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Osteoimmunology is an interdisciplinary research field dedicated to the study of the 
crosstalk between the immune and bone systems. CD4+ T cells are central players in 
this crosstalk. There is an emerging understanding that CD4+ T cells play an important 
role in the bone marrow (BM) under physiological and pathological conditions and 
modulate the differentiation of bone-resorbing osteoclasts. However, identification of 
the mechanisms that maintain CD4+ T cells in the BM is still a matter of investigation. 
This article describes the CD4+ T cell populations of the BM and reviews their role as 
osteoclastogenic population in inflammatory bowel disease.
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Bone marrow (BM) has long been known to play an important role in the immune system as a cen-
tral hematopoietic organ. However, its function in T cell-mediated tolerance or immunity remains 
elusive. In the past, most of immunological studies were focused on T and B cells in the thymus, the 
lymph nodes, and the spleen considered as the central reservoirs of adaptive immunity. Over time, it 
became apparent that the immune system has a far more decentralized governing function. Recently, 
the BM was shown to play several unexpected roles, serving as an important reservoir for memory T 
cells including pathogenic cells and long-lived plasma cells involved in the maintenance of long-term 
immunity and pathogenicity.

BOne MARROw ReSiDenT CD4+ T CeLLS

Memory CD4+ T cells provide rapid and highly effective protective immunity against previously 
encountered pathogens and can recognize a wide variety of antigens. The concept of systemic 
memory consists of two major subsets: central memory T (TCM) cells and effector memory T (TEM) 
cells. Importantly, this identification was done in the blood (1). TCM cells express the chemokine 
receptor CCR7 and the vascular addressing L selectin (CD62L), which enables them to migrate 
from the blood to the lymph nodes. TEM cells express low levels of CCR7 and CD62L but have 
receptors that allow them to access peripheral tissues as, for example, the E-selectin ligand cutane-
ous lymphocyte antigen (CLA), which grants them access to the skin, and α4β7, an integrin that 
allows them access to the gut. These memory T cells are called tissue-resident memory T cells 
(TRM) (2).

In the BM, T cells represent about 3–8% of total nucleated cells. BM T cells reach the BM 
from the blood and, after homing to the BM, can move back to the blood to migrate to other 
lymphoid organs (3). The rules governing cell migration to the BM have been investigated mainly 
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in the case of hematopoietic stem cells (HSCs) and revealed the 
dominant role of the CXCR4–CXCL12 axis in this migration. 
Analysis of CD4+ T cells from the BM of normal mice or mice 
affected with inflammatory bowel diseases (IBDs) showed the 
presence of both TCM and TEM cells that are characterized by a 
high expression of the chemokine receptors CXCR4 and CCR6 
(4, 5). However, the mechanism of recruitment of these T cells in 
the BM remains elusive. Moreover, the degree to which memory 
cells are resident (TRM) within the BM versus transiting through 
it is less clear.

In order for TRM cells to be maintained in the BM, they must 
adapt to the local environment and ignore signals that may 
induce their egress outside of the BM. The mechanisms and cells 
involved in the maintenance of BM T cells represent a matter of 
active research. BM stroma includes mesenchymal stromal cells 
(MSCs), endothelial cells, osteoblasts (OBLs), and adipocytes. 
This stromal cell heterogeneity complicates the understanding of 
the implication of these cells in the maintenance of immunologi-
cal memory. It is well recognized that BM stromal cells support 
hematopoiesis by establishing specialized niches. These niches 
regulate the fate of HSCs in terms of quiescence, migration, and 
differentiation (6). The major components of the HSC niches 
include several MSC populations [CXC12-abundant reticular 
(CAR) cells and Nestin+ cells] (7), OBLs (8, 9), and endothelial 
cells (10, 11). In addition, regulatory T cells (12), macrophages 
(13), and osteoclasts (OCLs) (14, 15) were shown to contribute to 
the regulation of the HSC niches. MSCs have also been involved 
in the retention of T cells in the BM. Tokoyoda et  al. showed 
that memory CD4+ T cells are located close to BM stromal 
cells expressing IL-7 and VCAM1 (16). This was confirmed by 
Nemoto et al. who reported that in IBD, pathogenic CD4+ T cells 
are retained in the BM through interactions with IL-7-producing 
MSCs (17). However, the exact nature of the VCAM1+ and IL-7+ 
stromal cells and their role in the maintaining of memory CD4+ 
T cells remain to be elucidated. Adoptive transfer of B and T 
lymphocytes in mice led to seeding of dendritic cell (DC) clusters 
with grafted cells in perivascular domains, which were referred to 
as BM immune niches (18). Overall, these observations suggested 
the existence of CD4+ T cell niches that remain to be character-
ized in term of cell composition and regulation. The identifica-
tion of BM immune niches raises many new questions. Which 
molecules regulate T cell migration? How are memory CD4+ T 
cells maintained and for how long? How do they interact with BM 
stroma under physiological and inflammatory conditions? The 
identification of BM-specific factors that control T cell functions 
is likely to have a major impact on translational medicine.

CROSSTALK BeTween CD4+ T CeLLS 
AnD BOne CeLLS

The crosstalk between the immune and bone systems led to the 
emergence of an interdisciplinary field called osteoimmunology 
(19). This field emerged from clinical observations reporting that 
patients presenting an overactivation of the immune system, such 
as chronic infections and chronic inflammatory diseases, also 
display bone loss (20–22). The importance of this crosstalk was 

further confirmed with the identification of the role of activated 
CD4+ T cells in pathological osteoclastogenesis (23). Its scope 
has been extended to encompass a wide range of molecular and 
cellular interactions, including those between immune cells and 
bone cells, and between bone cells and hematopoietic cells. These 
interactions are essential for the development of the immune and 
bone systems (15, 24).

Bone remodeling is a highly regulated process involving 
complex interactions between the activity of the bone-forming 
OBLs and the activity of the bone-resorbing OCLs. OCLs are 
multinucleated cells from the myeloid lineage (monocytes and 
DCs) (25) that degrade the bone matrix and release growth fac-
tors that contribute to the coupling between OCLs and OBLs (26). 
The mesenchymal-derived OBLs migrate to the eroded sites and 
initiate new bone formation by the secretion of an extracellular 
matrix and its calcification. In a physiological state, bone remod-
eling provides an adequate environment for the development of 
the immune system and the protection of HSCs (6).

The BM represents a reservoir for memory T cells among 
which 25% are Foxp3+ regulatory T cells (27). It is also a pref-
erential site for the migration or the selective retention and 
function of regulatory T cells. This finding provides evidence for 
an unidentified role of the BM in T-cell homeostasis. Moreover, 
Tokoyoda et al. have shown that in adult mice, more than 80% 
of antigen specific memory CD4+ T cells rest in the BM for more 
than 90  days after immunization and do not proliferate (16). 
From these observations, we can hypothesize that the immu-
nosuppressive activity of BM regulatory T cells participates in 
the quiescence of memory T cells as recently shown for CD8+ 
memory T cells (28). In this study, regulatory T cells suppress 
proliferation and effector programs during the memory differ-
entiation of CD8+ T cells in the lymph nodes (28). In addition 
to regulatory T cells, MSCs are also generally considered as 
immunosuppressive cells. MSCs may suppress T-lymphocyte 
proliferation and functions both in  vitro and in  vivo (29, 30). 
They produce soluble factors, including TGF-β, able to mediate 
suppression of T-cell proliferation (31). MSCs can also inhibit 
T cell proliferation by increasing IL-10 secretion (31). These 
properties suggest that the immunosuppressive effect of MSCs 
may participate to the preservation of CD4+ memory T cells in 
the BM. However, MSCs are a heterogeneous population of cells 
and their immune suppressive activity has mainly been explored 
in pathological conditions. It is therefore important to better 
understand this function to clarify how MSCs may control the 
quiescence and niche of CD4+ T cells.

To date, the role of CD4+ regulatory T cells and memory 
T cells on bone cells in physiological conditions remains con-
troversial. It has been reported that Rag1−/− mice lacking T cells 
have a normal bone phenotype (32), whereas T cell-deficient 
nude mice display, with age, an increased bone resorption and a 
decreased bone mineral density (33). T cells are capable of medi-
ating anti-osteoclastogenic signals, as depletion of CD4 and CD8 
T lymphocytes in mice in vivo enhances vitamin D3-stimulated 
OCL formation by blocking the production of osteoprotegerin 
(OPG) by B cells (34). These observations revealed the difficulty 
to conclude on the role of CD4+ T cells in steady state osteoclas-
togenesis because they can have direct and indirect effects on 
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OCL precursors and also because of their heterogeneity. Indeed, 
Th1, Th2, and Th17 cells have been reported to have opposite 
effects on OCL differentiation in vitro. Th1 and Th2 cells inhibit 
OCL formation through their production of INF-γ and IL-4, 
respectively, whereas Th17 cells have an osteoclastogenic helper 
effect in vitro mediated by MSCs (35).

OSTeOiMMUnOLOGY inTeRACTiOnS in 
inFLAMMATORY BOweL DiSeASe

Inflammatory bowel diseases are inflammatory diseases that 
affect the gastrointestinal tract. There are two main clinical forms 
of IBD: Crohn’s disease which affects any part of gastrointestinal 
tract and ulcerative colitis in which the pathology mostly affects 
the colonic mucosa (36). Several factors including genetic fac-
tors, gut microbiota, and the host immune system have been 
described to contribute to IBD (36). Moreover, these diseases 
are often associated with extra-intestinal manifestations, in 
particular, bone loss. Indeed, more than 40% of patients with 
IBD also present bone loss that remains a major extra-intestinal 
cause of morbidity leading to an impaired quality of life and 
productivity (37). The prevalence of osteopenia and osteopo-
rosis in patients presenting with IBD ranges from 22–77% to 
17–41%, respectively, depending on the population location 
or the study design. According to the WHO, osteoporosis is 
defined as a systemic skeletal disease that occurs when bone 
resorption exceeds bone formation. In low-turnover osteopo-
rosis, bone resorption is normal whereas the synthesis of bone 
tissue is reduced. In contrast, in high-turnover osteoporosis, 
the activity of OCL is increased. Osteoporosis associated with 
chronic inflammation usually follows the high-turnover pat-
tern, whereas corticosteroid-induced osteoporosis is usually of 
the low-turnover pattern (38).

The association between chronic inflammation and bone 
destruction has been recognized a long time ago, leading to the 
hypothesis of the participation of immune cells in the control 
of bone remodeling (19). A seminal work published in 1999 by 
Kong et al. established the role of CD4+ T cells in inflammatory 
osteoclastogenesis. In this study, the authors demonstrated that 
activated CD4+ T cells produce RANKL and induce the differen-
tiation of OCLs in vitro (23). Besides that, ctla4−/− mice, in which 
T cells are spontaneously activated, displayed a severe osteoporo-
sis. Interestingly, transfer of CD4+ T cells from ctla4−/− mice into 
lymphocyte-deficient rag1−/− mice caused bone destruction that 
can be reversed through inhibition of RANKL by OPG (23). One 
additional study confirmed these observations and identified a 
common causal link between intestinal inflammation and bone 
loss showing that activated T cells producing RANKL accumulate 
in the BM during intestinal inflammation (39). Taken together, 
these studies suggest that pathogenic CD4+ T cells present in the 
BM during IBD are potentially osteoclastogenic.

Using a mouse model of colitis, induced in SCID mice by 
injection of CD4+CD45RBhigh naive T cells, Nemoto et  al. 
found that a large number of CD4+CD44+CD62L− memory T 
cells resides in the BM. Transfer of BM memory CD4+ T cells 
into new recipient SCID mice reproduced colitis. These BM CD4+ 

cells of colitic mice have therefore been described as “colitogenic 
memory T cells” (5). Importantly, these resident BM CD4+ 
memory T cells are closely associated with IL-7-producing stro-
mal cells, and they cannot induce colitis when transferred into 
IL-7−/− × Rag1−/− mice, suggesting that IL-7 plays an essential role 
in their maintenance or survival in the BM (5). Recently, the same 
group has demonstrated that BM MSCs are the major source of 
IL-7 and play a pathological role in IBD by forming the niche 
for these colitogenic CD4+ memory T cells (17). However, their 
osteoclastogenic effect has not been explored.

Although IBD has traditionally been assumed to be a Th1-
dependent disease, there is controversy over the role of Th1 on 
bone homeostasis. IFN-γ has been shown to directly inhibit 
osteoclastogenesis by interfering with the RANKL–RANK sign-
aling pathway (40). Moreover, in vitro differentiated CD4+ Th1 
cells have been shown to inhibit OCL formation through their 
canonical production of IFN-γ (35). In contrast, observations in 
humans suggested that IFN-γ may promote osteoclastogenesis 
because it improves bone resorption in osteopetrotic patients 
treated with IFN-γ (41). IFN-γ is also a physiologic inducer of 
MHC class II expression by APCs resulting in the activation of 
T cells that induce bone resorption by their secretion of RANKL 
and TNF-α (42). Together, these data suggest that IFN-γ inhibits 
OCL formation through direct targeting of maturing OCLs, while 
it promotes osteoclastogenesis indirectly by stimulating T cell 
activation.

Nowadays, it is well known that the inflamed gastrointes-
tinal mucosa of patients with IBD is massively infiltrated with 
Th17 cells and that Th17-related cytokines are produced in 
excess (43). Based on this, it is obvious that Th17 cells play an 
important role in the pathogenesis of IBD, which was previously 
solely attributed to Th1 cells. However, although a pathogenic 
role in intestine inflammation has been ascribed to Th17 cells, 
administration of neutralizing anti-IL-17A antibody to patients 
with Crohn’s disease did not show any therapeutic benefit (44). 
Moreover, in some patients, it exacerbated the disease sug-
gesting a protective role of IL-17A (44). Thus, despite the role 
of Th17 cytokines is important in many aspects of intestinal 
homeostasis and protection from mucosal pathogens, their role 
in the pathogenesis of IBD remains ambiguous. However, IL-17 
represents a potent osteoclastogenic cytokine, and its receptors 
are expressed by many cell types, including OBLs and OCLs 
(45). Kotake et al. reported that IL-17 is abundant in rheumatoid 
synovial fluid and that IL-17 stimulates OCL differentiation by 
inducing RANKL expression by OBLs (46). It should be noted 
that the effect of IL-17 is not limited to this direct action on 
the OBLs. IL-17 facilitates local inflammation by recruiting 
and activating immune cells, which leads to an abundance of 
inflammatory cytokines such as TNF-α (46). IL-17-deficient 
mice are resistant to bone destruction induced by LPS (35). 
Otherwise, Oostlander et  al. suggested a particular role for 
IL-17 in osteoclastogenesis in Crohn’s disease patients (47). 
More recently, we have shown that BM Th17 T cells expressing 
high levels of TNFα were able to induce OCL differentiation 
in IBD mice. This T-cell-induced OCL differentiation could be 
inhibited by IL-17 blockade (4) suggesting the importance of 
IL-17A in osteoporosis.

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 1 | Th17 cells induce bone destruction in iBD. In IBD, Th17 
TNFα cells migrate and accumulate in the bone marrow (1). They express 
RANK-L and TNF-α that participate to osteoclast differentiation (2). They also 
express IL-17 that stimulates the local inflammation and activates osteoblasts 
to produce RANK-L inducing osteoclast formation (3) and MCP-1 and 
MIP-1α chemokines (4) participating to the recruitment of osteoclast 
precursor cells (monocytes) in the BM that contribute to the increased 
osteoclastogenesis (5) and to bone destruction.
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A picture emerged from the literature (48, 49) to define what 
we believe to be osteoclastogenic T cells: first, osteoclastogenic 
T cells should not produce a large amount of IFN-γ. Second, 
they should trigger local inflammation and the production of 
inflammatory cytokines, including TNF-α, that induce RANK-L 
expression on MSCs. Third, they should express RANK-L and 
might directly participate in the increase of osteoclastogenesis.

Recent data indicate that in IBD, Th17 cells-producing TNF-
α represent the long-sought-after osteoclastogenic T cell subset 
that fulfills all the criteria mentioned above (4, 50). In murine 
models of IBD associated with bone loss, we have shown that 
Th17-producing TNF-α cells accumulate in the BM, the colon, 
and spleen and have a potent capacity to induce OCL dif-
ferentiation without addition of any exogenic osteoclastogenic 
factors (4). Through their production of RANK-L and TNFα, 
Th17 cells directly induce the differentiation of precursors into 
OCLs (4), but they also have a major effect on MSCs through 
their production of IL-17. Indeed, IL-17 increases RANK-L 
expression in MSCs leading to increased OCL formation (4, 
35, 46). Moreover, in the context of IBD, Th17 cells increase the 
expression of monocyte chemoattractant protein-1 (MCP-1) and 
macrophage inflammatory protein 1α (MIP-1α) by MSCs, which 
may promote the recruitment of inflammatory monocytes (OCL 
precursors) in the BM and their differentiation into OCLs (4). 
To translate these finding into human disease, IL-17-producing 
T cells from the blood of IBD patients are osteoclastogenic cells 
in vitro and increase MIP-1α and MCP-1 expression by human 
MSCs (4, 47), suggesting their participation to osteoporosis in 
these patients. Therefore, Th17 cells represent a key target for 
innovative therapeutic approaches for IBD-associated bone 
destruction.

COnCLUDinG ReMARKS

Recent advances have contributed to our understanding of the 
biology of CD4+ T cells in the BM. These T cells fulfill both 
homeostatic and pathological functions with respect to the bone 
system. IBD is an immune-mediated disease characterized by 
systemic Th1 and Th17 responses and bone destruction. Recent 
studies have revealed that Th17 cells are not only required for the 
initiation of systemic immune response as they are critical regula-
tors in the chronic inflammation associated with bone destruc-
tion, particularly in rheumatoid arthritis. Our recent findings 
extend these observation to IBD in which the site of inflammation 

is far from the bone and provide the first characterization of 
osteoclastogenic Th17 TNF-α+ cells in the BM linking IBD and 
bone destruction.

Collectively, we propose that these osteoclastogenic cells, 
once in the BM, enable the secretion of chemokines and RANKL 
by stromal cells. This enhances the recruitment of inflammatory 
monocytes and DCs that differentiate into OCLs and increase 
the bone resorption leading to osteoporosis as illustrated in 
Figure 1.
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