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INTRODUCTION

Renal cell carcinoma (RCC) is the most common primary 
malignancy of the kidney, accounting for approximately 
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85–90% of renal malignancies. Clear cell renal cell 
carcinoma (ccRCC) is the most common subtype of RCC, 
accounting for approximately 70% of the cases (1). With 
the increased health awareness among people and the 
development of advanced examination methods, the 
proportion of RCC cases that are being incidentally detected 
is gradually increasing (2-5). Among incidental RCCs, 
ccRCC is a common pathological type and has a higher risk 
of a poor prognosis (6, 7); therefore, it has received more 
attention in clinical practice. Radiofrequency treatment 
or cryoablation have recently become options for the 
treatment of renal cancer and are suitable for tumors with 
good prognosis (8, 9). Therefore, there is an urgent need 
for preoperative assessment of the prognosis of ccRCC. 
Histological coagulative necrosis (CN) has been widely 
recognized as an important independent prognostic factor 
for ccRCC (7, 10-13). Studies have shown that the 10-year 
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Patient inclusion/exclusion criteria are presented in Figure 1. 
Furthermore, a renal mass was obtained from each patient. 
After strict screening of the enrolled patients, 105 patients 
were included in the study.

Sample Size Consideration
Based on sample size calculation methods in clinical 

research (22) introduced by Shein-Chung Chow, Ph.D., we 
estimated the validation sample size that was sufficiently 
independent to test whether our model was robust and 
efficient. 

First, considering the two groups to be A and B, μ 
represents the mean value of the average radiomics score 
for each group, with the hypotheses of interest being as 
follows:

H0: μA - μB = 0
H1: μA - μB ≠ 0

The sample size and power are calculated respectively as 
follows:

NA = ( nA + nB______
nB

) (σ z1 - α/2 + z1 - β_________
μA + μB

)2

NB = ( nA + nB______
nA

) (σ z1 - α/2 + z1 - β_________
μA + μB

)2

1 - β = Φ (z - z1 - α/2) + Φ (-z - z1 - α/2), z = 
μA - μB_________

σ 1__
nA

 + 1__
nB

cancer-specific survival in patients showing CN in ccRCC 
tumors is 29.2%, while the corresponding value in those 
without necrosis is as high as 77.6% (11) . Moreover, for 
ccRCC, the risk ratio of death in patients with CN and non-
necrosis in the tumor is 5.27 (11). Therefore, prediction 
of the presence or absence of CN within the tumor before 
surgery is a very important factor influencing the choice of 
treatment strategy for RCCs. Although needle biopsy is an 
effective method for obtaining pathological findings before 
surgery, because of tumor heterogeneity, needle biopsy does 
not yield convincing results related to CN (14). Moreover, as 
an invasive examination, this technique can cause a variety of 
complications (15). Therefore, it is worth exploring whether 
noninvasive methods can be used to predict CN in ccRCC 
accurately.

Previous studies have shown that traditional image 
features, such as enhancement characteristics, could 
provide valuable predictive information for identifying 
benign and malignant tumors, tumor subtypes, and tumor 
grades in RCC (16, 17). Nowadays, with the development 
of radiomics technology, radiomics methods that translate 
medical imaging data into high-dimension data can also be 
used as non-invasive biomarkers for prognosis or prediction 
(18-21). However, it remains unclear whether it is possible 
to predict the presence or absence of CN in ccRCC tumors by 
using radiomics features and traditional features based on 
CT images. Moreover, the types of features that could yield 
a higher prediction accuracy are unknown.

Therefore, the purpose of this study was to build and 
validate a radiomics score and a traditional predictor based 
on CT imaging for prediction of the CN status in ccRCC. 
Moreover, we developed an inclusive radiomics signature 
incorporating the radiomics score and traditional predictors 
for preoperative estimation of the CN status in ccRCC 
patients.

MATERIALS AND METHODS

Patients
The retrospective study was approved by the Ethics Review 

Committee of our hospital. The requirement for informed 
consent was waived because CT image acquisition is part of 
a routine non-invasive examination protocol for suspected 
RCC patients.

Between March 2013 and March 2019, 105 patients with 
ccRCC underwent surgical resection in our hospital; the 
obtained pathological results were collected in this study. 

Patients hospitalized for excision of renal mass (n = 167)

Patients with ccRCC eligible for this study (n = 105)

With coagulation necrosis 
  in ccRCC (n = 41)

Without coagulation necrosis 
  in ccRCC (n = 64)

Patients excluded after reviewing clinical data (n = 48)
- Other types of renal cell carcinoma (n = 31)
- Two mixed components of cancer (n = 9)
-   With surgery and/or chemotherapy prior to CT 

scan (n = 8)

Patients excluded after reviewing imaging information 
  (n = 14)

- Without CT contrast enhanced scan (n = 8)
- Poor quality of CT imaging (n = 6)

Fig. 1. Flow chart of patient recruitment with inclusion and 
exclusion criteria. ccRCC = clear cell renal cell carcinoma
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Where n is the sample size in the training group and N is 
the sample size for the validation group, Φ is the standard 
normal distribution function, α is the type I error, β is the 
type II error, 1 - β is the power, and σ2 is the variance of 
the covariate.

In our study, the sample sizes in the training groups 
were nA = 28 and nB = 44 with means of μA = -2.086 and 
μB = 0.643, respectively, and with a variance of σ2 = 3.3508. 
Therefore, the minimum number of validation samples 
was 15 (without CN) and 10 (with CN) in the two groups 
with the desired two-sided significance level of α = 0.05 
and power of 1 - β = 95%. In our study, the validation 
set included 20 cases without CN and 13 cases with CN in 
the two groups, respectively, which were greater than the 
minimum required sample sizes. 

CT Examination
Triple-phase CT-enhanced images were obtained using a 

64-slice CT scanner (Discovery CT750 HD, GE Healthcare, 
Boston, MA, USA). The scanning parameters were as 
follows: tube voltage, 120 kV; tube current automatic 
adjustment technology; scanning range, 500.00 mm; 
scanning thickness, 1.25 mm; rotation speed, 0.6 s/circle; 
and matrix size, 512 x 512. The patients were injected with 
100 mL of a contrast medium (iohexol; Omnipaque, 300 mg 
iodine/mL, GE Healthcare) via an elbow vein using a high-
pressure syringe (Missouri XD2001, Ulrich Medical, Ulm, 
Germany) at the rate of 4.5 mL/s. A corticomedullary phase 

scan was performed 25–30 seconds after the injection of the 
contrast medium; the nephrographic scan was performed at 
60–70 seconds; and the excretory phase was scanned at 2–3 
minutes. All patients were scanned while they were holding 
their breath after deep inhalation. 

Figure 2 shows the radiomics workflow, which included the 
feature extraction after the CT imaging, which was followed 
by analysis and signature building.

Feature Extraction

Traditional Feature Extraction
The traditional features included both qualitative and 

quantitative features. The qualitative features were as 
follows: side, defined by the location of the tumor in the 
left or right kidney; location, defined by the location of 
the tumor in the upper pole, lower pole, or the interpolar 
region of the kidney; arteryIntratumoral, classified as “presence” 
when tortuous arteries were observed within the renal 
mass in the corticomedullary phase, and conversely 
classified as “absence,” as shown in Figurea 3A; peritumoral 
neovascularity, defined by the presence of a blood-
supplying artery around the tumor in the corticomedullary 
phase, as shown in Figure 3B; calcification, defined by the 
presence of calcification in the tumor; completeness of the 
pseudocapsule, defined by the presence of a complete, high- 
or low-attenuation rim surrounding the renal neoplasm in the 
coronal or sagittal planes for the nephrographic or excretory 

Fig. 2. Flowchart showing process for development of radiomics signature. CAV = cortex attenuation value, GLCM = grey level co-occurrence 
matrix, GLRL = grey level run-length, ROI = region of interest, TAV = tumor attenuation value
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Radiomics signature

Histogram
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3) ArteryIntratumoral

4) Peritumoral neovascularity
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6) Completeness of pseudocapsule
7) Diametermax

8) TAV
9)   Renal CAV
10) Difference ratio

Form factor

GLCM texture

GLRL texture

Patients with ccRCC
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Hematoxylin and eosin stain
Original magnification, x 40

ccRCC in left kidney (arrows)
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Fig. 3. Image features of arteryIntratumoral, peritumoral neovascularity, and complete and incomplete pseudocapsules in patients 
with ccRCC, and methods for measuring TAV and CAV.
A. Transverse images of corticomedullary phase acquired in 54-year-old woman. ArteryIntratumoral was classified as “presence” when tortuous 
arteries (arrows) were observed within renal mass. B. Coronal images of corticomedullary phase acquired in 62-year-old woman. Peritumoral 
neovascularity was classified as “presence” when tortuous arteries (arrows) were observed around renal mass. C. Coronal images of nephrographic 
phase acquired in 48-year-old man. Completeness of pseudocapsule was classified as “presence” when there was regular, complete low-
attenuation rim (arrows) surrounding renal neoplasm. D. Coronal images of nephrographic phase acquired in 51-year-old man. Completeness of 
pseudocapsule was classified as “absence” when there was no clear interface between renal mass and renal parenchyma. E. Transverse images 
of corticomedullary phase acquired in 48-year-old man. TAV and CAV were measured in ROI measuring approximately 25 mm2 in most obvious 
enhancement area of tumor and at same level of renal cortex (oval), respectively.
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phase (23), as shown in Figure 3C and D. The quantitative 
features included diametermax, the tumor attenuation value 
(TAV), the renal cortex attenuation value (CAV), and the 
difference ratio. Diametermax was defined as the longest 
diameter of the largest layer of the tumor in the transverse 
planes; TAV and CAV were defined as the attenuation of areas 
with the most obvious enhancement in the tumor and the 
renal cortex on the same plane, respectively. The difference 
ratio was defined as the ratio of the difference between 
TAV and CAV to the renal CAV. These quantitative feature 
data were obtained in the corticomedullary phase. TAV and 
CAV were measured by drawing the region of interest (ROI) 
with a size of approximately 25 mm2 in the most obvious 
enhancement area of the tumor and the same level of the 
renal cortex, respectively (Fig. 3E). All the measurements 
and evaluations were conducted by two independent 
radiologists with 8 (reader 1) or 6 years (reader 2) of 
experience in abdominal CT interpretation, who were blinded 
to the pathological results. Among the two sets of findings, 
the image analysis results obtained by the radiologist with 
8 years of diagnostic experience was used for data analysis 
in this study. The above image analysis processes were 
performed on the Picture Archiving and Communication 
System viewer.

Radiomics Feature Extraction
First, data preprocessing was performed to address the 

differences in image quality and image noise between 
images and to ensure that image features were calculated 
using the same specifications. All the images were resampled 
into voxel sizes of 1 x 1 x 1 mm3 using linear interpolation. 
In addition, a Gaussian filter was used for denoising. Then, 
tumor segmentation and feature extraction were performed.

The CT images were stored in the Digital Imaging and 
Communications in Medicine format and uploaded to the 
ITK-SNAP software (http://www.itk-snap.org/) for three-
dimensional manual segmentation of the ROIs. The entire 
tumor was manually segmented by an abdominal radiologist 
with 8 years of experience (reader 1). Then, the CT images 
and ROIs of the patients in this experiment were imported 
into the Artificial Intelligence Kit (A.K.) software (A.K., 
GE Healthcare). Next, 385 features based on the individual 
pixel values in the CT images were automatically extracted. 
The details of the 385 radiomics features are shown in 
Figure 4. During these procedures, readers were blinded to 
all the clinical, pathological, and imaging findings.

Pathological Assessment
Whole-tumor specimens were placed in formalin solution 

and sent to a pathology laboratory. After staining with 

Fig. 4. Details of 385 radiomics features. CC = cm x cm x cm, MM = mm x mm x mm, SD = standard deviation, 3D = three-dimensional
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hematoxylin and eosin, a histopathological evaluation of the 
specimens was performed by a pathologist with more than 
10 years of experience, who observed the microscopic CN 
inside the tumor under a microscope. Pathological images of 
tumors with and without CN are shown in Figure 5.

Consistency Test
Inter-observer agreement was determined to assess 

traditional features. We used the intraclass correlation 
coefficient (ICC). An ICC value > 0.75 was considered 
indicative of good agreement.

For radiomics features, we randomly selected image data 
from 20 patients, of which 10 had CN in the tumor. The 
VOI was delineated by another abdominal radiologist with 
6 years of CT interpretation experience (reader 2), and the 
data were acquired. Finally, the same methods and standards 
were used to assess the consistency of traditional features. 

Statistical Analysis
The categorical variables were compared using the chi-

squared test, and the continuous variables were compared 
using the Mann–Whitney U test. Binary logistic regression 
analysis was used to analyze the correlation between 
traditional features and CN.

The least absolute shrinkage and selection operator 
(LASSO) algorithm was used to identify the best radiomics 
features that were significantly associated with CN in the 
ccRCC. A multivariate logical regression model combining 
the candidate variables selected by the LASSO algorithm 
was built to ensure efficiency.

An receiver operating characteristic (ROC) curve analysis 
was used to illustrate the prediction performance of the 
selected features. The optimal cutoff value was selected 
as the point when the sensitivity plus specificity was 
maximal, and the area under the ROC curve (AUC) value was 
calculated. The DeLong test was used as a difference test on 
the AUC of different results. 

The Mann–Whitney U test, chi-squared test, ICC 
calculation, and the kappa test were performed using SPSS 
Statistics (version 22.0, IBM Corp., Armonk, NY, USA). The 
confidence level was maintained at 95%, and a p value of 
less than 0.05 was considered significant. The DeLong test, 
LASSO algorithm, multivariate logical regression model 
construction, and ROC analyses were performed using 
R Studio (Version 1.0.143© 2009–2016, R Studio, Inc.: 
https://www.r-project.org/). When the Z value was > 1.96 
and the p value was less than 0.05, the difference between 
the two groups was considered statistically significant.

RESULTS

The patients were divided into training and validation sets 
based on the principle of random allocation. The training 
and validation sets were also analyzed for data pertaining 
to patient characteristics and traditional and radiomics 
features.

Patient Characteristics
Using random allocation, 72 patients (48 men, 24 women; 

mean age, 57.0 ± 8.3 years) were assigned to the training 

Fig. 5. Photomicrographs (hematoxylin and eosin stain, original magnification, x 40) illustrating coagulative necrosis in ccRCC.
A. Low-power magnification view showing coagulative necrosis in ccRCC. B. There was no coagulative necrosis in ccRCC.

A B
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group, while 33 patients (27 men, 6 women; mean age, 
54.3 ± 9.7 years) were allocated to the validation group. The 
training and validation sets contained 28 and 13 patients 
with CN in their tumors, respectively. There was no significant 
intergroup difference in the age and sex of the patients with 
and without CN in the training and validation sets. However, 
significant differences were observed in the International 
Society of Urological Pathology (ISUP) grade, pathology of 
tumor (pT) stage, and the existence of intratumoral CN in the 
training and validation sets. CN was more likely to occur in 
tumors with higher pT stage and ISUP grade in this study. 
An analysis of the patient characteristics, pathological 
features, and CN in the training and validation sets is shown 
in Table 1.

Performance of the Traditional Predictors 
Among traditional features, a significant difference 

between ccRCCs with and without CN was found for 
two features—diametermax and completeness of the 
pseudocapsule—with all p values < 0.05 in the training 
and validation sets. The AUC values were 0.713 (95% 
confidence interval [CI], 0.594–0.833) and 0.760 (95% 
CI, 0.639–0.880) for diametermax and 0.738 (95% CI, 
0.563–0.914) and 0.771 (95% CI, 0.595–0.947) for 
completeness of the pseudocapsule in the training and 
validation sets, respectively. No significant difference was 
observed in the two features among tumors regardless 
of the presence or absence of CN (all, p > 0.05). In the 

validation set, besides these two features, significant 
differences were found for TAV and CAV. Among these four 
features, the ROC curve for the complete pseudocapsule had 
the highest AUC value in the two sets. A comparison of the 
ROC analysis of the imaging features is shown in Tables 2 
and 3. We used logistic regression to analyze the correlation 
between traditional features and CN in the training and 
validation sets. We found that diametermax and completeness 
of the pseudocapsule were the only two selected features 
in the training and validation sets. There were significant 
differences between the two features and the existence 
of intratumoral CN. When there was no clear complete 
pseudocapsule in the ccRCC, the incidence of intratumoral 
CN was about 11 and 13 times that observed in cases with a 
clear pseudoenveloped tumor in the training and validation 
sets, respectively. Moreover, the incidence of CN in the tumor 
increased by 40% and 80%, respectively, in the two sets when 
the diametermax of the tumor increased by 1 cm.

A higher AUC value was obtained when the two traditional 
features (diametermax and completeness of pseudocapsule) 
were combined by a computational model (Model 1) 
constructed using multivariate logical regression analysis. 
The calculation formula for Model 1 is as follows:

Model 1 (traditional) = -5.673 + (0.310 x diameter max + 
2.317 x pseudocapsule).

The AUC value was 0.843 (95% CI, 0.750–0.935; 

Table 1. Comparison of Patient or Pathological Characteristics by Coagulative Necrosis in Training and Validation Sets

Patient or Pathological 
Characteristics

Training Set Validation Set
Coagulative Necrosis

P
Coagulative Necrosis

P
Yes (n = 28) No (n = 44) Yes (n = 13) No (n = 20)

Sex, No. 0.231 0.737
Male 21 (75.0) 27 (61.4) 11 (84.6) 16 (80.0)
Female 7 (25.0) 17 (38.6) 2 (15.4) 4 (20.0)

Age, median (25%, 75%) 55.5 (50.3, 64.0) 56.0 (50.3, 61.8) 0.737 56.0 (51.5, 63.0) 50.5 (46.3, 58.5) 0.065
ISUP grade, No. 0.020* < 0.001*

Grade I 1 (3.6) 11 (25.0) 0 (0) 7 (35.0)
Grade II 16 (57.1) 23 (52.2) 7 (53.8) 13 (65.0)
Grade III 9 (32.2) 9 (20.5) 4 (30.8) 0 (0)
Grade IV 2 (7.1) 1 (2.3) 2 (15.4) 0 (0)

pT stage, No. 0.005* 0.040*
pT1 14 (50.0) 35 (79.5) 7 (53.8) 17 (85.0)
pT2 10 (35.7) 9 (20.5) 4 (30.8) 3 (15.0)
pT3 4 (14.3) 0 (0) 2 (15.4) 0 (0)
pT4 0 (0) 0 (0) 0 (0) 0 (0)

Data in parentheses are percentage. *p value is less than 0.05. ISUP = International Society of Urological Pathology, pT = pathology of tumor 
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sensitivity, 0.821 and specificity, 0.773) in the training 
set, and 0.858 (95% CI, 0.718–0.998; sensitivity, 0.692 
and specificity, 0.750) in the validation set. It was higher 
than the AUC of diametermax and the completeness of the 
pseudocapsule (all, p < 0.05). Moreover, there was no 
significant difference in other features observed among 
tumors regardless of the presence or absence of CN (all, p > 
0.05).

The consistency test results for the traditional features 
were good (all, > 0.750), and were in the range of 0.775–
1.000 The specific results for each traditional feature are 
shown in Table 2.

Performance of the Radiomics Score
Seven optimal features, called ClusterProminence_

angle90_ offset7, ClusterShade_angle0_offset7, 
Compactness2, HaralickCorrelation_angle135_
offset7, Inertia_AllDirection_offset1_SD, 
LongRunLowGreyLevelEmphasis_angle0_offset7, and 

ShortRunEmphasis_ angle45_offset7, were screened using 
the LASSO algorithm. The introduction and equations for 
the seven optimal features are attached in Supplementary 
Materials.

The multivariate logical regression model (Model 2) built 
with the seven radiomics features was called the “radiomics 
score.” The calculation formula for this score is as follows:

Model 2 (radiomics score) = 1.06 x 102 + (-7.98 x 
10 - 8 x ClusterProminence_angle90_offset7 + 3.14 x 
10 - 5 x ClusterShade_angle0_offset7 + 5.66 x 10 - 1 
x Compactness2 + 2.7 x 10 - 9 x HaralickCorrelation_
angle135_offset7 - 8.31 x 10 - xInertia_AllDirection_
offset1_SD - 7.65 x 102 x LongRunLowGreyLevelEmphasis_
angle0_offset7 - 1.15 x 102 x ShortRunEmphasis_angle45_
offset7).

The ROC curves constructed using the model had a high 
AUC value. The AUCs in the training and validation sets were 

Table 2. Comparison of ROC Analysis of Imaging Features by Coagulative Necrosis in Training Set

Imaging Features
Coagulative Necrosis

SENS SPEC Cut-Off
Youden 
Index

AUC (95% CI)* P
Kappa/

ICCYes (n = 28) No (n = 44)
Side, left/right 15/13 24/20 0.464 0.545 - 0.009 0.505 (0.367–0.643) 0.945 1
Location, upper/ 
  middle/lower parts

8/10/10 15/16/13 0.357 0.705 - 0.062 0.540 (0.402–0.677) 0.571 0.894

ArteryIntratumoral, No. 28 (100) 38 (86.4) 0.136 1.000 - 0.136 0.568 (0.435–0.701) 0.332 1

Peritumoral 
  neovascularity, No.

15 (53.6) 15 (34.1) 0.659 0.536 - 0.195 0.597 (0.462–0.733) 0.166 0.891

Calcification, No. 7 (25.0) 3 (6.8) 0.932 0.250 - 0.182 0.591 (0.452–0.730) 0.196 1
Completeness of 
  pseudocapsule, No.

9 (32.1) 37 (84.1) 0.679 0.841 - 0.520 0.760 (0.639–0.880) 0.001* 0.775

Diametermax, mean ± SD 7.408 ± 2.532 5.381 ± 2.342 0.714 0.636 5.79 0.350 0.713 (0.594–0.833) 0.002* 0.990
TAV (HU), mean ± SD 176.250 ± 63.464 189.045 ± 56.335 0.386 0.821 218.50 0.207 0.593 (0.455–0.731) 0.184 0.927
CAV (HU), mean ± SD 152.286 ± 33.027 153.795 ± 32.055 0.545 0.607 155.50 0.152 0.540 (0.403–0.678) 0.567 0.894
Difference ratio, 
  mean ± SD

0.186 ± 0.455 0.225 ± 0.367 0.659 0.643 0.18 0.302 0.612 (0.472–0.752) 0.112 0.852

Model 1: traditional 
  predictors, median 
  (25%, 75%)

0.663 
(-0.406, 1.612)

-1.624 
(-2.177, -0.772)

0.821 0.773 - - 0.843 (0.750–0.935) - -

Model 2: radiomics 
  score, median 
  (25%, 75%)

0.723 
(-0.251, 1.178)

-1.880 
(-3.310, -0.630)

0.893 0.750 - - 0.855 (0.770–0.940) - -

Model 3: radiomics 
  signature, median 
  (25%, 75%)

1.667 
(0.965, 3.237)

-3.010 
(-4.050, -1.650)

0.964 0.841 - - 0.942 (0.890–0.993) - -

Data in parentheses are percentage. *p value is less than 0.05. AUC = area under ROC curve, CAV = cortex attenuation value, CI = 
confidence interval, ICC = intraclass correlation coefficient, ROC = receiver operating characteristic, SD = standard deviation, SENS = 
sensitivity, SPEC = specificity, TAV = tumor attenuation value
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Fig. 6. Nomogram constructed using diametermax, completeness of pseudocapsule and radiomics score. We constructed nomogram 
of diametermax, with completeness of pseudocapsule and radiomics score serving as predictors for presence of coagulative necrosis within ccRCC. 
To use nomogram, locate radiomics score calculated by linear formula according to multivariate logical regression model and draw line straight 
up to points’ axis to obtain score associated with radiomics score. Repeat for completeness of pseudocapsule and diametermax. Among these, 
for characteristics of completeness of pseudocapsule, “1” indicates that pseudocapsule is complete, and “2” indicates that it is incomplete. 
By summing scores for each point and locating it on total points and drawing line straight down to bottom axis, estimated probability of 
coagulative necrosis could be determined.

Points

Radscore

Diametermax

Completeness of pseudocapsule

Total points

Probability of coagulative necrosis

 0             10            20            30            40            50            60            70           80            90           100

-10        -9        -8         -7         -6         -5        -4         -3         -2         -1         0          1          2          3 

 1  2   3  4   5   6  7   8  9       11     13

                          2

 1

 0                20                40               60                80              100              120              140              160

                                                                              0.1     0.3 0.5  0.7     0.9  0.95

0.855 (95% CI, 0.770–0.940; sensitivity, 0.893; specificity, 
0.750) and 0.885 (95% CI, 0.766–1.000; sensitivity, 0.923; 
specificity, 0.800), respectively. 

Table 3. Comparison of ROC Analysis of Imaging Features by Coagulative Necrosis in Validation Set

Imaging Features
Coagulative Necrosis

SENS SPEC Cut-Off
Youden 
Index

AUC (95% CI)* P
Kappa/

ICCYes (n = 13) No (n = 20)
Side, left/right 5/8 12/8 0.615 0.600 - 0.215 0.608 (0.408–0.807) 0.302 1
Location, upper/ 
  middle/lower parts

4/7/2 1/11/8 0.950 0.308 - 0.258 0.694 (0.507–0.882) 0.063 0.894

ArteryIntratumoral, No. 12 (92.3) 18 (90.0) 0.100 0.923 - 0.023 0.512 (0.308–0.715) 0.912 1

Peritumoral 
  neovascularity, No.

6 (46.2) 7 (35.0) 0.650 0.462 - 0.112 0.556 (0.352–0.760) 0.593 0.891

Calcification, No. 0 (0) 3 (15.0) 1.000 0.150 - 0.150 0.575 (0.378–0.772) 0.472 1
Completeness of 
  pseudocapsule, No.

4 (30.8) 17 (85.0) 0.692 0.850 - 0.542 0.771 (0.595–0.947) 0.009* 0.775

Diametermax, mean ± SD 7.284 ± 2.008 5.175 ± 1.917 0.462 1.000 8.725 0.462 0.738 (0.563–0.914) 0.022* 0.990
TAV (HU), mean ± SD 143.154 ± 46.108 186.050 ± 55.376 0.500 0.923 196.500 0.423 0.725 (0.554–0.896) 0.031* 0.927
CAV (HU), mean ± SD 130.077 ± 25.663 162.850 ± 40.176 0.750 0.769 140.500 0.519 0.770 (0.610–0.932) 0.009* 0.894
Difference ratio, 
  mean ± SD

0.128 ± 0.395 0.174 ± 0.312 0.700 0.615 0.123 0.315 0.562 (0.343–0.780) 0.556 0.852

Model 1: traditional 
  predictors, median 
  (25%, 75%)

0.744 
(-0.490, 0.985)

-1.335 
(-2.243, -1.166)

0.692 0.750 - - 0.858 (0.718–0.998) - -

Model 2: radiomics 
  score, median 
  (25%, 75%)

0.383 
(-0.465, 0.769)

-1.617 
(-3.020, -0.727)

0.923 0.850 - - 0.885 (0.766–1.000) - -

Model 3: radiomics 
  signature, median 
  (25%, 75%)

0.868 
(0.520, 2.636)

-2.692 
(-4.435, -0.777)

1.000 0.700 - - 0.969 (0.921–1.000) - -

Data in parentheses are percentage. *p value is less than 0.05. 

The consistency test results for these seven radiomics 
features were good (all, > 0.750). Among these, the ICC 
result for Inertia_AllDirection_offset1_SD was the smallest, 
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Fig. 7. BarChart diagram constructed by computational model using radiomics features in training and validation sets.
A. Green part below threshold indicates tumors with coagulative necrosis that are misclassified as non-coagulative necrosis tumors and pink part 
above threshold represents misclassified data. B. Pink part above threshold indicates non-coagulative necrosis tumors misclassified as tumors 
with coagulative necrosis. 
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which was 0.91; the result for Compactness 2 was the 
largest, which was 0.99. The ICC results of the other five 
features were in the range of 0.91–0.99. 

Development of the Radiomics Signature Incorporating 
Traditional Predictors and Radiomics Score and 
Performance Assessment

The weighted coefficients of the selected radiomics 
features in the multivariate logical regression model 
were presented in a linear formula for radiomics score 
calculation. A high AUC was obtained with a computational 
model (Model 3) constructed using the traditional features 
and the radiomics score. The calculation formula for Model 
3 is as follows:

Model 3 (nomogram) = -5.607 + (1.077 x radiomics score 
+ 0.382 x diameter max + 2.298 x pseudocapsule).

The AUC was 0.942 and 0.969 in the training and 
validation sets, respectively. We constructed a nomogram 
with the diametermax, completeness of the pseudocapsule, 
and radiomics score as predictors to display the prediction 
performance of model 3 intuitively. The nomogram is shown 
in Figure 6.

A BarChart diagram was used to visualize the classification 
accuracy of model 3 in the training and validation set. The 
pink and green bars represent tumors with and without CN, 
respectively. Therefore, the green part below the threshold 
and the pink part above the threshold are misclassified 
data. The BarChart diagram of the training group and the 
validation group is shown in Figure 7. 

A comparison of the ROC curves constructed by the two 
traditional features, Model 1, Model 2, and Model 3 in the 
training and validation sets is shown in Figure 8. 

DISCUSSION

The results of this study showed that CT-based imaging 
features, irrespective of whether they were traditional or 
radiomics features, could accurately predict the presence or 
absence of CN in ccRCC. The results were confirmed further 
in the analysis of the validation group.

The results of this study indicated that the two artificial 
recognition features of diametermax and completeness of the 
pseudocapsule could accurately distinguish between the 
presence and the absence of CN within the tumor in both 
training and validation sets. When the two features were 

Fig. 8. Comparison of ROC curves constructed by two traditional features, Model 1, Model 2, and Model 3 in training and 
validation datasets.
A. Comparison of ROC curves constructed by two traditional features, Model 1, Model 2, and Model 3 in training dataset. B. Comparison of ROC 
curves constructed by two traditional features, Model 1, Model 2, and Model 3 in validation dataset. ROC = receiver operating characteristic
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combined, a higher AUC could be obtained. The diametermax 

of the tumor positively correlated with the occurrence of 
CN, which might be attributed to the greater likelihood of 
CN within large-diameter tumors (24). In this study, the 
incidence of coagulation necrosis in ccRCCs increased by 40% 
and 80% in the training and validation sets, respectively, 
when the diametermax of the tumor increased by 1 cm. This 
result is similar to that obtained in previous studies, in 
which CN was shown to be often present in ccRCCs with size 
> 10 cm (11). The ROC curves constructed using the feature 
of completeness of the pseudocapsule had the highest AUC 
values in the training and validation sets, and its accuracy 
was higher than that of the other traditional features. This 
suggested that the completeness of the pseudocapsule was 
superior in predicting CN in ccRCC. Pseudocapsule formation 
is a result of tumor growth, which causes compression, 
ischemia, and necrosis of the adjacent renal parenchyma, and 
results in the deposition of fibrous tissue (23, 25). Previous 
pathological studies have shown a higher proportion of CN in 
ccRCC cases with an incomplete pseudocapsule (25). This 
conclusion supports the results of our study.

Among the radiomics features, seven quantitative features 
were selected by the LASSO algorithm to distinguish ccRCC 
with CN from tumors without CN. The results showed that 
the multivariate logical regression model constructed 
using radiomics features was effective in both the training 
set (AUC, 0.855) and the independent validation set 
(AUC, 0.885). Radiomics was thus proven to show a high 
prediction value. Moreover, most of the selected features 
were texture features, which reflected the heterogeneity 
of the tumor ROI (21). For example, cluster prominence 
is a measure of asymmetry of a given distribution, and 
high values of this feature indicate that the symmetry 
of the image is low. In this study, the values of cluster 
prominence extracted from tumors containing CN were 
higher than the values extracted for tumors without CN. 
Furthermore, the radiomics features considered in this 
experiment were extracted based on the whole-tumor 
delineation on contrast-enhanced CT images. A whole-
tumor ROI delineation can reflect more accurately and 
comprehensively the characteristics and the heterogeneity 
of the tumor (26, 27). In addition, on contrast-enhanced 
images, texture features will also reflect the distribution 
of the contrast agent between the intra- and extravascular 
extracellular spaces. One hypothesis is that CN results 
from the tumor’s growth beyond the supply of the existing 
vasculature (28). Therefore, contrast-enhanced images can 

more comprehensively reflect the existence of tumor CN.
Moreover, as for traditional features, a higher AUC could 

be obtained when completeness of the pseudocapsule and 
diametermax were combined in this study. This indicated 
that in clinical practice, we could use these traditional 
features to obtain a preliminary prediction of the presence 
or absence of CN in a tumor and that doing so would in 
fact be more convenient and practical than the use of 
radiomics features. However, evaluation of the traditional 
features requires experience of image diagnosis, and the 
results will be influenced by subjective factors. The results 
for the radiomics features and combined features were 
slightly higher than those for the traditional features were. 
Moreover, radiomics features are less affected by subjective 
factors. However, the entire tumor had to be delineated 
and specific software was used in the process of analysis; 
therefore, the process is relatively time- and effort-intensive. 
This indicated that in clinical practice, if conditions permit, 
radiomics features could be used to predict CN in ccRCC 
cases to obtain more accurate results or to evaluate tumors 
more comprehensively.

In this study, we also analyzed demographic and clinical 
features. The results indicated that there was no significant 
difference in demographic characteristics (age and sex) 
between the ccRCC groups with and without CN, which was 
consistent with the previous findings (11). Statistically 
significant differences were found in ISUP grading and pT 
staging between the ccRCC cases with and without CN. CN in 
ccRCC was significantly associated with adverse pathologic 
features, including ISUP grade and pT stage. Moreover, 
CN was more likely to occur in relatively high-grade and 
high-stage tumors. This is similar to the results of certain 
previous studies (11, 29).

The current study had several inherent limitations. 
First, we only constructed the models using VOIs sketched 
on the corticomedullary phase CT images and did not 
extract other phases for the multi-parameter analysis. 
However, we constructed the ROC curve using the features 
extracted on the nephrographic phase images in the pre-
experimental assessments. The results showed that the AUC 
value in the nephrographic phase was lower than that in 
the corticomedullary phase. Second, although our sample 
size met the standard for a diagnostic experiment after 
estimation of the sample size, a prospective and multi-
center experimental study is still needed for experimental 
verification of these models in the future.

Overall, according to our current research, the accuracy 
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of the multivariate logical regression model constructed by 
combining traditional features and radiomics features in 
predicting CN in the training and validation sets could reach 
0.942 and 0.969, respectively. Thus, imaging methods could 
be used to assess the prognostic risk of ccRCC to determine 
which strategy could be used. In addition, the noninvasive 
nature of the method allowed for repeated evaluations 
during follow-up and compensated for the limitations of 
needle biopsies in obtaining accurate findings for CN.

In conclusion, CN in ccRCC could be detected by using 
traditional features or radiomics features selected based on 
CT imaging.
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