies.68,84 Subsequent 
development efforts mainly focused on generating potently 
neutralizing, non-anaphylactogenic monoclonal antibodies, spe-
cifically targeting free serum IgE rather than FcεRIα-bound cell 
surface IgE. The primary goal was to block IgE:FcεRIα interac-
tions, with less emphasis on preventing IgE binding to CD23. The 
development and approval of omalizumab marked a significant 
breakthrough in the management of allergic diseases. However, 
the numerous unsuccessful attempts to develop a next-generation 
monoclonal anti-IgE antibody suggest that our understanding of 
the essential functional characteristics for an optimized anti-IgE 
antibody remains incomplete. For instance, omalizumab's poten-
tial to actively disrupt pre-existing IgE:FcεRIα complexes on the 
surface of allergic effector cells has only recently been described. 
This raises the question: does the ability to dissociate IgE from 
its high-affinity receptor contribute to omalizumab's therapeutic 
efficacy? Remarkably, over 20 years later, omalizumab remains the 
only approved therapeutic anti-IgE antibody, prompting further 
questions: Does the weaker inhibitory activity of ligelizumab in 
blocking IgE:CD23 interactions limit its therapeutic benefit? What 
role does in vivo biodistribution play in targeting locally produced 
IgE in different tissues? Are the size and half-life of IgE:anti-IgE 
complexes important in acting as additional allergen sinks? Future 
research and development efforts should address these unknowns 
and pave the way for new therapeutic strategies. At this point, 
results from basic research strongly suggest that next-generation 
anti-IgE biologicals will have to optimize more than one mode-of-
action to leverage synergistic effects and achieve more complete 
suppression of the allergic response. It is conceivable that com-
bining those different molecular features into a single antibody 
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or antibody-like protein could bring the next revolution in allergy 
disease management.

In conclusion, the continued exploration of the intricate cellular 
and molecular network involved in allergic responses is crucial for 
developing next-generation treatments. These advancements hold 
the potential to provide more effective, safe, and tailored thera-
peutic options, ultimately improving the quality of life for patients 
suffering from various allergic diseases. As research progresses, 
the integration of personalized medicine approaches, leveraging 
biomarkers to guide treatment selection, will be essential in opti-
mizing clinical outcomes and addressing the diverse needs of allergy 
patients.
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