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Abstract

Tetracycline (TC) is widely-used antibiotic pollutant with high toxicity, refractory, persistence

and bacteriostasis, and its removal from water needs to be enhanced. In this work, a novel

Graphite-UiO-66(Zr)/Ti electrode was successfully prepared and evaluated for electrochem-

ical oxidation degradation of TC. The electrochemical performance tests indicate the Graph-

ite-UiO-66(Zr)/Ti electrode had higher electrochemical oxidation activity, which achieved

higher TC removal efficiency (98.1% ± 1.5%) than Ti plate (65.2% ± 3.5%), Graphite-MIL-53

(Al)/Ti electrode (79.5% ± 2.9%) and Graphite-MIL-100(Fe)/Ti electrode (89.0% ± 2.6%).

The influence of operating condition was also systematically studied, and the optimized con-

dition was pH 5.0, 20 mA/cm2 current density and 0.1 M electrolyte (Na2SO4). Through the

liquid chromatography mass spectrometry (LC-MS), the TC degradation pathway by Graph-

ite-UiO-66(Zr)/Ti electrode oxidation was proposed. Under the •OH free radical oxidative

decomposition effect, the double bond, phenolic group and amine group of TC were

attacked. TC was transformed into intermediate product① (m/z = 447), then was further

degraded to intermediates② (m/z = 401) and③ (m/z = 417). The latter was fragmented

into small fractions④ (m/z = 194),⑤but-2-enedioic acid (m/z = 116) and⑥oxalic acid (m/z

= 90, the proposed intermediate). In addition, TC removal remained at 89.6% ± 2.7% in the

sixth cycle of operation, which confirmed the efficient reusability and stability for antibiotics

removal from water.

Introduction

Tetracycline (TC) has been widely used in therapeutic medicine and animal husbandry [1, 2].

The annual production of TC has reached 97,000 tons in China, accounting for almost 50% of

total antibiotic production [3, 4]. Due to the human improper treatment and animals’ poor

digestion, TC has been widely present in various environmental medias including wastewater,

groundwater, surface water, soil and sediment [5–7]. The TC concentration is 0.1–4.5 μg/L in

surface water and groundwater [8, 9], while it’s up to 96–1300 ng/L in wastewater [10]. More-

over, the TC concentration in water shows a growing trend. TC has the characteristics of high
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toxicity, refractory degradation, persistence and bacteriostasis [1, 2, 11, 12], causing serious

threats to the environmental safety and human health. Therefore, it is necessary to remove TC

in water environment.

Many methods are used to remove TC in water, including biological methods, coagulation,

sedimentation and adsorption. However, these conventional methods have the disadvantages

of cumbersome operation, low removal efficiency and secondary pollution [13–15]. Electro-

chemical oxidation has received more attention for its better effectiveness, simple operation,

mild conditions and environmental friendliness [16, 17]. It is considered to be an efficient

technology to remove TC [5, 16]. For the electrochemical method, the material of electrode is

the key to the electrolysis performance. Traditional anodes such as carbon electrode have the

shortcoming of poor performance and stability [18]. Hence, many advanced materials were

developed as anode for electrochemical oxidation of pollutants. Boron-doped diamond (BDD)

is the most representative type of anode, which has strong oxidation, outstanding pollutant

removal performance and excellent stability [7, 19]. BDD anode had high degradation rate

(> 95%) of TC within 4 h, but its high cost limited its industrial application [7]. Ti electrode

was frequently employed as the electrode substrate for electrolysis due to the low cost, good

conductivity and favorable electrochemical performance. The terbium doped Ti/IrO2, Ti/

RuO2-IrO2, Ti/Ti4O7 and Ti/SnO2-Sb2O3/PbO2 anodes for electrochemical removal of TC all

have achieved excellent TC removal rates higher than 95% within 3–6 h [19–23].

Metal organic frameworks (MOFs) are a kind of crystalline microporous material, which

has multi-purpose catalytic activity, significant structural diversity, high specific surface area

and adjustable pore size. MOFs are widely used to treat wastewater as photocatalytic and

adsorption materials [24–26]. However, MOFs are considered to be the electrode materials

with poor electronic conductivity and dispersibility. Therefore, high electron-conductive car-

bon material such as Graphite could be employed for the composite electrode [27, 28]. Samar-

ghandi et al. [29] doped Graphite into PbO2 anode, and the removal rate of MB was increased

by 27.9%. Therefore, Graphite-MOFs composite electrode was expected to have great potential

application on the electrolysis to contaminants removal. However, this type of electrode was

rarely reported for water treatment.

In this work, three different MOFs, MIL-53(Al), MIL-100(Fe) and UiO-66(Zr) were synthe-

sized by hydrothermal method and then employed to the preparation of electrode. Graphite

and the MOFs were combined to fix on Ti substrate face to form the Graphite-MIL-53(Al)/Ti,

Graphite-MIL-100(Fe)/Ti and Graphite-UiO-66(Zr)/Ti electrodes. MOFs and Graphite-

MOFs/Ti electrodes were characterized, respectively. The TC removal efficiencies by the dif-

ferent electrodes were evaluated under different pH, current densities and electrolyte

(Na2SO4) concentration. In addition, the degradation mechanism was proposed by identifica-

tion of free radicals and intermediates.

Material and methods

Materials

TC, N-dimethylformamide (DMF), terephthalic acid, sodium sulfate, tert-butanol (TBA),

oxalic acid, methanol (MeOH), 1,4-benzoquinone (BQ), sodium hydroxide, acetone, zirco-

nium chloride (ZrCl4), aluminium nitrate (Al(NO3)3) and Ferric chloride (FeCl3) were all ana-

lytical grade and purchased from Aladdin (Shanghai, China) without any purification

treatments. Polystyrene (PS, extrusion grade, G1919229) and graphite powder (mesh = 250)

were purchased from Aladdin (Shanghai, China). The Ti plate (purity > 99.9 wt%) was bought

from Baoji Hongxinyuan (China). Prior to modification, the Ti plate was pretreated according

to the following procedure [5]: Firstly, it was polished by sandpaper (600 mesh), then etched
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by oxalic acid solution with a mass fraction of 10% at 98˚C for 2 h; afterwards, the etched elec-

trode was put in a mixture of acetone: NaOH solution (1 mol/L, volume ratio = 1:1) for 1 h

and then rinsed with deionized water.

MOFs synthesis

UiO-66(Zr), MIL-100(Fe) and MIL-53(Al) were synthesized by the hydrothermal method

according to the previous literature with slight modifications. Briefly, for the synthesis of UiO-

66(Zr): ZrCl4 (0.54 mM) and terephthalic acid (0.75 mM) were ultrasonically dissolved in 15

mL of DMF, then the mixture solution was transferred into a Teflon-lined autoclave and

heated at 120˚C for 48 h [30]; for the synthesis of MIL-100(Fe): FeCl3 (0.01 M) and tere-

phthalic acid (0.01 M) were ultrasonically dissolved in 50 mL of DMF. After that, the mixture

solution was transferred into a Teflon-lined autoclave and heated at 150˚C for 24 h [31]; for

the synthesis of MIL-53(Al): Al(NO3)3 (1.0 mM) and terephthalic acid (0.5 mM) were ultra-

sonically dissolved in 50 mL of DMF. Next, the mixture was transferred into a Teflon-lined

autoclave and heated at 220˚C for 72 h [32]. When the autoclave cooled down to room temper-

ature, the as-prepared MOFs powders were washed with DMF and ethanol consequently for

three times in order to remove the residual solvents, then dried at 80˚C overnight in a vacuum

oven.

Electrode preparation

Firstly, PS was dissolved in DMF and employed as the coating adhesive to fix MOFs on elec-

trode [33]. Then a certain number of as-prepared MOFs was added into the PS solution.

Meanwhile, graphite was also incorporated to increase the electrode conductivity [34]. The

mixture was ultrasonically shaking for 20 min, following by continuous stirring for 1 h. After-

wards, 100 μL of the mixture was evenly coated on the surface of the titanium plate electrode

(active surface area = 4 cm2), and then dried and solidified at 80˚C. Finally, the other side of

the titanium sheet electrode was also coated to fabricate the Graphite-MOFs/Ti electrodes

according to the same operation mentioned above. The photo of Graphite-MOFs/Ti electrodes

was provided in supporting information (S1 Fig).

Characterization

The morphology of the as-prepared MOFs and Graphite-MOFs/Ti electrodes were examined

by scanning electron microscopy (SEM, Hitachi, S-4300 SE, Japan). Fourier transform infrared

(FT-IR) spectra were measured by FT-IR spectrometer (Nicolet NEXUS670, ThermoFisher,

USA) with a resolution of 4 cm-1. The powder X-ray diffraction (XRD, D/max 2500/PC target

X-ray diffractometer, Rigaku, JPN) was carried out using Cu Ka radiation (λ = 0.1541 nm) in a

scanning range of 3–60˚ at rate of 2˚/min. X-ray photoelectron spectroscopy (XPS, Escalab

Xi+, Thermo Fisher Scientific, USA) was employed to analyze the chemical states of electrode.

The pore size distribution and specific surface area of MOFs were measured by MicrotracBEL

equipment (ASAP 2020 HD88, Micromeritics, USA). Thermogravimetric analysis of MOFs

and Graphite-MOFs/Ti electrodes was conducted by thermogravimetric analyzer (TGA, Pyris

1, PE, USA). The temperature ranged from 30˚C to 800˚C with heating rate of 10˚C/min.

Electrochemical test

A standard three-electrode system was used to evaluate the electrochemical properties of the

prepared electrodes with an active area of 4 cm2. Electrochemical measurements were carried

out on an electrochemical workstation (CHI 660D, Shanghai Chenhua, China). The Ti
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electrodes without and with the decoration of MOFs were used as the working electrode, while

a saturated calomel electrode (SCE) and a platinum electrode served as the reference and

counter electrode, respectively.

Cyclic voltammetry (CV) analysis was performed at a scan rate of 100 mV/s in the 0.1 M

Na2SO4 solution with the addition of TC (100 mg/L). Linear sweep voltammetry (LSV) analy-

sis was conducted for the prepared electrodes to evaluate the oxygen evolution potential (OEP)

in 0.05 M Na2SO4 solution at a scan rate of 1 mV/s. Chronoamperometric tests were used to

study the electrocatalytic response of TC in 0.05 M Na2SO4 solution at a constant electrode

potential (+1.8 V).

Electrochemical degradation

Electrochemical degradation of TC (100 mg/L) solution containing a certain concentration of

electrolyte (Na2SO4) was conducted in a cylindrical reactor with a direct current power supply

(Dahua Instrument, Beijing, China). The fabricated Graphite-MOFs/Ti electrodes were used

as anode with an effective area of 4 cm2 and the graphite was used as cathode. The gap between

anode and cathode was 2 cm. The influence of pH (3–8), current density (5–30 mA/cm2) and

electrolyte concentration (0.02–0.15 M) on the antibiotic’s removal (Eq 1) was investigated.

Antibiotics removal %ð Þ ¼ ð1�
C
C0

Þ � 100% ð1Þ

where C0 and C were concentrations (mg/L) of antibiotics without and with electrocatalytic

oxidation for time t (min), respectively.

The removal kinetics of TC were fitted with pseudo-first-order model, which was expressed

in Eq 2.

lnð
C
C0

Þ ¼ � kt ð2Þ

The stability of fabricated Graphite-MOFs/Ti electrode was determined by determining the

removal rate of tetracycline for 6 cycles. Moreover, the electrodes after electrocatalysis were

characterized by FTIR and SEM as mentioned above.

Free radicals’ identification

The effect of free radicals on the electrocatalytic oxidation of TC was investigated. MeOH (25

mM), TBA (25 mM) and BQ (5 mM) were used as the scavengers of SO4
-•, •O2

—and •OH free

radicals [35]. The removal efficiency of antibiotics was studied without and with the addition

of scavengers.

Other analysis

The concentration of TC was measured by high performance liquid chromatography (HPLC,

1260 system, Agilent, USA) equipped with a UV detector at wavelength of 355 nm [36] and

Purospher RP-18 column (5 μm, 25 cm × 4.6 mm). The methanol/acetic acid (V: V = 9: 1)

mixed solution was used as the mobile phase with flow rate of 1.0 mL/min and the injection

volume was 20 μL.

In order to determine the degradation pathway, a liquid chromatography mass spectrome-

try (LC-MS) (6550 Q-TOF, Agilent, USA) equipped with a extend C18 column (1.7 μm,

2.1 × 50.0 mm) was used to identify the intermediate products of TC after oxidative degrada-

tion. Formic acid/acetonitrile mixed solution was used as the mobile phase at a flow rate of 0.3
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mL/min. The identification of intermediate was carried out in the ESI positive ion mode with

the gas temperature of 150˚C and the sheath gas temperature of 350˚C. The flow rates of

sheath gas and the drying gas were 12 and 15 L/min, respectively. The m/z range and ion spray

voltage were 100–1000 and 4500 V, respectively.

Results and discussions

Characterizations

The SEM images of MIL-53(Al), MIL-100(Fe) and UiO-66(Zr) were observed in Fig 1A–1C.

The crystals of MIL-53 (AL), MIL-100 (Fe) and UiO-66(Zr) -MOF synthetic frameworks were

irregular polyhedral particles, octahedron and uniform hexagon, respectively, which was con-

sistent with the previous research results [37–39]. The FT-IR spectra of MOFs (Fig 1D) pre-

sented the typical absorbance reported in previous literature for these materials. UiO-66

showed two peaks at 1593 and 1400 cm-1 corresponding to the asymmetric and symmetric

stretching of O-C-O in organic binder, respectively, while they shifted slightly for the other

two MOFs [40]. Meanwhile, a strong peak that located at 1504 cm-1 corresponded to the vibra-

tion of C = C in benzene ring for UiO-66(Zr) and MIL-53(Al). The peaks of MIL-53(Al) and

MIL-100(Fe) at 711, 755 and 759 cm-1 corresponded to the bending vibration of C-H in ben-

zene. In addition, the peaks around 747 and 1444 cm-1 were attributed to the bending vibra-

tion of OH, and the peaks around 663 and 1509 cm-1 were owing to the bending vibration of

Fig 1. Characterization of MIL-53(Al), MIL-100(Fe) and UiO-66(Zr). (a-c) SEM images. (d) FTIR spectra. (e) XRD

patterns.

https://doi.org/10.1371/journal.pone.0271075.g001
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O-C-O in organic binder [41]. XRD patterns (Fig 1E) further displayed the main characteristic

diffraction peaks of MIL-53(Al), MIL-100(Fe) and UiO-66(Zr), which were consistent with the

crystalline structure of MOFs reported by Du et al. [32, 42, 43]. These characterizations con-

firmed that the MIL-53(Al), MIL-100(Fe) and UiO-66(Zr) were successfully synthesized in

this study.

The prepared Graphite-MIL-53(Al)/Ti, Graphite-MIL-100(Fe)/Ti and Graphite- UiO-66

(Zr)/Ti electrodes were characterized, as shown in Fig 2. According to the SEM graphs (Fig

2A–2C), MIL-53(Al), MIL-100(Fe) and UiO-66(Zr) nanoparticles were evenly distributed on

the surface of the corresponding Ti plate, respectively. The FTIR spectra (Fig 2D) illustrated

the characteristics peaks of organic binder in MOFs (1400–1600 cm-1) on Graphite-MOFs/Ti

electrodes, suggesting the successful blending of MOFs on Ti electrode. The result was consis-

tent with others work [31, 33, 44]. The XPS survey spectra showed the presence of C and O ele-

ments in the three electrodes (S2 Fig). Meanwhile, Al, Fe and Zr were found for Graphite-

MIL-53(Al)/Ti, Graphite-MIL-100(Fe)/Ti, and Graphite-UiO-66(Zr)/Ti electrodes, respec-

tively. Fig 3 depicted the high-resolution XPS spectra. The characteristic peaks of C = C, C-C

and O-C = O originated from organic binder for C 1s spectrum were all observed at Graphite-

MIL-53(Al)/Ti (284.1, 284.7 and 288.6 eV), Graphite- MIL-100(Fe)/Ti (284.1, 284.9 and 288.3

eV), and Graphite-UiO-66(Zr)/Ti (286.4, 284.8 and 288.8 eV) electrodes. Moreover, the Al 2p

spectrum had two major peaks for Graphite-MIL-53(Al)/Ti electrode, 2p1/2 at 75.1 eV and 2p3/

2 at 74.2 eV. The Fe 3s spectra of Graphite- MIL-100(Fe)/Ti revealed that the main peak was at

94.6 eV and the peaks of Zr 3d (Zr 3d3/2 185.1 eV and Zr 3d5/2 182.8 eV) emerged on Graph-

ite-UiO-66(Zr)/Ti electrode. These results confirmed the successful preparation of the Graph-

ite-MIL-53(Al)/Ti, Graphite-MIL-100(Fe)/Ti and Graphite-UiO-66(Zr)/Ti electrodes.

Fig 2. Characterization of electrodes. (a-c) SEM graphs of Graphite-MOFs/Ti electrodes. (d) FTIR spectra of

Graphite-MOFs/Ti electrodes.

https://doi.org/10.1371/journal.pone.0271075.g002
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Electrochemical properties of electrodes

The electrochemical property of the as-prepared electrodes was determined by CV, LSV and

chronoamperometric tests. As verified in Fig 4A, the oxidation peaks for degradation of TC by

the as-prepared electrodes were 1.08–1.13 V. Graphite-UiO-66(Zr)/Ti electrode had higher

oxidation peak current density of 16.96 mA/cm2 than others (Graphite-MIL-100(Fe)/Ti elec-

trode: 15.46 mA/cm2; Graphite-MIL-53(Al)/Ti electrode: 12.91 mA/cm2), suggesting that

Graphite-UiO-66(Zr)/Ti electrode had higher electrochemical activity to oxidize TC. In addi-

tion, we also determined the oxygen evolution reaction (OER) potential of anodes by LSV

Fig 3. High-resolution XPS spectra. (a-b) Graphite-MIL-53(Al)/Ti electrode. (c-d) Graphite- MIL-100(Fe)/Ti

electrode. (e-f) Graphite-UiO-66(Zr)/Ti electrode.

https://doi.org/10.1371/journal.pone.0271075.g003
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analysis (Fig 4B) and they were 1.94, 1.90 and 1.83 V, respectively, for Graphite-MIL-53(Al)/

Ti, Graphite-MIL-100(Fe)/Ti and Graphite-UiO-66(Zr)/Ti electrode. The lower OER potential

means that more reactive oxygen species generated, which was conducive to the degradation

of pollutants [35, 45]. Chronoamperometric tests (Fig 4C) also revealed the highest current of

Graphite-UiO-66(Zr)/Ti electrode in steady state conditions over others, which could favor

the degradation of pollutant. In general, the electrochemical performance of Graphite-UiO-66

(Zr)/Ti electrode was slightly better than that of Graphite-MIL-53(Al)/Ti electrode, but signifi-

cantly better than that of Graphite- MIL-100(Fe)/Ti electrode.

TC degradation performance

The prepared electrodes were applied to remove TC under a current density of 25 mA/cm2. As

shown in Fig 5A, it could be seen that TC concentration sharply decreased at the first degrada-

tion stage until it reached equilibrium after 180 min. Graphite-UiO-66(Zr)/Ti electrode effi-

ciently removed TC with the highest TC removal efficiency (98.1% ± 1.5%) due to its highest

electrocatalytic activity, while the TC removals for the Ti plate, Graphite-MIL-53(Al)/Ti elec-

trode and Graphite-MIL-100(Fe)/Ti electrode were 65.2% ± 3.5%, 79.5% ± 2.9% and 89.0% ±
2.6%, respectively. The removal efficiency was only 1.1% after degradation by Graphite-UiO-

66(Zr)/Ti electrode without electricity (S3 Fig), indicating the TC degradation was mainly

attributed to the electrolysis rather than the effect of adsorption. In addition, the removal effi-

ciencies of TC degraded by Graphite/Ti electrode and UiO-66(Zr)/Ti electrode were 44.3% ±
2.5% and 61.7% ± 1.1% respectively (Fig 5A), which were much lower than that of Graphite-

UiO-66(Zr)/Ti electrode. Therefore, the composite of Graphite and UiO-66(Zr) on Ti plate

could promote the degradation of TC. The degradation kinetics of TC by the electrodes were

also determined by fitting the plot of concentration with degradation time using pseudo first

order model. As depicted in Fig 5B, TC removal fitted well with the kinetic model and the cor-

responding parameters were illustrated in Table 1. The degradation rate (K, min-1) of Graph-

ite-UiO-66(Zr)/Ti electrode (0.01263 min-1) was significantly higher than others (0.00668,

0.00871, 0.01173, 0.00525 and 0.00798 min-1, respectively for Ti plate, Graphite-MIL-53(Al)/

Ti, Graphite-MIL-100(Fe)/Ti, Graphite/Ti and UiO-66(Zr)/Ti).

Fig 4. Electrochemical tests of the prepared electrodes. (a) CV response in 100 mg/L TC solution with 0.1 M

Na2SO4, scan rate 100 mV/s. (b) LSV analysis in 100 mg/L TC solution with 0.05 M Na2SO4, scan rate 1 mV/s. (c)

Chronoamperometric tests in 100 mg/L TC solution with 0.05 M Na2SO4.

https://doi.org/10.1371/journal.pone.0271075.g004

Fig 5. The degradation performance of TC by all electrodes under current density of 25 mA/cm2. (a) TC removal

in 100 mg/L TC solution with 0.1 M Na2SO4. (b) the removal kinetics using pseudo-first-order model.

https://doi.org/10.1371/journal.pone.0271075.g005
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Factors influencing TC removal

The effect of operating conditions of pH, current density and electrolyte (Na2SO4) concentration

on TC removal was also explored. Firstly, as shown in Fig 6A, the TC removal achieved the largest

level higher than 97% with the pH of 5.0, whereas the further decrease in pH lowered the TC

removal to 74.7% ± 4.1%. The decrease may be attributed to the reason that TC has positive

charge and electrically repulsed with the positive electrode, which was detrimental for pollutants

to be adsorbed on the active sites on electrode [46] and then deteriorated TC removal. As the pH

increased to 8, it would boost the consumption of electrolyte and lowered the conductivity of

solution [46], thereby decreasing the TC removal (58.8% ± 2.2%). The result was consistent with

the reported results from Tang et al. [47]. Secondly, Fig 6B showed the variation of TC removal

under different current density. As expected, with the applied current density increased from 5 to

20 mA/cm2, the TC removal increased from 57.8% ± 2.8% to 97.3% ± 2.7% after 180 min. The

result was attributed to the improvement of charge transfer with the increased current density,

thereby enhanced the organic molecules decomposition [48]. Nevertheless, if the current density

was higher than 25 mA/cm2, the TC removal decreased to 74.1% ± 2.9% due to the promoted

side reaction of hydroxyl radicals [49]. Additionally, Fig 6C illustrated the variation in TC removal

under different electrolyte (Na2SO4) concentration. The TC removal increased from 74.5% ±
2.1% to 97.8% ± 1.5% with the increasing electrolyte (Na2SO4) concentration, while this increase

was not obvious when the electrolyte concentration was higher than 0.1 M. There could be an

explanation for the decrease that lower or higher electrolyte concentration could cause the poor

conductivity and reduce the generation of hydroxyl radicals, thereby decreasing the TC removal

[48]. Consequently, considering TC removal efficiency and energy consumption, the conditions

for TC removal of pH 5.0, 20 mA/cm2 and 0.10 M Na2SO4 by Graphite-UiO-66(Zr)/Ti electrode

were optimized.

Degradation mechanism

In the electrolysis in aqueous media, free radicals generated on electrode and oxidized TC dur-

ing electrochemical oxidation process [50, 51]. Hence, effect of free radicals on TC removal

was determined by the addition of scavengers in order to clarify the removal mechanism. TBA

and MeOH were considered as radical scavengers of •OH and SO4
–•. MeOH had a high reac-

tion rate with •OH and SO4
–•, while TBA reacted faster with •OH than SO4

–• [52]. After add-

ing MeOH, the removal rate of TC was not significantly different from the removal rate when

adding TBA (Fig 7). This confirmed that •OH free radical played a key role in TC removal by

the electrode, while there was no relationship between SO4
–• and TC removal. In addition, BQ

was the radical scavenger of •O2
—and •OH [53, 54]. The elimination of •OH by TBA and

MeOH reduced the removal of TC by 85.5%, while BQ only reduced by 7.7%. The result indi-

cated that the reaction was mainly caused by •OH, rather than •O2
—. This mechanism was

Table 1. Parameters of the pseudo-first-order kinetic model for electrochemical degradation of TC. (100 mg/L,

0.1 M Na2SO4, 25 mA/cm2, 120 min).

Electrodes K (min-1) R2

Titanium plate 0.00668 0.99251

Graphite-MIL-53(Al)/Ti electrode 0.00871 0.9992

Graphite- MIL-100(Fe)/Ti electrode 0.01173 0.9943

Graphite/Ti 0.00525 0.9900

UiO-66(Zr)/Ti 0.00798 0.9951

Graphite-UiO-66(Zr)/Ti electrode 0.01263 0.9723

https://doi.org/10.1371/journal.pone.0271075.t001
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different from the bisphenol A removal by Co3O4-Bi2O3 catalysts, in which SO4
–• played a

dominant role [55]. Moreover, free radicals that played a major role in the degradation of TC

were different under different pH. Huang et al. also found a similar mechanism at pH 6.0,

while •O2
—free radical played a key role in TC removal when the pH value was 3.0 [56].

In order to further understand the TC removal mechanism by Ui Graphite-UiO-66(Zr)/Ti elec-

trode, the generated intermediates during TC degradation were detected by LC-MS and the main

intermediates are summarized in S4 Fig. According to the detected intermediates and related

research literatures [2, 5, 21, 47], the possible degradation pathway was proposed. As depicted in Fig

8, TC (m/z = 445) was converted to product① (m/z = 447) through hydrogenation reaction, then

they were further degraded to intermediates② (m/z = 401) and③ (m/z = 417) [57]. After that,

through the radical attack, it was fragmented into small fractions④ (m/z = 194),⑤ but-2-enedioic

acid (m/z = 116) and⑥ oxalic acid (m/z = 90, the proposed intermediate) before fully mineraliza-

tion. Notably, some different intermediates such as m/z = 367, m/z = 351 and m/z = 298 were

reported by Wang et al. [5] who used the Ti/Ti4O7 electrode. However, these intermediates were

not observed in our study, and the main reason could be the different attack mode of radicals pro-

duced by different electrodes or the instability of the intermediates produced in our solution.

Stability of electrode

Electrode stability was a crucial property for real application [18]. The consecutive six-

cycle tests of Graphite-UiO-66(Zr)/Ti electrode for the TC removal were conducted. Fig 9

Fig 6. Influencing factors of TC removal by Graphite-UiO-66(Zr)/Ti electrode under current density of 20 mA/

cm2. (a) Effect of pH. (b) current density. (c) electrolyte (Na2SO4) concentration. (100 mg/L, 240 min).

https://doi.org/10.1371/journal.pone.0271075.g006

Fig 7. Effect of scavengers of free radicals on TC removal under current density of 20 mA/cm2. (100 mg/L, 0.1 M

Na2SO4, 240 min, pH = 5.0).

https://doi.org/10.1371/journal.pone.0271075.g007
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revealed that the TC removal remained at 89.6% ± 2.7% with the increasing cycles for

Graphite-UiO-66(Zr)/Ti electrode under current density of 20 mA/cm2. To further deter-

mine the stability of the Graphite-UiO-66(Zr)/Ti electrode, we also characterized the

Graphite-UiO-66(Zr)/Ti electrode before and after electrocatalysis. The FT-IR spectra (S5

Fig) and XRD patterns (S5 Fig) of Graphite-UiO-66(Zr)/Ti electrode negligibly changed

after electrocatalysis, which revealed that the Graphite-UiO-66(Zr)/Ti electrode had an

efficient electrochemical stability.

Fig 8. Proposed degradation pathway of TC by Graphite-UiO-66(Zr)/Ti electrode. (�: proposed intermediate).

https://doi.org/10.1371/journal.pone.0271075.g008

PLOS ONE Graphite-UiO-66(Zr)/Ti electrode for efficient electrochemical oxidation of tetracycline in water

PLOS ONE | https://doi.org/10.1371/journal.pone.0271075 August 9, 2022 13 / 18

https://doi.org/10.1371/journal.pone.0271075.g008
https://doi.org/10.1371/journal.pone.0271075


Conclusions

In this work, a novel Graphite-UiO-66(Zr)/Ti electrode was successfully prepared and evaluated

for electrochemical oxidation degradation of TC. The electrochemical performance tests indicated

the Graphite-UiO-66(Zr)/Ti electrode had higher electrochemical oxidation activity, which

achieved higher TC removal (98.1% ± 1.5%) than Ti plate (65.2% ± 3.5%), Graphite-MIL-53(Al)/

Ti electrode (79.5% ± 2.9%) and Graphite-MIL-100(Fe)/Ti electrode (89.0% ± 2.6%). The influ-

ence of operating condition was also systematically studied, and the optimized condition was pH

5.0, 20 mA/cm2 current density and 0.1 M electrolyte (Na2SO4). Through the liquid chromatogra-

phy mass spectrometry (LC-MS), the TC degradation pathway by Graphite-UiO-66(Zr)/Ti elec-

trode oxidation was proposed. Under the •OH free radical oxidative decomposition effect, the

double bond, phenolic group and amine group of TC were attacked. TC was transformed into

intermediate product① (m/z = 447), then was further degraded to intermediates② (m/z = 401)

and③ (m/z = 417). The latter was fragmented into small fractions④ (m/z = 194),⑤ but-2-ene-

dioic acid (m/z = 116) and⑥ oxalic acid (m/z = 90, the proposed intermediate). In addition, TC

removal remained at 89.6% ± 2.7% in the sixth cycle of operation, which confirmed the efficient

reusability and stability for antibiotics removal from water.

Supporting information

S1 Fig. Photo of anodes. (a) Graphite-MIL-53(Al)/Ti. (b) Graphite-MIL-100(Fe)/Ti. (c)

Graphite-UiO-66(Zr)/Ti.

(TIF)

Fig 9. The removal rate of TC for 6 cycles. (100 mg/L, 0.1 M Na2SO4, 20 mA/cm2, 240 min).

https://doi.org/10.1371/journal.pone.0271075.g009
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S2 Fig. XPS survey spectra of anodes. (a) Graphite-MIL-53(Al)/Ti. (b) Graphite-MIL-100

(Fe)/Ti. (c) Graphite-UiO-66(Zr)/Ti.

(TIF)

S3 Fig. Effect on adsorption capacity (Qt) by Graphite-UiO-66(Zr)/Ti under different pHs

without electricity.

(TIF)

S4 Fig. LC-MS spectra of the transformation products of TC by Graphite-UiO-66(Zr)/Ti

electrode.

(TIF)

S5 Fig. Characterization of Graphite-UiO-66(Zr)/Ti electrode before and after electrocata-

lysis. (a) FTIR spectra. (b) XRD pattern.

(TIF)
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anode: Kinetics, products, and toxicity. Chem Eng J. 2018; 332:628–636. https://doi.org/10.1016/j.cej.

2017.09.109.

20. Miyata M, Ihara I, Yoshid G, Toyod K, Umetsu K. Electrochemical oxidation of tetracycline antibiotics

using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Sci Technol. 2011; 63

(3):456–461. https://doi.org/10.2166/wst.2011.243 PMID: 21278467

21. Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan M.A. Application of response surface methodology

to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and

DSA (Ti/RuO2–IrO2) anode. Chemosphere. 2012; 87(6):614–620. https://doi.org/10.1016/j.

chemosphere.2012.01.036 PMID: 22342334

22. Cai J, Zhou M, Xu X, Du X. Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degra-

dation of organic pollutants. J Hazard Mater. 2020; 396:122723. https://doi.org/10.1016/j.jhazmat.2020.

122723 PMID: 32344364

23. Qian S, Liu S, Jiang Z, Deng D, Tang B, Zhang J. Electrochemical Degradation of Tetracycline Antibiot-

ics Using a Ti/SnO2-Sb2O3/PbO2 Anode: Kinetics, Pathways, and Biotoxicity Change. J Electrochem

Soc. 2019; 166(6):E192–E199. https://doi.org/10.1149/2.1411906jes

PLOS ONE Graphite-UiO-66(Zr)/Ti electrode for efficient electrochemical oxidation of tetracycline in water

PLOS ONE | https://doi.org/10.1371/journal.pone.0271075 August 9, 2022 16 / 18

https://doi.org/10.1016/j.watres.2018.03.030
http://www.ncbi.nlm.nih.gov/pubmed/29567608
https://doi.org/10.3390/ma14154325
https://doi.org/10.3390/ma14154325
http://www.ncbi.nlm.nih.gov/pubmed/34361518
https://doi.org/10.1016/j.cej.2012.07.112
https://doi.org/10.1007/s00216-010-3581-3
https://doi.org/10.1007/s00216-010-3581-3
http://www.ncbi.nlm.nih.gov/pubmed/20213163
https://doi.org/10.1016/j.cej.2018.12.133
https://doi.org/10.1016/j.scitotenv.2020.143981
https://doi.org/10.1016/j.scitotenv.2020.143981
http://www.ncbi.nlm.nih.gov/pubmed/33316507
https://doi.org/10.1016/j.cej.2019.123636
https://doi.org/10.1016/j.cej.2019.123636
https://doi.org/10.1016/j.chemosphere.2021.133469
http://www.ncbi.nlm.nih.gov/pubmed/34973244
https://doi.org/10.1016/j.saa.2017.02.001
https://doi.org/10.1016/j.saa.2017.02.001
http://www.ncbi.nlm.nih.gov/pubmed/28187315
https://doi.org/10.1016/j.chemosphere.2021.130327
http://www.ncbi.nlm.nih.gov/pubmed/33784555
https://doi.org/10.1016/j.jece.2014.08.005
https://doi.org/10.1016/j.jece.2014.08.005
https://doi.org/10.1016/j.scitotenv.2019.135023
http://www.ncbi.nlm.nih.gov/pubmed/31715480
https://doi.org/10.1016/j.envres.2021.112641
http://www.ncbi.nlm.nih.gov/pubmed/34979125
https://doi.org/10.1016/j.cej.2018.03.105
https://doi.org/10.1016/j.cej.2017.09.109
https://doi.org/10.1016/j.cej.2017.09.109
https://doi.org/10.2166/wst.2011.243
http://www.ncbi.nlm.nih.gov/pubmed/21278467
https://doi.org/10.1016/j.chemosphere.2012.01.036
https://doi.org/10.1016/j.chemosphere.2012.01.036
http://www.ncbi.nlm.nih.gov/pubmed/22342334
https://doi.org/10.1016/j.jhazmat.2020.122723
https://doi.org/10.1016/j.jhazmat.2020.122723
http://www.ncbi.nlm.nih.gov/pubmed/32344364
https://doi.org/10.1149/2.1411906jes
https://doi.org/10.1371/journal.pone.0271075


24. Xiao X, Zou L, Pang H, Xu Q. Synthesis of micro/nanoscaled metal–organic frameworks and their direct

electrochemical applications. Chem Soc Rev. 2020; 49(1):301–331. https://doi.org/10.1039/

c7cs00614d PMID: 31832631

25. Sule R, Mishra A K. MOFs-carbon hybrid nanocomposites in environmental protection applications.

Environ Sci Pollut Res. 2020; 27(14):16004–16018. https://doi.org/10.1007/s11356-020-08299-x

PMID: 32170617

26. Long L L, Bai C W, Zhang S R, Deng S H, Zhang Y Z, He J S, et al. Staged and efficient removal of tetra-

cycline and Cu2+ combined pollution: A designed double-chamber electrochemistry system using 3D

rGO. J Clean Prod. 2021; 305:127101. https://doi.org/10.1016/j.jclepro.2021.127101.

27. Liu X W, Sun T J, Hu J L, Wang S D. Composites of metal-organic frameworks and carbon-based mate-

rials: preparations, functionalities and applications. J Mater Chem A. 2016; 4(10):10.1039.

C5TA09924B. https://doi.org/10.1039/C5TA09924B.

28. Umukoro E H, Kumar N, Ngila J C, Arotiba O A. Expanded graphite supported p-n MoS2-SnO2 hetero-

junction nanocomposite electrode for enhanced photo-electrocatalytic degradation of a pharmaceutical

pollutant. J Electroanal Chem. 2018; 827:193–203. https://doi.org/10.1016/j.jelechem.2018.09.027.

29. Samarghandi M R, Dargahi A, Shabanloo A, Nasab H Z, Vaziri Y, Ansari A. Electrochemical degrada-

tion of methylene blue dye using a graphite doped PbO2 anode: Optimization of operational parameters,

degradation pathway and improving the biodegradability of textile wastewater. Arab J Chem. 2020; 13

(8):6847–6864. https://doi.org/10.1016/j.arabjc.2020.06.038.

30. Wan P, Yuan M, Yu X, Zhang Z, Deng B. Arsenate removal by reactive mixed matrix PVDF hollow fiber

membranes with UIO-66 metal organic frameworks. Chem Eng J. 2020; 382:122921. https://doi.org/10.

1016/j.cej.2019.122921

31. Fang Y, Wen J, Zeng G, Jia F, Zhang S, Peng Z, et al. Effect of mineralizing agents on the adsorption

performance of metal–organic framework MIL-100(Fe) towards chromium(VI). Chem Eng J. 2018;

337:532–540. https://doi.org/10.1016/j.cej.2017.12.136

32. Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, et al. New photocatalysts based on MIL-53

metal-organic frameworks for the decolorization of methylene blue dye. J Hazard Mater. 2011; 190(1–

3):945–951. https://doi.org/10.1016/j.jhazmat.2011.04.029 PMID: 21531507
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