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Esophageal squamous cell carcinoma (ESCC) is the primary subtype of esophageal
cancer (EC) characterized by a high incidence rate and extremely poor prognosis
worldwide. Previous studies suggested that the specific cell death signal was linked to
different immune subtypes in multiple cancers, while a comprehensive investigation on
ESCC is to be performed yet. In the current study, we dissected different cell death signals
in ESCC tumors and then integrated that functional information to stratify ESCC patients
into different immunogenic cell death (ICD) subtypes. By systematically analyzing the
transcriptomes of 857 patients and proteomic profile of 124 patients, we found that the
signals of necroptosis, pyroptosis, and ferroptosis are positively associated with activated
immunity in ESCC. We identified two ICD pattern terms, namely, ICD-high and ICD-low
subtypes that positively correlated to both progression-free survival and overall survival. In
addition, cell fraction deconvolution analysis revealed that more infiltrated leukocytes were
enriched in ICD-high types, especially antigen-presenting cells, such as dendritic cells and
macrophages. With the XGBoost algorithm, we further developed a 14-gene signature
which can simplify the subtyping for allocating new samples, by which we validated the
prognosis value of the signature and proved that the ICD score scheme could serve as a
promising biomarker for stratifying patients with immunotherapy in several immune
checkpoint blockade treatment cohorts. Collectively, we successfully constructed the
ICD scheme, which enables predicting of the prognosis or immunotherapy efficacy in
ESCC patients and uncovered the critical interplay between cell death signals and immune
status in ESCC.
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INTRODUCTION

Esophageal cancer (EC) is the 10th common cancer worldwide,
while its mortality ranks sixth among all types of cancers (Sung
et al., 2021). Esophageal squamous cell carcinoma (ESCC)
accounts for nearly 90% of all the incident esophageal cancers
each year, and regions of high incidence of ESCC include
Eastern to Central Asia (Abnet et al., 2018). Even though great
effort has been devoted to investigating its molecular
characteristic (Cancer Genome Atlas Research, 2017)
effectively, a therapeutic strategy against metastasis ESCCs
was still limited until the development of immunotherapy.
Recently, immunotherapy combined with chemotherapy has
been proven effective in the first-line treatment of ESCC (Luo
et al., 2021; Sun et al., 2021), which indicates that the
therapeutic strategy of metastasis ESCC is stepping into a
new era. Interestingly, different chemotherapy methods
were chosen in these two clinical trials, among which Luo
et al. (Luo et al., 2021) used Taxol plus platinum-based
chemotherapy, while Sun et al. (Sun et al., 2021) used
fluoropyrimidine plus platinum-based chemotherapy. As the
efficacy of the former used in all patients is comparable to the
latter used in high-PD-L1 patients, how to choose optimal
chemotherapy for combinations based on the mechanism
remains to be clarified.

As up to 60% of solid cancer patients do not respond to single-
agent ICI therapy, the combination strategy breaks new ground
for the use of immunotherapy (Gandhi et al., 2018; Paz-Ares et al.,
2018; Galsky et al., 2020; Shitara et al., 2020). Despite huge success
made in clinical trials, the mechanisms of how chemotherapy
enhancing immunotherapy are to be fully understood yet, which
would make choosing the optimal combination strategy a huge
challenge.

Recently, scientists found that chemotherapy can induce
immunogenic cell death (ICD) of tumor cells (Galluzzi et al.,
2020), which could significantly enhance the anti-tumor
immunity in a tumor microenvironment. However, different
types of cell death have different effects on anti-tumor
immunity (Legrand et al., 2019). For example, intrinsic
apoptosis induced by mitochondrial outer membrane
permeabilization allows the host to quickly and efficiently
clear away dead cell corpses without triggering an immune

response (Arandjelovic and Ravichandran, 2015). Autophagy
could suppress antigen processing and presentation of tumor,
and inhibition of autophagy may enhance immunotherapy
(Deng et al., 2021; Thorburn and Towers, 2021). On the
contrary, necroptosis provoked by TNF signaling of IFN
stimulation is strongly correlated with activated immunity
(Newton et al., 2016), which ensures that a powerful alert
message is sent to the immune system. Similarly, pyroptosis is
also an immunogenic cell death since its hyperinflammatory
nature through IL-1 secretion and DAMP release could trigger
inflammatory responses in the tumor microenvironment and
increase leukocyte infiltration (Legrand et al., 2019). A recent
research study also showed that tumor ferroptosis could be
promoted by CD8+ T cell (Wang et al., 2019a), which proved
that ferroptosis is another type of cell death that is positively
associated with activated anti-tumor immunity. As the types
and levels of cell death do have huge difference across different
tumors, subtyping tumors with a cell death signal could help us
characterize cancer patients concerning cell death and
subsequently uncover the connection across cell death,
immune microenvironment, and clinical features. Moreover,
the subtyping would further help us choose specific agents that
could induce specific cell death with high immunogenicity,
which is an important step for making the most of an
immunotherapy combination strategy.

Specific cell death signatures and cell death subtyping such as
pyroptosis-related signature (Ye et al., 2021), pyroptosis-related
subtyping (Song et al., 2021), and immunogenomic gene
signature of cell-death-associated genes (Ahluwalia et al., 2021)
have been proven that they could stratify cancer patients into
different subgroups that are strongly associated with clinical
features and immune microenvironment. However, none of
this research combined different cell death signals together to
characterize the tumors and systematically subtype the tumors
concerning all immunogenic cell death in different omics levels.
Here, with the transcriptome data of 857 patients and proteomic
data of 124 patients, we found that signals of necroptosis,
pyroptosis, and ferroptosis were positively associated with
activated immunity in ESCC and subsequently defined ICD-
high and ICD-low subtypes of the ESCCs with these three
signals in both transcriptomic and proteomic levels. The
subtyping could not only help us systematically understand

TABLE 1 | Summary of all datasets in this study.

Data source Dataset Number of normal Number of tumor

GEO GSE53625 179 179
GSE23400-GPL96 53 53
GSE38129 30 30
GSE69925 0 274
GSE121931 0 125
GSE44021-GPL571 73 73
GSE47404 0 71

TCGA TCGA-ESCC 0 91

Liu et al.‘s study Proteomics data 0 124
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the connection between cell death and immunity in ESCC but
also help predicting the prognosis of ESCC patients and
immunotherapy efficacy.

METHODS

ESCC Data Source and Preprocessing
A total of seven ESCC microarray cohorts (GSE53625 (Li et al.,
2014), GSE23400 (Su et al., 2011), GSE38129 (Hu et al., 2015),
GSE47404 (Sawada et al., 2015), GSE69925 (Tanaka et al., 2015),
GSE121931 (Li et al., 2020), and GSE44021 (Yang et al., 2020))
were collected from the GEO database (https//www.ncbi.nlm.nih.
gov/geo/) (Table 1). A total of three GEO datasets (GSE53625,
GSE23400, and GSE38129) were enrolled to perform a
comparison between tumor and normal samples, with the
standard that the number of tumor/normal sample pairs from
the identical dataset and the identical platform was no less than
30. In total, 262 paired tumor and normal samples were merged.
The tumor transcriptomics cohort consists of 775 tumor samples
from the aforementioned GEO datasets, with the standard that
the number of tumor samples from the sample dataset and the
identical platform was no less than 50. Non-biological technical
biases were corrected by “Combat” function of the sva R package
(Leek et al., 2012). Mutation, copy number variation, and
transcriptome data of ESCC from TCGA database were
downloaded from the UCSC Xena datahub (https://
xenabrowser.net/datapages/). The proteomic data and
corresponding clinical data for 124 ESCC samples were
obtained from Liu et al.‘s study(Liu et al., 2021). In total, four
published immunotherapy datasets were collected to support the
predictive value of ICD-score in immune checkpoint blockade
treatment, including three SKCM cohorts and 1 urothelial
carcinoma. (Van Allen et al., 2015; Mariathasan et al., 2018;
Gide et al., 2019; Liu et al., 2019).

Immunogenic Cell-Death Pathway and
Consensus Cluster
We summarized five cell death pathways which are apoptosis,
autophagy, ferroptosis, necroptosis, and pyroptosis from the GO
database (http://geneontology.org/), KEGG database (https://
www.genome.jp/kegg/pathway.html), and Reactome database
(https://reactome.org/). Gene set variation analysis (GSVA)
was used to evaluate the relative activity of these cell death
pathways (Hänzelmann et al., 2013). By comparing the
correlation between immune-associated pathways and five cell
death pathways, we selected the three most related pathways
(ferroptosis, necroptosis, and pyroptosis), termed as the
immunogenic cell death (ICD) pathway, to perform the
clustering analysis. An unsupervised clustering analysis was
applied to identify distinct cell death pathway activity patterns
based on the GSVA score of the ICD pathway and classify
patients for further analysis (Monti et al., 2003). The number
of clusters and their stability was determined by the consensus
clustering algorithm. The ConsensusCluserPlus package was
utilized to perform the aforementioned steps, and 1,000 times

repetitions were set to guarantee the robustness of clustering. The
PCA algorithmwas used to assess heterogeneity between different
clusters.

Estimation of TME Cell Infiltration
We quantify the relative abundance of different immune cells in
the ESCC microenvironment by GSVA. The marking gene set of
each infiltration immune cell was obtained fromDvir Aran et al.‘s
study (Aran et al., 2017). Quantification of tumor
microenvironment signals including lymphocyte infiltration,
macrophages, TGF-beta, IFN-gamma, and wound healing was
performed on transcriptomic data of ESCC samples according to
Thorsson et al. (Thorsson et al., 2018a).

Construction of the ICD-Score
On the basis of the most important genes in the ICD pathway, we
constructed the ICD-score. Specifically, we first take an intersection
of the ICD gene between transcriptomics data and protein data.
Next, we sort the overlapping genes by the Extreme Gradient
Boosting (XGBoost) algorithm according to the importance of
distinguishing ESCC patients into ICD-high or ICD-low clusters.
XGBoost is one of the most widely used tree-based boosting
algorithms, in which a set of weak classifiers is combined to form
a strong classifier sequentially (Chen and Guestrin, 20162016). In
each iteration, misclassification errors of a previous classifier were
corrected by the next classifier to perform more accurately. More
importantly, it can avoid overfitting by effective ways. Importance is
applied to access the contribution of each variable to the
classification, which is measured for a single decision tree by the
amount that each attribute split point improves the performance
measure. The importance of each variable is the average of all
decision trees. We selected top 30% genes ranked by importance
to construct the ICD-score by calculating their arithmetic mean. We
build the protein–protein interaction network of 14 genes with the
STRING (https://www.string-db.org/) database and IMEx database
(Breuer et al., 2013) in NetworkAnalyst (Zhou et al., 2019).

Statistical Analysis
The correlation coefficient between two numeric variables’ cell death
was calculated using the Spearman coefficient. The Wilcoxon rank-
sum test was used to compare the differences of numeric variables
between two groups. Univariate Cox regression was applied to
evaluate the relationship between different subgroups and
prognosis. Multivariate Cox regression was used to identify
independent prognostic factors. Multi-factor Cox regression
results were visualized by the ‘forestplot’ R package. All statistics
p values were two-tailed, and p < 0.05 was regarded as statistically
significance. All data were processed using R 4.1.0.

RESULT

Identification of the Immunogenic Cell
Death Pathway in ESCC
In total, five cell death pathways and the related genes were
collected from a public database for the analysis, including
apoptosis (234 genes), autophagy (169 genes), ferroptosis (40
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genes), necroptosis (40 genes), and pyroptosis (50 genes)
(Supplementary Table S1). The activity of apoptosis,
ferroptosis, necroptosis, and pyroptosis in tumor tissue was
significantly higher than that in normal tissue, while the
difference of apoptosis was moderate. More interestingly, the
autophagy pathway showed a reverse trend (Figure 1A). The
result revealed that differences exist between normal tissue and
tumor tissue concerning the types of cell death. In the
transcriptomic level, a significantly positive correlation was
observed between ferroptosis, necroptosis, pyroptosis, and
immune-associated pathways, such as immune effector process
and activation of immune response (Figure 1B). On the contrary,
apoptosis and autophagy showed no significantly positive
correlation with immune response signals. The result was

further validated in the proteomics level (Figure 1C).
Accordingly, only ferroptosis, necroptosis, and pyroptosis have
a strong correlation with immune response signals, and we
consequently defined the three cell death pathways as
immune-associated cell death (ICD) pathways.

The Landscape of Genetic Variation of Cell
Death Pathways in ESCC
In order to investigate the genomic alteration in cell death
pathways, we summarized the incidence of somatic mutation
and copy number variation (CNV) concerning the corresponding
genes in TCGA-ESCC cohort. Among 93 ESCC patients, genetic
mutation of ICD pathways occurred in 86 patients, with a

FIGURE 1 | Identification of the immune cell death pathway. (A) GSVA score of cell death signaling between tumor and normal tissue in the transcriptomics level;
(B,C) correlation of five cell death signaling and immune responding-related signaling in the transcriptomics level (B) and proteomics level (C).
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FIGURE 2 | Landscape of genetic alterations of cell death genes in ESCC. (A)Mutation frequency of cell death genes in 91 patients with ESCC from the TCGA-ESCC
cohort. Upper: the bar plot shows the number ofmutant genes in individual patients. Right: the bar plot indicates the proportion of each variant type. (B–D). CNV frequency of
pyroptosis, (B) ferroptosis, and (C) necroptosis (D) in the TCGA-ESCCcohort. The height of the column represents the alteration frequency. Variation color indicates the class
of CNV (red for amplifications and blue for deletions).
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frequency of 92.47%, primarily including missense mutation,
nonsense mutation, and splice site. Ranked by mutation
frequency, TP53, a well-known tumor suppressor gene (Olivier
et al., 2010; Fromentel and Soussi, 1992), is the most prevalently
mutated genes among all the ICD genes. PIK3CA and PLEC were
the following two genes, with frequencies of 13 and 5%,

respectively (Figure 2A). As ESCC is a tumor with a high
copy number variation (CNV) burden (Cui et al., 2020), CNV
also occurs frequently on ICD genes. Specifically, TP63 in
pyroptosis, TFRC in ferroptosis, and FADD in necroptosis
presented the highest frequency of amplification, while
CHMP2B, GPX4, and ELANE in pyroptosis, ACSL3 in

FIGURE 3 | Patterns of the immune cell death pathway and prognosis characteristics of each pattern. (A) Unsupervised clustering of three immune cell death
pathways’ GSVA scores in the transcriptomics level. (B) PCA analysis for two ICD clusters in the transcriptomics level. (C) Cell death pathway patterns of two ICD
clusters in the transcriptomics level. Top: the bar plot shows the cell death pathway GSVA score of two ICD clusters. Bottom: the heatmap reveals the GSVA score
pattern of two ICD clusters (D–F). Kaplan–Meier analysis of overall survival (OS) or progression-free survival (PFS) comparing the ESCC patients with two ICD
clusters. (D)Kaplan–Meier analysis of OS in the transcriptomics level. (E) Kaplan–Meier analysis of PFS in the transcriptomics level. (F) Kaplan–Meier analysis of OS in the
proteomics level (red for the ICD-high cluster; blue for the ICD-low cluster).
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ferropotosis, and BOK in necroptosis had the highest frequency
of deletion (Figures 2B–D). In addition, CNV of different genes
had different effects on the activity of corresponding cell death

pathways. CHMP2B, TF, and ITPK1 were three genes whose copy
numbers were most positively correlated with the respective
pathways, while NLRP3, GCLM, and FASLG were three genes

FIGURE 4 | Immune infiltration characteristics of two ICD clusters. (A) Heatmap presents the filtration of immune cells in two ICD clusters (B,C). The enrichment of
major antigen-presenting cells of two clusters in the transcriptomics level (B) and proteomics level (C–E). GSVA scores of five immune signatures of two ICD clusters in
the transcriptomics level (D) and proteomics level (E,F). The mean expression of immunoregulator ligands of two ICD clusters in the transcriptomics level. (G) Mean
expression of immunoregulator receptors of two ICD clusters in the transcriptomics level. (H) Mean expression of cytotoxic activity signature of two ICD-score
clusters in the transcriptomics level. (Mann–Whitney U test: NS: no statistical difference, *: p < 0.05, **: p < 0.01, ***: p < 0.0001) (red for the ICD-score high cluster; blue
for the ICD-score low cluster).
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whose copy numbers were most positively correlated with the
respective pathways (Supplementary Figure S1A). The result
showed that genomic alteration of ICD genes was common in
ESCC, which implied that the irregulation of ICD pathways may
contribute to the tumorigenesis and development ESCC.

Subtyping ESCCs With the Signal of ICD
Pathways
A consensus clustering analysis based on ICD pathway GSVA
scores was performed on the integrated dataset after batch effect
removal (Supplementary Figures S2A,B). After selecting the
optimal k value (Figure 3A, Supplementary Figure S3A), two
distinct ICD patterns were eventually identified in the
transcription level (Figure 3A). PCA analysis also revealed the
heterogeneity of the two groups concerning cell death signals
(Figure 3B). An identical phenomenon was also observed in the
proteomics dataset (Supplementary Figures S4A,B). By
comparing the relative level of the cell death signal, we found
that ferroptosis, necroptosis, and pyroptosis signals were
extremely variant between the two groups (Figure 3C,
Supplementary Figure 4C). Thus, we defined the group with
higher ICD pathway signals as an ICD-high cluster, and the other
group as an ICD-low cluster.

By integrating the clinical data, we found that ESCC patients in
the ICD-high cluster had a better overall survival than those in the
ICD-low cluster (Figure 3D, HR = 0.62, p-value = 0.01) in the
transcriptomic cohort. Similarly, longer progression-free survival
(Figure 3E, HR = 0.62, p-value = 0.03) and overall survival
(Figure 3F, HR = 0.62, p-value = 0.08) were also detected in ICD-
high patients than in ICD-low patients in the proteomic level,
which further validated the prognostic relevance of the ICD
subtyping.

The Immune Characteristic of Two
ICD-Associated Patterns
As better prognosis was detected in ICD-high patients, we
speculated that the strong correlation with anti-tumor
immunity might be one of the explanations for the clinical
relevance. To further clarify the tumor immune
microenvironment between the two groups in detail, we
assessed the level of infiltrated immune cell, immune
subtyping signals, and immunomodulator genes in these two
groups. As expected, the abundance of most infiltrated immune
cells was significantly higher in the ICD-high cluster than in the
ICD-low cluster (Figure 4A), which was validated with the
proteomics dataset (Supplementary Figure S5A). Specifically,
we noticed that myeloid cells, such as dendritic cells, neutrophils,
monocytes, and macrophages were the most upregulated cell
types in the ICD-high cluster (Figures 4B,C). It is well known
that dendritic cells and macrophages are the main antigen-
presenting cells among the immune reaction. As ferroptosis,
necroptosis, and pyroptosis were reportedly associated with
immune activation in the tumor microenvironment, we
assumed that the higher level of neoantigen presentation
activity might have occurred in the ICD-high cluster, probably

due to more release of the immunogenic tumor neoantigen.
Vesteinn Thorsson et al. (Thorsson et al., 2018b) categorized
cancer immunity into six subtypes by five signatures (lymphocyte
infiltration, macrophages, TGF-beta, IFN-gamma, and wound
healing). As expected, signals directly concerning the immune
reaction were significantly higher in the ICD-high cluster,
especially macrophage signals (Figures 4D,E). In addition, we
also assessed the expression level of immunomodulator genes
between the two groups. Both immunomodulatory ligands and
receptors tend to have a higher expression level in the ICD-high
group than in the ICD-low group (Figures 4F,G). In addition, the
expressions of markers of cytotoxic activity were also prevailing
in the ICD-high cluster (Figure 4H), suggesting a more activated
anti-tumor immunity in ICD-high patients. Conclusively, these
results implied that the ICD-high cluster has a relatively hotter
tumor immune environment.

Construction of ICD-Score and
Investigation of Its Biological Relevance
Our findings have already shown the potential role of the ICD
pathway in prognosis and immune infiltration modulation. To
further push forward the use of the subtyping of the ICD signal,
denoting the subtyping with a brief gene signature would be
more helpful. Thus, on the basis of the ICD genes, we
constructed a set of scoring systems to quantify the ICD
pathway pattern of individual ESCC patients, termed as the
ICD-score. In order to select optimal features to construct a more
concise model, we used the XGBoost algorithm, which has been
proved to be better than other machine learning algorithms on
classification and feature selection in several research studies
(Huang et al., 2020; Le et al., 2020; Chen et al., 2021).
Accordingly, we obtained 14 genes to profile the ICD-score
(Figure 5A), among which PRNP was the most important
gene, followed by MAP3K5 and SCAF11. A protein–protein
intersection network built by different databases revealed the
tight connection between the 14 proteins (Figure 5B,
Supplementary Figure S6A). Similar to subtyping, the ICD-
score was also positively correlated with infiltration of myeloid
cells in charge of neoantigen presentation, such as dendritic cells,
neutrophils, monocytes, and macrophages (Supplementary
Figure S6B). As expected, the ICD-score low cluster had a
worse overall survival rate (Figures 5C,D). Adjusting the
influence of the TNM stage by multi-variable Cox regression,
we found that the ICD-score can act as an independent factor to
predict the prognosis of ESCC patients (transcriptomics: log-
rank p = 0.02, HR = 1.58 [1.07-2.34]; proteomics: log-rank p =
0.02, HR = 2.08[1.12-3.85]) (Figure 5E, Supplementary Figure
S6C). Our analysis suggested that the ICD-score model can
represent ICD patterns and act as an independent factor in
predicting the prognosis of ESCC patients.

Correlation Between Oncogenic Alteration
and ICD-Score
The correlation between ICD-score and hallmark pathways was
systematically estimated with the transcriptomic cohort. Apoptosis,
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protein secretion, TP53, complement, and TNF-alpha signaling via
NF-kappaB had a strong positive association with the ICD-score,
while KRAS signaling, WNT beta catenin signaling, hedgehog
signaling, and spermatogenesis were negatively associated with
the ICD-score (Figure 6A). Among the 10 oncogenic signaling
pathways reported previously (Sanchez-Vega et al., 2018), we found
that the TP53 pathway alteration and RTK-RAS alterationwere both
significantly positively associated with the ICD-score (Figure 6B).
Chromosomes 11q13.3 and 9q21.3 were the most two common
chromosome alterations in the development of ESCC (Chang
et al., 2017; Zhang et al., 2018). In our study, the chromosome
11q13 amplification group exhibited higher ICD-scores than the

normal group (p = 0.012), while 9q21 deletion showed no
statistical difference with the amplicon and normal groups
(Figures 6C,D). The result enables us to connect the
oncogenic genomic alteration and the ICD-score in ESCC,
which would help us to further understand the possible
regulated upstream of the ICD subtypes.

The Predictive Value of ICD-Scores in
Immune-Oncology Therapy
ICI treatment represented by PD-1/CTLA4 inhibitors has
undoubtedly caused a major breakthrough in oncology

FIGURE 5 |Construction of the ICD score and prognosis characteristics. The importance of 14 genes calculated by the XGBoost algorithm. (A) Higher importance
value of a gene indicated higher importance. (B) Protein–protein interaction network of 14 proteins built by the STRING database. The nodes represent the proteins; the
line represents the relationship of proteins. (C,D) Kaplan–Meier analysis of overall survival (OS) comparing the ESCC patients with the two ICD score clusters. (C)
Kaplan–Meier analysis of OS in the transcriptomics level. (D) Kaplan–Meier analysis of OS in the proteomics levels (red for the ICD-high cluster; blue for the ICD-low
cluster). (E) Forest plot: Cox multivariate mode of the ICD-score and the TNM stage in the transcriptomics level.
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therapy. Considering the strong correlation between ICD
subtyping and tumor immune microenvironment, we
further investigated whether ICD-score could predict
patients’ response to immune checkpoint therapy based on
four immunotherapy cohorts. As expected, patients with a
higher ICD-score derived significantly longer OS than those
with a lower ICD-score (Figures 7A–D), revealing that the
ICD-score might be another promising biomarker in
immunotherapy.

DISCUSSION

Accurate molecular typing is an important part of precision
medicine in the future. In the past few years, with the
development of high-throughput sequencing technology,
molecular typing of esophageal cancer based on transcriptome
expression data has made great progress. For example, Fengjing
Wang et al. obtained two ESCC groups with different clinical
survival outcomes from the transcriptome data of 179 ESCC cases

FIGURE 6 | Association between the ICD-score and hallmark pathways. (A) Correlation of the ICD score and hallmark pathways (red for positive correlation; gray
for negative correlation). (B) ICD score of mutated and wild-type groups of hallmark pathways in the TCGA-ESCC cohort. (C,D). ICD score comparison of patients with
common copy number alteration in ESCC and normal patients. (C) 11q13.3 amplification group vs. normal group. (D) 9p21.3 deletion group vs. non-deletion group.
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and identified the corresponding biomarkers such as FOXA1 and
EYA2 for subtype I and LAMC2 and KRT14 for subtype II (Wang
et al., 2019b). Meng Liu et al. applied consensus clustering
methods on transcriptome data from 125 Xinjiang patients
with ESCC to divide the patients into three types and verified
the subtypes in two independent cohorts including the TCGA
dataset (Liu et al., 2020). It is worth noting that the
aforementioned studies were mainly based on the analysis
from the whole transcriptome, with limited biological insights,
and the discovery dataset was from a single dataset. The main
features of our study are that our clustering was inspired by the
heterogeneity of ICD in ESCC patients, and the subtypes were
obtained by an unsupervised cluster analysis of the patients’ ICD
GSVA score from six studies, and these subtypes were further
validated and confirmed in an extraproteomic dataset. To our
knowledge, the cohort of our study is so far the largest dataset for

building ESCC molecular subtypes. Moreover, to facilitate the
usage of the ICD scheme in the future, the XGBoost was applied
to shrink the gene list representing each ICD group, making a
simplified subtyping system. Therefore, our study provides an
important immune-associated cell death signal molecular
subtyping scheme for ESCC classification in the era of
precision medicine.

Regulated cell death (RCD) is an important mechanism for
organisms to protect themselves from various diseases and even
cancers (Galluzzi et al., 2018). Previous studies have revealed
several types of RCDs which were proved to cope with different
kinds of adverse conditions. The most common RCDs include
intrinsic and extrinsic apoptosis, necroptosis, proptosis, and
ferroptosis, which have also been shown to be related to the
immunogenic response of tumors (Legrand et al., 2019). In the
cancer basic research field, there have been many studies that

FIGURE 7 | Survival analysis of ICD-score high/low clusters in four immunotherapy cohorts. (A–D) Kaplan–Meier analysis of overall survival in Tuba N Gide et al.‘s
cohort (A), David Liu et al.‘s cohort (B), Eliezer M Van Allen et al.‘s cohort (C), and Sanjeev Mariathasan et al.‘s cohort (D) (red for the ICD-score high cluster; blue for the
ICD-score low cluster).
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have explored abnormal different cell death signals in tumors and
their crucial roles in tumor immunity. However, in ESCC, the
systematic study of interactions between these RCDs and the
immune microenvironment has not been carried out yet. In the
present study, by performing comprehensive bioinformatics
analysis of six published transcriptomic datasets, one
proteomic dataset and four ICC treatment cohorts, we
characterized all known cell death signals status in ESCCs.
With machine learning approaches, we constructed an
applicable ICD scoring scheme to classify the ESCC into
subtypes, which could be further characterized by distinct
genomic features as well as immune profiles. We expected this
scheme could be utilized not only in research on the molecular
mechanisms governing ESCC but also as a potential prognostic
and immunotherapy biomarker for this deadly cancer.
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