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Abstract

Background

Tenofovir-containing regimens comprise the preferred first-line antiretroviral therapy (ART)

in many countries including South Africa, where utilization of second-line regimens is limited.

Considerable HIV drug resistance has occurred among persons failing tenofovir-containing

first-line ART. We evaluated drug resistance at the population level using mathematical

modeling.

Setting

Heterosexual HIV epidemic in KwaZulu-Natal, South Africa.

Methods

We constructed a stochastic individual-based model and simulated scenarios of ART imple-

mentation, either CD4-based (threshold < 500 cells/mL) or Fast-track (81% coverage by

2020), with consideration of major drug-associated mutations (M184V, K65R and non-

nucleoside reverse transcriptase inhibitor (NNRTI)). Using base case and uncertainty analy-

ses, we assessed (majority) drug resistance levels.

Results

By 2030, the median total resistance (proportion of HIV-infected persons with drug resis-

tance) is predicted to reach 31.4% (interquartile range (IQR): 16.5%-50.2%) with CD4-

based ART, decreasing to 14.5% (IQR: 7.7%-25.8%) with Fast-track implementation. In

both scenarios, we find comparably high prevalence (~80%) of acquired NNRTI-associated,

M184V and K65R mutations. Over 48% of individuals with acquired resistance harbor dual,

44% triple and 7% just single drug mutations. Drug-resistant HIV is predicted to comprise

40% (IQR: 27%-50%) of incident infections, while 70% of prevalent transmitted resistance is
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NNRTI-associated. At 2018, the projected total resistance is 15% (IQR: 7.5%-25%), with

18% (IQR: 13%-24%) of incident infections from transmitted drug-resistant HIV.

Conclusions

WHO-recommended preferred first-line ART could lead to substantial drug resistance.

Effective surveillance of HIV drug resistance and utilization of second-line as well as alterna-

tive first-line regimens is crucial.

Introduction

Global HIV incidence, though slowly receding, remains unacceptably high at 1.8 million new

infections annually [1]. The remarkable efficacy of antiretroviral therapy (ART) for both HIV

treatment and prevention led the Joint United Nations Programme on HIV/AIDS (UNAIDS)

to recommend a Fast-track approach to ending the AIDS epidemic as a public health threat by

2030, and to establish ambitious targets including 90-90-90 by 2020 (90% of HIV-positive peo-

ple know their serostatus, of whom 90% receive sustained ART, and 90% of these have viral

suppression) and 95-95-95 by 2030 [2]. However, the expansion and maturity of ART pro-

grams globally are associated with a rise in HIV drug resistance, posing a threat to the success

of ART scale-up and the overall HIV response [3]. Therefore, the World Health Organization

(WHO) has launched a Global Action Plan [4], providing a framework, interventions and

resources for counteraction, including the recommended consideration of change in the pre-

ferred ART regimens [5], especially in countries where the prevalence of pretreatment HIV

drug resistance exceeds 10% (detected in antiretroviral naïve or antiretroviral exposed individ-

uals initiating or reinitiating first-line ART) [6]. Concerns about HIV drug resistance are par-

ticularly relevant to the large epidemic in South Africa, where only 61% of the HIV-positive

people were on treatment in 2017 [1], and in its hardest-hit province of KwaZulu-Natal, where

28% of adults are HIV-positive [7]. In this region, the scale, pace and nature of drug resistance

at the population-level are unclear, amidst disparate data [8–17]. Therefore, we employed

mathematical modelling to study HIV drug resistance from ART implementation in Kwa-

Zulu-Natal, South Africa.

Methods

We constructed and analyzed a stochastic individual-based mathematical model of the HIV

epidemic in KwaZulu-Natal, with details of ART scale-up and HIV drug resistance, using dis-

crete event systems modeling and simulation [18–26]. This stochastic model is founded as an

analogue [27–30] to our prototype deterministic model of the HIV epidemic in KwaZulu-

Natal [31, 32], and is detailed to extend and refine our modeling of antiretroviral drug resis-

tance [31–33]. Below, we describe the stochastic model structure, assumptions and analytic

design, pertinent to this study. Complete specification of our deterministic HIV epidemic

model of KwaZulu-Natal is available elsewhere [31–33].

Model structure

The model is comprised of a set of modules that represent different categories of dynamic

processes such as demographics, sexual behavior change, HIV transmission, disease progres-

sion, drug resistance and interventions for HIV prevention and treatment (Fig 1, Table 1 and
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S1 Table). The model tracks over time, the life histories of all individuals in a realistically sized

population (2.5 million initially), characterized by various features (attributes) including gen-

der, age (15–54 years), sexual behavior, infection status, disease stage, intervention status

including first- and second-line ART, voluntary medical male circumcision (VMMC) and

HIV drug susceptibility. HIV transmission is represented through heterosexual contact influ-

enced by mixing patterns and behavioral factors including condom-use. The overall model

state is updated dynamically based on randomly occurring events having specified rates [34]

and about exponentially distributed time to next event [35, 36]. The stochastic model is speci-

fied using discrete event system specification (DEVS) [20–22] and C++ [37]. It is formulated

and parameterized as a stochastic analogue [27–30] to our prototype deterministic model [31,

32] that was calibrated earlier using Bayesian methods [38]; thereby using the deterministic

model’s median posterior input estimates [38] and fitting [39] to simulate the longitudinal

HIV incidence and prevalence in KwaZulu-Natal and cross-sectional behavioral risk stratified

HIV prevalence in South Africa (Fig 2).

Fig 1. Model structure. A: Modular structure of the discrete event simulation model. B: Simplified model flow diagram.

https://doi.org/10.1371/journal.pone.0218649.g001
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Table 1. Key intervention-related model parameters.

Input Base Case Uncertainty Range:

LHS

Reference

VMMC

Male circumcision prevalence at Jan. 1, 2021, % 80 60–85 [7, 41]

VMMC effectiveness against male HIV acquisition, % 60 – [42]

ART

ART coverage of CD4� 500 cells/μL at Jan. 1, 2021, % 80 65–80 [41, 43]

Time Fast-track implementation begins, year Sep 1, 2016 – [44]

Fast-track ART uptake rate, % per year 50 – [45]

Decrease in Fast-track ART virologic failure due to adherence support, % 80 – [45]

Fast-track ART coverage of PLHIV at 2021, % 81 – [46]

Fast-track ART coverage of PLHIV at 2031, % 90 – [46]

ART effectiveness against HIV transmission while suppressed, % 96 73–99 [47]

Dropout rate during the first year of 1st-line ART, per year 0.15 0.1–0.2 [48]

Dropout rate during subsequent years of 1st-line ART, per year 0.08 0.04–0.12 [48]

Dropout rate while non-adherent to 1st-line ART, per year 0.08 0.04–0.12 [48]

HIV mortality rate during the first year of 1st-line ART if ART initiated at CD4� 200 cells/μL, per year 0.15 0.1–0.2 [49]

HIV mortality rate during subsequent years of 1st-line ART if ART initiated at CD4� 200 cells/μL, per

year

0.03 0.02–0.06 [49]

HIV mortality rate on ART if ART initiated at 201–350 CD4 cells/μL, relative to ART initiated at

CD4� 200 cells/μL, %

33 15–85 [50]

HIV mortality rate on ART if ART initiated at 351–500 CD4 cells/μL, relative to ART initiated at 201–350

CD4 cells/μL, %

88 62.5–100 [51]

Virologic failure rate during the first year of 1st-line ART while harboring wild-type HIV, % per year 20 10–30 [52]

Virologic failure rate during subsequent years of 1st-line ART while harboring wild-type HIV, % per year 5 2.5–7.5 [53]

Virologic failure rate during the first year of 1st-line ART while harboring drug-resistant HIV, % per year 40 15–75 [54, 55]

Virologic failure rate during subsequent years of 1st-line ART while harboring drug-resistant HIV, % per

year

10 3.75–22.5 [54]

Proportion of 1st-line ART virologic failure that is due to non-adherence, % 28 10–50 [52, 56–58]

HIV Drug Resistance

Persistence time of transmitted NNRTI resistance, years 18 5–56 [59]

Persistence time of acquired NNRTI resistance, years 1 0.5–5.0 [60–62]

Persistence time of transmitted M184V resistance, years 1 0.5–2 [63]

Persistence time of acquired M184V resistance, years 0.25 0.125–0.375 [60, 64, 65]

Persistence time of transmitted K65R resistance, years 1.43 0.71–2.86 Calculated

Persistence time of acquired K65R resistance, years 0.36 0.18–0.54 [65]

Fitness cost of transmitted drug resistance, % reduction 0 - [66]

Fitness cost of acquired NNRTI resistance, % reduction 25 25–70 [60, 67]

Fitness cost of acquired M184Vresistance, % reduction 65 60–70 [60, 67]

Fitness cost of acquired K65R resistance, % reduction 50 45–60 [68]

Disease progression rate with HIV having transmitted resistance to 1st-line ART, relative to wild-

type HIV, %

100 50–100 Assumed

Disease progression rate with HIV having acquired resistance to 1st-line ART, relative to wild-type

HIV, %

Variable Variable Per fitness

cost

Resistance spectrum after first-line treatment failure (wild-type, K65R, M184V, NNRT,

K65R-M184V, K65R-NNRTI, M184V-NNRTI, K65R-M184V-NNRTI), %

28, 2.3, 0.5, 0.5, 10.2,

10.7, 15, 32.8

Variable [69]

ART, antiretroviral therapy; LHS, Latin hypercube sampling; VMMC, voluntary medical male circumcision. Parameter estimates varied during uncertainty analyses for

the current study are shown in bold text.

https://doi.org/10.1371/journal.pone.0218649.t001
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HIV drug resistance

The model distinguishes HIV-positive individuals by antiretroviral use (not on ART or on

ART), HIV drug susceptibility (drug-sensitive or drug-resistant), type of drug resistance

(transmitted or acquired), and virus population dynamics of drug-resistant HIV (majority or

minority). Drug-resistant virus is either acquired through selection pressure from ART or

transmitted from a donor with drug-resistant HIV. Drug-resistant virus can revert to drug-

sensitive wild-type, off of ART or in a new host, but archived resistance can re-emerge with

subsequent ART exposure. We assume that drug-resistant infection can reduce the efficacy of

treatment (Table 1). The model represents the presence or absence of the major drug resis-

tance mutations [70], either singly or in combination, associated with antiretrovirals in the

WHO recommended preferred first and second-line ART regimens [71], excluding the alter-

native and/or interim recommended dolutegravir (DTG)-containing regimens [4, 5]. Thus, we

consider tenofovir disoproxil fumarate (TDF) + lamivudine or emtricitabine (XTC) + efavirenz

or nevirapine (EFV/NVP) as the first-line ART regimen, and zidovudine (AZT) + XTC +

Fig 2. Calibration of the deterministic model and the stochastic individual-based model. Model calibration to HIV prevalence among (A) women and

(B) men by age. Error bars show 95% confidence intervals for data and 95% credible intervals for the IBM model (imperceptible because narrow) and ODE

model (posterior) estimates. C: Model calibration to HIV incidence in the ACDSS and comparison to the UNAIDS’ Spectrum model [40]. D: Model

validation against HIV prevalence in KwaZulu-Natal among adults aged 15–24 and 15–49 from the four South African national household surveys [7].

Abbreviations: ODE, ordinary differential equation; IBM, individual based model; ACDSS, Africa Centre Demographic Surveillance Site; CrI, credible

interval.

https://doi.org/10.1371/journal.pone.0218649.g002
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boosted lopinavir (LPV/r) as the second-line ART regimen. The following drug resistance

mutations (associated with antiretrovirals) are modeled: i) Nucleoside reverse transcriptase

(NRTI)-associated signature mutations [70]—M184V (XTC), K65R (TDF) and the thymidine

analogue mutations / TAMs (AZT); ii) Non-nucleoside reverse transcriptase (NNRTI)-associ-

ated class mutations (EFV/NVP); and iii) Protease inhibitor (PI)-associated class mutations

(LPV) [3]. Our assumptions regarding the emergence of acquired resistance to first-line ART

are primarily informed by the TenoRes study [69] (Table 1), while those for resistance to sec-

ond-line ART (not pertinent to this work) are informed by the SELECT study [72]. Though

South Africa has the largest ART program in the world, less than 5% of HIV-positive individu-

als are on second-line regimens [73]. Thus, for clarity and focus on drug resistance from first-

line ART, we do not implement the scale-up of second-line ART in this study.

Model-based analyses

CD4-based ART scenario. Fifty-six percent of HIV-positive people were receiving ART

in South Africa in 2016 [74], increasing to 61% in 2017 [1]. Thus, we assume a conservative

ART scenario based on South Africa’s 2012–2016 National Strategic Plan [41], achieving 80%

VMMC coverage among men and 80% ART coverage among HIV-positive individuals with

CD4 cell counts�500 cells/μL [43] by 2020, with maintenance thereafter. We assume that

VMMC reduces the risk of HIV acquisition in men by 60% [42] and that suppressive ART

reduces the transmission risk by 96% [47] and prolongs the survival of HIV-positive individu-

als [49–51, 75, 76].

Fast-track ART scenario. In 2016, South Africa expanded treatment eligibility to include

all HIV-positive individuals regardless of CD4 cell count, and adopted the UNAIDS Fast-track

treatment targets [44]. Therefore, we simulate an accelerated ART scenario, assuming 80%

VMMC implementation plus universal ART eligibility with expanded testing and treatment

rollout, beginning in September 2016 and reaching Fast-track treatment coverage targets of

81% by 2020 and 90% by 2030. To achieve the corresponding Fast-track targets of 73% and

86% overall virologic suppression, we assume an aspirational concurrent adherence-support

intervention that reduces virologic failure rates 50% by 2020 and by 80% ultimately (relative to

conservative scenario (Table 1)) [77].

Study outcomes

We simulated the CD4-based ART and Fast-track ART, using 100 independent replications

[18, 19] for each scenario, from 1978 to 2030 (base case analyses). Next, we repeated the above

replications, with random variation of select resistance-related parameters over a specified

range (Table 1), using Latin Hypercube Sampling [78], to determine the extent of uncertainty

in model results (uncertainty analyses). We calculated the model output (outcome variables)

means for base case, and the medians with interquartile range (IQR) for uncertainty analyses.

Again, while our model incorporates both first- and second-line ART, the focus of this study is

drug resistance associated with preferred first-line ART, reflecting limited utilization of sec-

ond-line and alternative first-line regimens in South Africa [74, 79, 80]. Our primary outcome

is the prevalence of HIV drug resistance in the majority virus by the end of 2030. Additionally,

we assess the incidence of drug resistance and the resistance levels at 2018.

Outcome variable definitions. Total resistance prevalence is defined as the number of

HIV-positive individuals with virological non-suppression and acquired and/or transmitted

drug-resistant majority virus, divided by the entire number of HIV-positive individuals, at a

given time.

Antiretroviral failure and drug resistance
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Prevalence of acquired resistance is specified as the number of HIV-positive individuals

with virological non-suppression and acquired drug-resistant majority virus, divided by the

entire number of HIV-positive individuals, at a given time.

Prevalence of acquired drug resistance mutations represents the number of HIV-positive

individuals with virological non-suppression and majority virus harboring acquired NNRT-

class, K65R and/or M184V mutations (occurring as single or multiple drug-resistant viral vari-

ants/mutants), divided by the number of HIV-positive individuals with virological non-sup-

pression and acquired drug-resistant majority virus, at a given time.

Incidence of transmitted resistance is specified as the proportion of new infections due to

drug-resistant HIV, in a given time. The prevalence of transmitted resistance is the number of

HIV-positive individuals with virological non-suppression and transmitted drug-resistant

majority virus, divided by the entire number of HIV-positive individuals, at a given time.

Prevalence of ART-adjusted (total, acquired or transmitted) drug resistance is defined as

the number of HIV-positive individuals with virological non-suppression and (acquired and/

or transmitted) drug-resistant majority virus, divided by the number of HIV-positive individu-

als with ART-experience and virological non-suppression, at a given time.

Results

Base case analyses

Prevalence of HIV drug resistance. At 2018, the total resistance prevalence was similar in

the two scenarios (~15%; ~230, 000 cases), with over a tenth contributed by transmitted resis-

tance (~1.5%) (Fig 3A).

By 2030, the total resistance prevalence reached 30% from CD4-based ART (~375, 000

cases), while Fast-track ART reduced the total resistance to 13% (~150, 000 cases). In either

scenario, over four-fifths of the total resistance was attributable to acquired resistance (Fig 3B).

Prevalence of acquired HIV drug resistance mutations. Irrespective of the scenario, the

prevalence of the NNRTI-associated (class), M184V and K65R (signature) mutations was com-

parable (~80%) in individuals with acquired resistance and virological non-suppression, by

2030 (Fig 3C). Among these individuals, over 48% harbored dual drug mutations, 44% had tri-

ple mutations and 7% just single mutations (Fig 3D). Similarly, at 2018, the proportions of

these individuals with dual, triple and single mutations were 51%, 42% and 7% respectively

(Fig 3E).

Prevalence and incidence of transmitted HIV drug resistance. Transmitted drug resis-

tance was relatively similar in the two scenarios. NNRTI-associated (class) mutations com-

prised about 70% of the prevalent transmitted drug resistance at 2018 and end of 2030 (Fig

4A). At 2018, an estimated 18% of the incident/new infections (incidence) were due to trans-

mitted drug-resistant HIV (Fig 4B). By the end of 2030, the proportion of incident drug-resis-

tant HIV infections had risen to 40% (Fig 4B).

ART-adjusted HIV drug resistance. In both scenarios at 2018, the ART-adjusted total

resistance prevalence was approximately 80%; comprising about 10% transmitted and 70%

acquired resistance (Fig 3F). NNRTI-only (transmitted and acquired) resistance prevalence

was about 8% (data not shown) while acquired NNRTI+NRTI resistance prevalence was about

55% (Fig 3F).

Uncertainty analyses

The results of our base case analyses were confirmed by uncertainty analyses and are described

below.

Antiretroviral failure and drug resistance
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CD4-based ART scenario. At 2018, the median total resistance prevalence in this sce-

nario was at a level of 15.5% (IQR: 7.5%-25.3%), constituted by 13.9% (6.6%-22.7%) acquired

and 1.6% (0.9%-2.5%) transmitted resistance, and comprising 247, 577 (117, 820–410, 492)

resistance cases. By 2030, the median total resistance reached 31.4% (IQR: 16.5%-50.2%). This

Fig 3. Prevalence of total, acquired and ART-adjusted HIV drug resistance. A: Prevalence of total drug resistance at 2018. B: Prevalence of

total drug resistance by 2030. C: Prevalence of acquired drug resistance mutations by 2030. D: Prevalence of acquired drug-resistant mutants

by 2030. E: Prevalence of acquired drug-resistant mutants at 2018. F: ART-adjusted drug resistance prevalence at 2018.

https://doi.org/10.1371/journal.pone.0218649.g003
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comprised 399, 504 (205, 366–654, 732) resistance cases and constituted 27% (14.3%-43.2%)

acquired and 4.5% (2.3%-7%) transmitted resistance. The median proportion of incident

infections attributable to transmitted drug-resistant HIV was 18.3% (IQR: 13%-23.7%) at 2018

which increased to 38.1% (IQR: 26.9%-49.2%) by 2030.

Fast-track ART scenario. Similar to CD4-based ART, at 2018, the median total resistance

prevalence in Fast-track scenario was 15.1% (IQR: 7.5%-25.3%), with an estimated 240,501

(114,615–399,151) cases and 13.5% (6.5%-22.1%) acquired and 1.5% (0.9%-2.5%) transmitted

resistance. By 2030, the total resistance from Fast-track ART was less compared to 2018, and

considerably less compared to the total resistance from CD4-based ART by 2030; its median

value was 14.5% (IQR: 7.7%-25.8%), comprising 163,415 (84,784–299,174) cases of resistance

and 13% (6.9%-23.6%) acquired and 1.5% (0.8%-2.2%) transmitted resistance. At 2018, the

median proportion of drug-resistant incident infections was 17.9% (IQR: 12.9%-23.4%),

increasing to 40.6% (IQR: 28.7%-49.5%) by 2030.

Survey-based versus model-based HIV drug resistance. S1 Fig illustrates data from the

5th South African National HIV Prevalence, Incidence, Behaviour and Communication

Fig 4. Prevalence and incidence of transmitted HIV drug resistance. A: Distribution of transmitted drug resistance

by resistance type at 2018 and by 2030. B: Distribution of incident infections by resistance status at 2018 and by 2030.

https://doi.org/10.1371/journal.pone.0218649.g004
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Survey, 2017; a cross-sectional, population-based, household survey [81]. Among all survey

participants who were HIV-positive with virological non-suppression and successful drug

resistance testing, the weighted total (any) drug resistance prevalence was 27.4% (95% confi-

dence interval (CI): 22.8%-32.6%). However, the total resistance was about 10%, when

calculated among all HIV-positive survey participants (virologically suppressed and non-sup-

pressed), similar to our model-based estimates (median: 15%; IQR: 7.5%-25.3%). Survey-based

drug resistance prevalence was 55.7% among participants with positive ARV detection, of

which 14.3% was NNRTI-only and 40.4% was NNRTI+NRTI resistance. Among those who

tested negative for ARVs, resistance prevalence was 22.8%, comprised by 20% NNRTI-only

and 2.1% NNRTI+NRTI resistance; rising to 75.9% among ARV-experienced, while falling to

15.3% among ARV-naïve participants. Although differences in study design prevent a direct

comparison, these survey data are similar to our model-based resistance estimates (10% vs

15% total, 42.6%-67.9% (ARV+) vs 80% (ART-adjusted) total and 29.6%-52.2% (ARV+) vs

55% (ART-adjusted) NNRTI+NRTI acquired resistance). Of note, i) our modeling context is

KwaZulu-Natal, the South African province with the highest burden of HIV, ii) the denomina-

tor for our ART-adjusted estimates includes all HIV-positive individuals with ART-experience

and virological non-suppression, and iii) our model allows for re-entry into ART; these factors

may explain the somewhat lower survey-based compared to model-based estimates of drug

resistance prevalence overall, as well as NRTI-resistant (versus NNRTI-resistant) majority

viruses given their dynamics (Table 1).

Discussion

As the world gears up to end the HIV/AIDS epidemic as a public health threat by 2030, pri-

marily through universal ART, this study addresses the spread of HIV drug resistance from

failure of the preferred first-line antiretroviral regimens containing TDF + XTC + NNRTI.

Using a novel, detailed and well-parametrized individual-based model of the HIV epidemic in

KwaZulu-Natal, we project the prevalence and incidence of HIV drug resistance from ART, in

the majority virus at the population level over time, through simulations of CD4-based or

Fast-track approaches of ART implementation. The following are important insights from our

study. 1) The total resistance prevalence (proportion of HIV-infected individuals with virologi-

cal non-suppression and acquired and/or transmitted majority drug resistance) from treat-

ment increases over time, especially with the CD4-based approach. 2) By 2030, total resistance

from the implementation of Fast-track, is less compared to that from CD4-based ART. 3)

Acquired resistance to first-line ART predominantly constitutes the total drug resistance prev-

alence. 4) Most individuals with acquired drug resistance harbor dual or triple major drug

mutations. 5) The proportion of incident/new infections with transmitted drug-resistant HIV

increases over time. 6) NNRTI-associated mutations in the majority virus are predominant

among the prevalent, transmitted drug-resistant HIV infections. 7) Though differences in

study design preclude an exact comparison, our model-based projections of moderate-to-high

levels of drug resistance at 2018, are in general agreement with survey- and surveillance-based

data [14, 17, 81].

Our base case and uncertainty analyses project increasing levels of total resistance preva-

lence in the scenario of CD4-based ART reaching a mean (median) value of 30% (31.4%) by

2030 compared to 15% at 2018. The total resistance appears to decrease to 13% (14.5%) in the

Fast-track scenario by 2030. Elsewhere, we have found that the principal drivers for decrease

in resistance with Fast-track ART are increasingly effective adherence support and rapid initia-

tion of second-line after failure of first-line ART.
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We predict that most individuals with acquired resistance have dual or triple drug muta-

tions. In addition, the prevalence estimates of signature mutations associated with TDF and

XTC and the NNRTI class mutations, are similarly high (~80%). These results underscore the

importance of timely and equitable utilization of second-line ART. Though first-line ART

associated mutations were not found to compromise the efficacy of second-line ART in clinical

trials [72, 82, 83], our findings warrant caution, particularly over long term.

Our modeling shows that the proportion of incident infections with transmitted drug-resis-

tant HIV increases over time with the implementation of ART. At 2018, our predicted value is

18%, which exceeds the WHO’s 10% threshold for pretreatment drug resistance (detected in

antiretroviral naïve or antiretroviral exposed individuals initiating or reinitiating first-line

ART) [6], and climbs to 40% by 2030. These data highlight the criticality of universal access to

alternate first-line ART regimens and/or point of care drug resistance testing. We do not

report the trade-off between averted infections and transmitted drug resistance due to ART,

nor the epidemiological or economic impact of drug resistance; as these issues have been

examined previously by us [31, 33, 84] and others [67, 85, 86]. Averted infections may offset

the risk of resistance over short term [67]. By contrast, in contexts where current levels of pre-

treatment drug resistance exceed 10%, it is estimated that 16% (890, 000) of AIDS deaths, 9%

(450, 000) of new infections, and 8% ($6.5 billion) of ART program costs in sub-Saharan Africa

in 2016–2030 will be attributable to HIV drug resistance [85].

Similar to other modeling studies this work has limitations. Precise details of our model’s

projections will be affected by variations in the embedded structural and parameter assump-

tions, especially those regarding sexual behavior. Nevertheless, we used rigorous model con-

struction, calibration, parameterization, and analyses. Our assumptions regarding drug

resistance were derived from disparate literature sources; however, we carefully parameterized

our model inputs, incorporating relevant current and local data, and explored plausible input

ranges in uncertainty analyses. Our study focuses on drug resistance from the scale-up of

WHO’s preferred first-line ART regimens containing TDF + XTC + EFV/NVP. We do not

model the recommended consideration of non-NNRTI (dolutegravir-containing) first-line

ART for all starters in countries with high (� 10%) pretreatment drug resistance to EFV/NVP

[6, 87] or the interim guidelines that recommend changing the preferred first- and second-line

regimens as dolutegravir-based [5]. Data from South Africa [8–17] are mixed regarding drug

resistance at the population-level, though a study suggests that KwaZulu-Natal may have sur-

passed the 10% pretreatment resistance threshold [17]. Though dolutegravir rollout in South

Africa appears imminent, the incorporation of this scenario in our model is challenging for

the following reasons. The timing, pace and scale of dolutegravir roll out in South Africa are

not precisely known [79, 80]. The policy of dolutegravir implementation may change from use

in people initiating ART to use in all people on ART [88]. Several gaps in the evidence base

need to be addressed by researchers as part of dolutegravir roll out [89]: More data are

required to determine the risk of adverse birth outcomes when women initiate dolutegravir-

based regimens before conception; While increasing access to viral load testing for monitoring

the effectiveness of dolutegravir remains crucial, the best strategy to manage patients with vire-

mia is unclear; The evidence to support the effectiveness of dolutegravir when given with

tuberculosis treatment remains scarce. Finally, whether NRTI resistance will affect the long-

term efficacy of dolutegravir-based regimens in first-line, and potentially second-line, ART is

unknown [90] and dolutegravir-resistance patterns may differ across HIV type 1 non-B sub-

types [91]. Clinical trials, cohorts, and surveillance of HIV drug resistance will be necessary to

answer these questions, maximize the benefits of dolutegravir-based regimens, as well as

inform future mathematical modeling. Nevertheless, our study provides critical insight into

the potential trends and patterns of HIV drug resistance in South Africa, in the context of
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scale-up of TDF + XTC + EFV/NVP, as the preferred first-line ART, at present and in the

future; lending support to the WHO recommendations for regimen change [5]. Future work

will address model refinements informed by new available data. We do not include the preven-

tion of mother to child transmission, which may be an important source of resistance [92].

Finally, our modeling context is the mature, generalized, high-prevalence HIV epidemic in

KwaZulu-Natal, South Africa. While our quantitative findings may not be directly generaliz-

able to other contexts, the qualitative insights from our modeling are robust.

Conclusion

Monitoring, prevention and treatment of drug-resistant HIV are vital components of the HIV

response. Affordable and universal access to safe and effective first- and subsequent-line ART

regimens, alongside reliable and convenient tests for HIV viral load and drug resistance, are

crucial for the end of AIDS.
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