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Sirtuins have received considerable attention since the discovery that silent information regulator 2 (Sir2) extends the lifespan of
yeast. Sir2, a nicotinamide adenine dinucleotide- (NAD-) dependent histone deacetylase, serves as both a transcriptional effector
and energy sensor. Oxidative stress and apoptosis are implicated in the pathogenesis of neurodegenerative eye diseases. Sirtuins
confer protection against oxidative stress and retinal degeneration. Inmammals, the sirtuin (SIRT) family consists of seven proteins
(SIRT1–SIRT7).These vary in tissue specificity, subcellular localization, and enzymatic activity and targets. In this review, we present
the current knowledge of the sirtuin family and discuss their structure, cellular location, and biological function with a primary
focus on their role in different neuroophthalmic diseases including glaucoma, optic neuritis, and age-relatedmacular degeneration.
The potential role of certain therapeutic targets is also described.

1. Introduction

Neurodegeneration processes are implicated in several
eye diseases. These include glaucoma, age-related macular
degeneration (AMD), and inherited retinal disorders [1–3].
Recently transcription factors like sirtuins were found to be
involved in neurodegeneration. Identification of these cell-
basedmarkers and therapeuticmodalities of neuroprotection
are active areas of research in this field.

Sirtuins (silent information regulator, Sir2) were first
identified to prolong lifespan in yeast (Saccharomyces cere-
visiae). They are originally categorized as class III histone
deacetylase (HDAC) and belong to a conserved family
of nicotinamide adenine dinucleotide- (NAD-) dependent
protein deacylases [4]. Sirtuins deacetylate both histones
and nonhistone proteins. These include transcription factors
metabolic enzymes and proteins that have key roles in various
cellular processes [5]. In mammals, seven human Sir2 homo-
logues (sirtuins) designated as SIRT1 to SIRT7 have been
identified to date. These are associated with calorie restric-
tion, aging, metabolism, cancer, transcriptional silencing,
chromosomal stability, stress response, cell differentiation,

inflammation, apoptosis, DNA repair, and prevention of age-
related ocular diseases. Sirtuins are reported to have key roles
in cellular senescence, cell differentiation, and inflammation
[6–11].

The aim of this review is to summarize and discuss the
cellular location, biological function, and neuroprotective
effect of sirtuins as a promising target for the future treatment
of related neurodegenerative diseases of the eye.

2. Structure and Biological Function of Sirtuin

High resolution crystal structures of sirtuin family members
have provided insight into their substrate, cofactor binding
partners, and catalytic mechanisms [12, 13]. All the seven
members of the SIRT family share a conserved catalytic
core. The central catalytic core is comprised of 245 residues
flanked by N- and C-terminal extensions. The core is made
up of a large domain consisting of a Rossmann fold. This
is typical for NAD-dependent proteins and a small Zn2+
ribbon motif containing the consensus sequence Cys-X2–4-
Cys-X15–40-Cys-X2–4-Cys and a 𝛼-helical region. The two
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Table 1: Certain major functions of sirtuins.

Name of the sirtuin (SIRT) Functions Subcellular localization

SIRT1 Cellular longevity, tumor promoter, tumor suppressor, inflammation, oxidative stress,
glucose homeostasis, cell adhesion, cell metabolism Nucleus

SIRT2 Mitotic check point, tumor promoter, tumor suppressor Cytoplasm/nucleus

SIRT3 Tumor suppressor, tumor promoter, mitochondrial oxidation, stress responsive
deacetylase Mitochondria

SIRT4 Glutamine catabolism, TCA cycle, ADP-ribosylation Mitochondria

SIRT5 Glycolysis, cancer metabolism, fatty acid oxidation, lysine succinylation,
malonylation, glutarylation Mitochondria

SIRT6 Telomere and genome stability, DNA repair, inflammation, glucose homeostasis Nucleus
SIRT7 Ribosomal production Nucleus (nucleoli)

domains are separated by a cleft at the interface where the
peptide substrate binds. SIRT1 is the most studied human
isoform. It is the largest with extended N- and C-terminals
and is very flexible and unstructured, which allows it to offer
more sites of activity modulation (such as posttranslational
modifications, interaction with proteins, and ligands). Unlike
other HDACs, where zinc is part of the catalytic mechanism
[14], the zinc ion is located in the small domain, far away from
the NAD+ binding domain, excluding the possibility of its
participation in the catalysis.

Since sirtuins are protein deacylases the majority of them
function as deacetylases (SIRT1, SIRT2, SIRT3, SIRT5, SIRT6,
and SIRT7). Their enzymatic activity results in the removal
of an acetyl group from N-𝜀-lysine residues and generates
O-acetyl-ADP-ribose and nicotinamide. In addition SIRT4,
SIRT6, and SIRT7 exhibit monoadenosine diphosphate-
(ADP-) ribosyltransferase activity. SIRT1, SIRT6, and SIRT7
are predominantly localized in the nucleus; SIRT3, SIRT4,
and SIRT5 reside within the mitochondria; and SIRT2 is
limited to the cytoplasm. In response to oxidative stress,
shuffling of nuclear-to-cytoplasmic localization of SIRT1 has
also been reported [15, 16]. Some of the major functions were
shown in Table 1.

SIRT1 has been extensively studied due to its deacety-
lation of transcription factors and apoptotic modulators
(including forkhead box O subclass (FOXO), peroxisome
proliferator-activated receptor-𝛾 coactivator 1𝛼 (PGC-1 𝛼),
nuclear factor kappa-B (NF-𝜅B), Ku70, and p53) [17]. It
is associated with inflammation, apoptosis, genome sta-
bility, metabolic regulation, senescence, cell differentiation,
and oncogenic transformation [18]. SIRT2 regulates mitotic
checkpoints, oligodendrocyte, and adipocyte differentiation
[15, 19]. It plays a vital role in glucose homeostasis during
oxidative stress by deacetylating/activating glucose 6 phos-
phate dehydrogenase in pentose phosphate pathway [16].
SIRT2 is involved in the regulation of tumor necrosis factor-
alpha (TNF-𝛼) induced necroptosis [20]. In contrast, another
study revealed that genetic and pharmacological inhibition
of SIRT2 did not inhibit TNF-𝛼 induced necroptosis [21]
suggesting that it may have a minor role.

SIRT3 has been shown to be associated with the human
bladder [22] and oral squamous cell carcinoma [23]. It is

a stress-responsive deacetylase, whose increased expression
protects from obesity induced metabolic deregulation, can-
cer, and oxidative stress-mediated cell death [15, 24]. It
can function either as a tumor promoter or as a tumor
suppressor depending on the cell- and tumor-type and the
presence of different stress or cell death stimuli [24]. SIRT3
acts as a tumor suppressor, at least in part via its ability
to suppress reactive oxygen species (ROS) and regulate
hypoxia inducible factor-1-alpha (HIF-1𝛼) [25]. SIRT4 reg-
ulates glutamine catabolism and has lipoamidase activity
that is induced by high levels of glutamine and negatively
regulates pyruvate dehydrogenase complex [26]. Genetic
knockdown of SIRT4 has been shown to increase SIRT1 and
SIRT3 and enhance the expression of genes associated with
fatty acid oxidation and mitochondrial oxidative capacity
[15, 27]. SIRT5 regulates lysine succinylation, malonylation,
glutarylation, enzymes involved in ketone production, and
fatty acid oxidation [15, 28]. It regulates urea cycle through
carbamoyl phosphate synthetase 1 via desuccinylase activity
instead of deacetylase activity [29, 30]. A recent study
revealed that through demalonylation of glycolytic enzymes
SIRT5 positively regulates glycolysis and provides a link to
cancer metabolism [29].

SIRT6, a chromatin-associated nuclear protein, promotes
resistance to DNA damage and suppresses genomic instabil-
ity in mouse cells, in association with a role in base excision
repair [31]. Oxidative stress reduces SIRT6 levels and causes
endothelial cell senescence [15, 32]. SIRT6 knockout mice
display premature aging symptoms, including excessive loss
of subcutaneous fat and a significant reduction in bone
density, and die within 4 weeks of birth [31]. However,
overexpression of SIRT6 expands lifespan in male mice by
regulating insulin-like growth factor 1 (IGF-1) [32].

SIRT7 has a protective effect by deacetylating the tran-
scription factorGAbinding protein subunit beta 1 (GABP𝛽1).
SIRT7 deficient mice develop fatty liver and hearing loss and
die prematurely from cardiomyopathy [33].

3. Sirtuin Expression in the Eye

Except SIRT5, all sirtuins are expressed in human retina
[34, 35]. Retina is a photoreceptive tissue, whose energy
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consumption changes depending on light exposure. Retinal
cells expend more energy in the dark due to their higher
oxygen consumption and lactate production [36–38]. Hence,
the retinal expression of sirtuins has been found to be
variable, highlighting the regulatorymechanism(s) of sirtuins
in the retina. All sirtuins showed significant daily variation
under light-dark condition in retina. The mRNA levels of
sirtuins except SIRT6 were elevated in dark phase. However,
this photosensitive effect is absent in the brain and liver,
suggesting that sirtuinsmay be regulated in a tissue- or organ-
specific manner [38].

Jaliffa and colleagues have shown that SIRT1 is expressed
in mouse cornea, lens, iris, ciliary body, inner nuclear layer,
outer nuclear layer, and retinal ganglion cell layer [39]. SIRT1
deficient mice have been reported to be smaller than normal
at birth and usually die during the early postnatal period.
They fail to open one or both eyes [40]. In addition, multiple
retinal cell layers are significantly thinner than normalmouse
eyes, whereas inner and outer nuclear layers are disorganized
in these mice. The difficulty in detecting inner and outer
photoreceptor cell segments implicates the role of SIRT1 in
ocular morphogenesis [11, 41]. In addition, SIRT1 conditional
KO mice exhibit p53 hyperacetylation and reduced number
of retinal neuronal cells during development [41]. To date,
only a few studies reported the role of SIRT1 with the
development of cataract [42, 43], retinal degeneration [44,
45], optic neuritis [46], and uveitis [47]. SIRT2 is expressed in
human retinoblastoma and other nonaffected normal ocular
areas such as nonpigmented ciliary body epithelium, outer
and inner plexiform layer, nerve fiber layer, inner and outer
nuclear layer, and retinal pigment epithelium [48]. It is also
expressed in inflammatory cells at limbus and iris stroma of
retinoblastoma cases [49].

SIRT3 is highly expressed in lacrimal gland and neural
retina of mice mainly in retinal ganglion and photoreceptor
cells [49], but 10-week-old SIRT3 knockout (KO)mice did not
show any difference in retinal thickness or electroretinogram.
But there is lack of evidence in neural protein expression
such as rhodopsin, glial fibrillary acidic protein, and synap-
tophysin in these SIRT3 KO mice [50]. In humans, the
inner nuclear layer (INL) showed weak expression of SIRT3
throughout the retina.

In the human retina, retinal pigment epithelium (RPE)
expressed SIRT4, SIRT6, and SIRT7. SIRT4 and SIRT7 were
strongly positive in the macula and peripheral retina but not
in the outer nuclear layer (ONL) [51].

In the mouse retina, SIRT6 is expressed in all retinal
layers and its levels are higher in this tissue compared to
brain, heart, liver, or kidney [52]. In humans, SIRT6 is
expressed in macula, nonpigmented ciliary body epithelium,
ciliary muscle, retinal pigment epithelium, optic nerve fiber,
and neurosensory retina except the inner limiting mem-
brane. SIRT6 expression was observed in retinoblastoma
[48]. SIRT6 controls the levels of histone H3K9 and H3K56
acetylation. Its deficiency causes major chromatin changes in
the retina that are accompanied bymarked changes in expres-
sion of metabolic genes including GLUT1 and metabotropic
glutamate receptor Grm6 and severe functional impairment
in the SIRT6-KO retinas. These mice showed profoundly
impaired electroretinogram (ERG) [52].

4. Role of Sirtuins in Glaucoma

Glaucoma and optic neuropathy are the leading chronic
neurodegenerative disorders over the age of 40 and are
associated with increased intraocular pressure, ischemia,
oxidative stress, and deprivation of neurotrophic factors [53,
54]. Retinal ganglion cell (RGC) transmits light signals from
the neural retina (where the light is captured and converted
to electrical impulse) to the visual processing centers of the
brain. Ischemic condition in glaucoma leads to hypoxia with
increased apoptosis of RGC [55].

SIRT1was first linkedwith hypoxia inducible factor (HIF)
activity in hepatoma cells, where HIF-2 was acetylated at its
C-terminal and consequential decrease in its transcriptional
activity. SIRT1 activation reverses the acetylation of HIF-2
and increases its transcription and erythropoietin production
[56]. In HEK293 cells, SIRT1 binds to HIF-1, deacetylates
at Lys674 and blocks its association with the transcriptional
coactivator, p300 [57]. Hypoxia affects NAD+/NADH ratio
that in turn suppresses SIRT1 activity followed by acetylation
and activation of HIF-1 [57]. SIRT1 binds to both HIF-1𝛼 and
HIF-2𝛼. In transfected HEK293 cells, HIF-2𝛼 competes with
HIF-1𝛼 for SIRT1 binding. In support of this, erythropoietin-
enhancer and vascular endothelial growth factor promoter
reporter analysis showed that SIRT1 facilitated the transcrip-
tional activity ofHIF-2𝛼, whereas it repressedHIF-1𝛼 activity.
This study noted that SIRT1-mediated hypoxic responses
appear to be dependent on the 𝛼 subunit of HIF-1 [57].
Our earlier cell culture study showed that SIRT1 protects the
hypoxic RGCs through inhibition of caspase-3 [54].

The Stress-activated Protein Kinase (SAPK)/-c-jun N-
terminal kinases (JNK1/2/3) are important signaling kinases
that are elevated in neurodegenerative diseases including
glaucoma [58]. Differentiated hypoxic RGCs showed that
blockade of SIRT1 has higher SAPK/JNK activity whereas
inhibition of JNK (SP600125) showed higher SIRT1 activation
in [17, 54]. This explains the SIRT1 role in balancing the
proapoptotic versus antiapoptotic function. In addition, a
study in a rat model of optic nerve axotomy found a direct
correlation between SAPK/JNK and induction of apoptosis
[59, 60].

In an optic nerve crush injury model, SIRT1 overexpress-
ing (SIRT1-KI) mice had significantly higher RGC numbers
compared with severe RGC loss in wild-type [61]. In a similar
model, treatment of mice with 250mg/kg of resveratrol
(SIRT1 activator) attenuated the loss of RGC function by
preserving pupillary light responses. However, SIRT1-KO
mice did not show any effect after resveratrol treatment
[61]. Another optic nerve injury study on calorie restricted
rats showed decreased SIRT2 mRNA levels compared to the
normal diet group but had no effect on survival of RGCs
[62]. Retinal ganglion cells inmice pretreatedwith resveratrol
showed protective effect with altered expression of SIRT1 but
had minimal alteration in the expression of SIRT2 and SIRT5
followed by optic nerve crush [63].

Glaucomatous human retina showed 2-fold increased
expression of SIRT3 compared to normal retina. In addition,
human glaucomatous retina showed increased expression of
SIRT1, SIRT3, SIRT6, and SIRT7 in the glial fibrillary acidic
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protein (GFAP) positive astroglia compared to age-matched
nonglaucomatous controls [64].

5. Role of Sirtuins in Age-Related Macular
Degeneration (AMD)

AMD, a common cause of blindness in the elderly pop-
ulation, is characterized by either the presence of drusen
(dry AMD) or vascular epithelial growth factor- (VEGF-)
induced choroidal endothelial cell proliferation with associ-
ated leakage (exudative or wet AMD) [65]. Oxidative stress
and hypoxia induce several pathological changes in the retina
including apoptotic cell death, dysfunction of the retinal
pigment epithelial (RPE) cells, accumulation of lipofuscin,
formation of drusen, and impairment of Bruch’s membrane
[66, 67]. SIRT1 deacetylates and activates HIF-2𝛼 and regu-
lates VEGF-A promoter [61]. In our earlier study on hypoxic
choroidal endothelial cells, we found that SIRT1 regulates
vascular endothelial growth factor-A (VEGF-A) through the
activation of HIF-2𝛼. Increased VEGF levels in hypoxic cells
and the subsequent decrease after the activation of SIRT1
establish a relation between SIRT1 andHIF-2𝛼 [68]. Similarly,
resveratrol treatment inhibits hypoxic choroidal endothelial
cell proliferation through SIRT1-dependent pathway at higher
dosage [65].

Three octogenarian patients with AMD who fail to
respond to anti-VEGF therapies treated with oral resveratrol
showed dramatic short-term anti-VEGF type effect including
anatomic restoration of retinal structure with an improve-
ment in choroidal blood flow by near IR multispectral
imaging. The improvement of visual function mirrors the
effect seen anatomically with added benefit of RPE function
and lasted for more than one year when taken daily [69]. In
another recent study, Richer et al. reported broad bilateral
improvements in ocular structure and function in three
patients with AMD over a long-term follow-up of two to
three years suggesting its efficacy in AMD [70]. Retinal photo
toxicity which is another cofounding factor is associated with
AMD. Oral administration of resveratrol showed protective
effect against phototoxic degeneration of the mouse retina in
vivo via activator protein-1 activation [71].

Cao et al. demonstrated that one of the constituents
of drusen is amyloid beta (A𝛽) (controlled by activation
of SIRT1) induced inflammation in AMD. Amyloid beta
induced changes in retinal pigment epithelial cell morphol-
ogy while barrier integrity was balanced by SIRT1 activa-
tion by suppressing nuclear factor kappa-B (p65 subunit).
The reduction in the nuclear factor kappa-B activation
further decreased the inflammatory cytokine expression
of interleukin-8 (IL-8), interleukin-6 (IL-6), and matrix
metalloproteinase-9 (MMP-9) [72].

6. Role of Sirtuins in Optic Neuritis

Optic neuritis is an inflammatory optic neuropathy com-
monly associated with multiple sclerosis [73, 74]. It is a
myelin sheath disease with lesions typically located in the
optic nerve, brain and spinal cord, or cranial nerves. Nor-
mally, myelin helps electrical impulses travel quickly from

the eye to the brain, where they are converted into visual
information. Optic neuritis disrupts this process and affects
vision [75]. Intravitreal injection of SIRT1 agonists inhibits
RGC loss in a dose-dependent manner by inducing SIRT1
activity in mice with optic neuritis. This neuroprotective
effect is blocked by sirtinol [46, 76]. Resveratrol represents
a promising neuroprotective therapy for optic neuritis and
traumatic optic neuropathies. Both SIRT1 overexpression
and resveratrol treatment reduce the levels of superoxide
accumulation in optic nerves following crush injury [61].
Since protective effect of resveratrol on endothelial and
cancer cell is dose-dependent caution is necessary in using
it as a therapeutic agent [65, 77]. In contrast to SIRT1
overexpression, in an established mouse model of multiple
sclerosis, SIRT1 inactivation increased the production of new
oligodendrocyte progenitor cells in the adult mouse brain;
ameliorated remyelination; and delayed paralysis [78].

7. Role of Sirtuins in
Neurodegenerative Diseases

Detailed description of sirtuins protective role in other
neuronal diseases has been described in other literature. In
a mixed culture of neurons andmicroglia, SIRT1 deacetylates
(at p65 subunit) and reduces NF-kB signaling that protects
neurons fromamyloid beta induced toxicity inmicroglia [79].
Ischemic preconditioning and resveratrol treatment reduced
neuronal injury of hippocampal CA1 after NMDA challenge
in slices and global cerebral ischemic in rats [80, 81].

The inhibition of NF-kB by SIRT1 contributes neuropro-
tection similar to the effect of glucoside against Alzheimer’s
disease and ischemia [82, 83]. Resveratrol attenuates neuronal
degeneration and death in animal models of Alzheimer’s
disease and Parkinson’s disease associated with the cerebral
accumulation of𝛽-amyloid and𝛼-synuclein, respectively [84,
85]. In humans, phase II and phase III clinical trials evaluate
the usage of resveratrol in Alzheimer’s disease patients. The
primary outcome of these trials was evaluation of brain
imaging, cerebrospinal fluid marker analysis, and cognitive
report [86, 87]. SIRT2 inhibitors are capable of postponing
the axon degeneration in Parkinson’s disease models due to
their presence in cell bodies of neurites and growth cones
in axons [62]. Loss of sirtuin 4 (SIRT4) in mice leads to
decreased glutamate transporter expression and function in
the brain, which can cause increased excitotoxic effects. Loss
of glutamate transport function is implicated in epilepsy,
traumatic brain injury, and amyotrophic lateral sclerosis [88].

Another common neurodegenerative disease is Parkin-
son’s disease (PD) which affects the elderly population in
industrialized countries and is characterized by tremor,
postural instability, and rigidity. SIRT1 overexpression pro-
tects against Parkinson’s disease. SIRT1 activates heat shock
factor (HSF1) that impacts the transcription of molecular
chaperones including heat shock protein 70 and home-
ostasis of other cellular proteins [18, 89]. In contrary to
this, SIRT2 inhibitors showed dose-dependent effect of 𝛼-
synuclein mediated toxicity in cell culture models. This
effect was mediated by increasing the size of aggregates but
reduced the number of synuclein aggregates. SIRT2 showed
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protective effect in a mouse model of PD using 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP). Activated SIRT2
in MPTP-induced stress cause Foxo3a deacetylation which
lead to increased levels of the proapoptotic factor Bim and
trigger neuronal death [90]. In a similar model, absence of
SIRT5 increased dopaminergic degeneration whereas pres-
ence of SIRT5 maintains the function [91].

Huntington disease occurs due to expansion of CAG
repeats codes for glutamine residues which affects conforma-
tion and aggregation of huntingtin protein [92]. SIRT1 was
shown to be protective against this disease in cell culture
models and drosophila systems. In a chemically induced
mouse model of HD using 3-nitropropionic acid, treating the
animals fed with resveratrol decreased cognitive and motor
defects. However, in the N171-82Q transgenic mouse model
with overexpressed truncated huntingtin protein, resveratrol
treatment did not improve the survival [93, 94]. Similar
to SIRT1, SIRT2 inhibition was shown to be protective
against HD in cell culture and mouse models. However the
mechanism is linkedwith a decrease in the sterol biosynthesis
pathway [95]. Recently, viniferin, another resveratrol deriva-
tive, was found to be protective by increasing SIRT3 levels
that activate/deacetylate manganese superoxide dismutase
(MnSOD) and liver kinase B (LKB) [96].

8. Role of Sirtuins in Metabolic
and Health Span

Sirtuins promotes cellular longevity using calorie restriction
(CR). It is associated with reduced food consumption of an
organism compared to normal consumption. This increases
nicotinamide adenine dinucleotide (NAD+) levels in liver
which in turn activates SIRT1 [97]. SIRT1 also activates
PGC1𝛼 which results in mitochondriogenesis [97]. A decline
in mitochondrial activity upon aging is a causative factor
in many age-related diseases [98]. SIRT2 has been found to
regulate metabolism by deacetylating and stabilizing phos-
phoenolpyruvate carboxykinase (PEPCK1), which is the rate
limiting enzyme for gluconeogenesis, linking SIRT2 with
type II diabetes [99]. In response to nutrient deprivation
and energy expenditure it promotes lipolysis and inhibits
adipocyte differentiation through deacetylation of FoxO [99,
100]. SIRT2 deacetylates FoxO3 and increases its transcrip-
tion after calorie restriction in mice and after hydrogen
peroxide treatment in kidney cells thus reducing cellular
levels of ROS [101].

Recently, it has been reported that SIRT3 has been found
to regulate many aspects of mitochondrial function, such as
metabolism, Adenosine triphosphate (ATP) generation, and
modulation of the response to oxidative stress using acetyl-
coA synthetase 2 (AceCS2) and glutamate dehydrogenase
(GDH). A shift from dependence on liver glycolysis, facil-
itated by GDH and AceCS2 activity, has been implicated
in calorie restriction (CR), suggesting a role of SIRT3 in
reprogramming metabolism during CR to allow respiration
[102–104].

However, presence of SIRT4 inhibits GDH in pancreatic
beta cells and opposes the effects of CR. SIRT4 deficient or
CRmice are insensitive to phosphodiesterase (an enzyme that

cleaves ADP-ribose and is essential for ADP-ribosylation).
This indicates that, in beta cell mitochondria, SIRT4 repress
the activity of GDHbyADP-ribosylation, thereby downregu-
lating insulin secretion in response to amino acids, effects that
are alleviated during CR [105]. SIRT5 and SIRT6 are sensitive
to CR and are induced by low calorie stress. Under CR,
upregulated SIRT5 in liver leads to increased physiological
needs for nitrogen disposal due to increased amino acid
metabolism [106].

SIRT6 is involved in human telomere and genome sta-
bilization, gene expression and DNA repair, glucose home-
ostasis, and inflammation [107–109]. Aging phenotype was
observed in SIRT6 knockout mice where they showed
increased transcription of NF-kB that trigger increased apop-
totic resistance and cell senescence. This is reversed by the
inhibition of RelA subunit of NF-kB. This finding provides
the evidence that SIRT6 binds NF-kB subunit of RelA and
modulates NF-kB target genes [110]. SIRT6 deacetylate H3K9
and control expression of multiple glycolytic genes lactate
dehydrogenase (LDH), triose phosphate isomerase (TPI),
aldolase and phosphofructokinase (PFK1). SIRT6 deficient
cells showed elevated HIF-1𝛼 activity and elevated glucose
uptake with an increased glycolysis and reduced mitochon-
drial respiration. Based on these functions, SIRT6 can serve
as a biomarker for metabolic diseases [107].

9. Role of Sirtuins in Cardiovascular Diseases

SIRT1 deficient mice showed developmental defects in the
heart and are embryonically lethal. However, heterozy-
gous SIRT1 deficient mice showed absence of fibrosis and
decreased cardiomyocyte size [111]. At cellular level, SIRT1
promotes vascular relaxation by activating endothelial nitric
oxide synthase (eNOS). SIRT1 interacts with NF-kB by
inhibiting its signaling and proinflammatory cytokine release
in endothelial cells [109, 112, 113]. SIRT1 promotes angio-
genesis by increasing VEGF expression through hypoxia
signaling. Pharmacological inhibition of SIRT1 using sirtinol
decreases VEGF levels [68]. Inhibition of SIRT1 increases
thrombosis by reducing tissue factor activation through the
pathway of Peroxisome Proliferated-Activated Receptor 𝛿,
cyclooxygenase-2 derived prostacyclin, or NF-kB [114, 115].

Animal studies found that resveratrol (2.5mg/kg) pre-
vents the cardiac dysfunction in spontaneously hypertensive
rats [116]. In a minipig model of heart failure, transplanted
stem cell cultures from wild type showed more proliferation
compared to transplants from SIRT1 knockout stem cell
sheets. They also showed less cytokine release compared
to wild-type cells. Similar to this, the Lewis rat model of
heart failure also showed lesser cardiac function in a SIRT1
knockout stem cell transplants. These experiments explain
that SIRT1 mediates regenerative capability of stem cells in
heart failure [117].

SIRT3 knockout mice also showed the signs of cardiac
hypertrophy. SIRT3 regulates mitochondrial function and
the inhibition of SIRT3 causes mitochondrial dysfunction,
which in turn causes reduced oxygen consumption. Over-
expression of SIRT3 reduces ROS levels and mitochondrial
DNA damage underlying with vascular inflammation in
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atherogenesis [109]. SIRT3 deacetylates/activates superoxide
dismutase 2 (SOD2) which further increases the deacety-
lation of transcription factor forkhead box o3a (FOXO 3a)
and protects against cardiac hypertrophy [118]. In a recent
study, decreased SIRT3 in human pulmonary artery smooth
cell was associated with an induction of transcription factors
HIF-1alpha, signal transducer and activator of transcription-
3 (STAT3), and nuclear factor of activated T-cells cytoplasmic
2 (NFATc2) and was associated with pulmonary arterial
hypertension [119].

Similar to SIRT3, SIRT6 knockdownmice showed cardiac
hypertrophy and the overexpression of SIRT6 rescues cardiac
hypertrophy. SIRT6 interacts with stress reactive kinase c-
jun and suppresses the promoter of genes in IGF-signaling
pathway. This inhibition further decreases the expression of
genes in IGF-akt signaling that participates in the progression
of heart failure [120, 121]. Interaction of SIRT6 with a
transcription factor NF-kB at Rel A subunit protects against
inflammation [110].

In a recent study by Araki et al. [122], myocardial infarc-
tion and hindlimb ischemic mouse models showed high
levels of SIRT7 expression, whereas SIRT7 knockout mice
were more susceptible to cardiac rupture after myocardial
infarction and delayed blood flow recovery after hindlimb
ischemia. In vitro mechanistic evaluation provided the evi-
dence that cardiac fibroblasts derived from these SIRT7
knockout mice showed reduced transforming growth factor
beta (TGF-𝛽) signaling and TGF beta receptor I protein
compared to wild-type mice derived cells. They showed low
levels of fibrosis related genes [122].

10. Role of Sirtuins in Cancer

SIRT1 role in cancer was widely studied and described in
detail in earlier literature. We will briefly describe it in our
review. It plays a dual role in promoting angiogenesis and
acts as a tumor suppressor. SIRT1 is involved in genome
stability, inflammation, DNA repair, and apoptosis processes
[123]. SIRT1 activates HIF-2𝛼 and Rel A/p65 subunit of NF-
kB and promotes angiogenesis through the production of
VEGF in choroidal endothelial cells [68]. In hepatocellular
carcinoma, SIRT1 promotes accumulation of HIF-𝛼 and
activates transcription of HIF-1alpha target genes [124]. A
recent study found mutations in the SIRT1 gene in several
breast cancer cell lines that were related to breast cancer
progression [125]. SIRT2 plays a dual role like SIRT1. SIRT2
knockout mice developed tumors after 10 months of age
compared towild-typemice [126].They developedmammary
tumor and hepatocellular carcinoma [127]. In addition to
tumor suppression, knockdown of SIRT2 or pharmacological
inhibition provides an antiproliferative effect in cancers. A
recent study on neuroblastoma cell line found that SIRT2
inhibition downregulates C-MYC and N-MYC oncogenic
proteins [128]. Tenovin-D3 another SIRT2 inhibitor was
found to increase the tumor suppressor protein p21 [129].
SIRT2 activates lactate dehydrogenase A (LDH-A) and the
increased amount of LDH-A was noted in many cancer cells.
Thus inhibition of SIRT2 disrupts the cancer metabolism
[123, 130].

SIRT3 was reported to be protective in several cancers
like oral carcinoma, breast ovarian, and renal cancers [131].
SIRT3 was found to decrease ROS and ROS participates
in HIF and akt signaling that plays a critical role in cell
proliferation [118]. In vitro studies in human cancer cells
revealed that overexpression of SIRT3 decreases the cell
proliferation [132]. He et al. [133] found that SIRT3 levels
were correlated with clinical features such as metastasis and
tumor size in breast cancer. In contrast, recent meta-analysis
on 14 studies with 2165 cancer patients assessed the relation
between SIRT3 immunohistochemical expression and their
respective survival and clinical pathological characters. This
study did not find any correlation between SIRT3 expression
and clinical pathology. They also concluded that SIRT3 is
associated with prognosis and clinical parameters in specific
cancers [134].

The inhibitory role of SIRT4 on GDH makes SIRT4
as a tumor suppressor. SIRT4 was found to be downreg-
ulated in many cancers. SIRT4 knockout mice developed
lung tumors within 18–26 months compared to wild-type
SIRT4 mice [135]. SIRT6 also serve as a tumor suppressor
by regulating HIFs [107] and NF-kB. SIRT6 plays a role
in genomic instability and DNA repair and inflammation
explains SIRT6 participation in cancer. A study explains that
immortalized mouse embryonic fibroblasts (MEF) cells from
SIRT6−/− mice developed more tumorigenicity than MEF
from SIRT6+/+ mice. They suggest that this is mainly due
to reprogramming of metabolism through two transcription
factors HIF-1alpha and MYC [136].

So far, various microRNAs (miRNA) have been reported
to bind SIRT1 andmodulate SIRT1 deacetylation target genes.
However, recent in vitro and in vivo analysis found that SIRT7
promotes gastric cancer growth by deacetylating H3K18ac
at the promoter of miRNA-34a, whereas reducing/knocking
down SIRT7 inhibits the cancer cell growth.They also showed
G2/Maccumulation in the cell cycle [137]. In addition ovarian
and breast cancer cells showed high levels of SIRT7 and
reducing SIRT7 downregulated cancerous cell growth and
impacts apoptotic related proteins (NF-kB) [138, 139].

11. Conclusion and Future Aspect

Although limited, it is evident from experimental studies
that sirtuins promote survival of RGCs, confer protection
against cell death, and are important players in eye-related
neurodegenerative diseases discussed above. Current data
therefore supports the concept that modulation of sirtuin
activity to provide neuroprotection in these diseases may
have therapeutic implications. Yet, drug delivery still remains
a major challenge in ocular treatment, especially for diseases
affecting posterior and anterior segment of the eye. Systemic
administrations fail to achieve a therapeutic concentration of
drug due to the presence of blood-aqueous and blood-retinal
barriers. In contrast, intravitreal administration can achieve
higher concentration of drug to treat posterior segment
diseases, but the process is very painful and suffers from
poor patient compliance. Despite these challenges, continued
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efforts in this direction have helped to find numerous strate-
gies to improve drug delivery system [140]. These strategies
include formulating drugs into implants and use of micro-
or nanoparticulate and hydrogel-based systems. Transporter
targeted prodrug approach has also been described to deliver
drugs to both the anterior and posterior segments of the
eye. Noninvasive drug deliverymethods utilizing ultrasound,
iontophoresis, and microneedle based devices have been
promising [140]. In addition, recently, the delivery system
of a sirtuin-activating agent, resveratrol, was developed and
patented by Allergan Inc. The inventors have shown pro-
longed retinal ganglion cell survival and neuroprotection
by administration of resveratrol embedded in biodegradable
polymer like poly-lactic-co-glycolic acid (PLGA) and intend
to use this formulation for the treatment of posterior segment
disorders like AMD and macular edema.

Future studies are needed to better understand and eluci-
date themolecular role of sirtuins and identify their substrate
partners/cofactors and the intracellular pathways that regu-
late their activity in different disease models. Nonetheless, it
is essential and plausible to develop and test (clinical trials)
specific pharmacological activators or inhibitors of sirtuins
that may mediate neuroprotection and serve as beneficial
strategy for treatment of the neurodegenerative diseases of
the eye [141, 142].
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