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Abstract

Background

Early illness course correlates with long-term outcome in psychosis. Accurate prediction

could allow more focused intervention. Earlier intervention corresponds to significantly bet-

ter symptomatic and functional outcomes. Our study objective is to use routinely collected

baseline demographic and clinical characteristics to predict employment, education or train-

ing (EET) status, and symptom remission in patients with first episode psychosis (FEP) at

one-year.

Methods and findings

83 FEP patients were recruited from National Health Service (NHS) Glasgow between 2011

and 2014 to a 24-month prospective cohort study with regular assessment of demographic

and psychometric measures. An external independent cohort of 79 FEP patients were

recruited from NHS Glasgow and Edinburgh during a 12-month study between 2006 and

2009. Elastic net regularised logistic regression models were built to predict binary EET sta-

tus, period and point remission outcomes at one-year on 83 Glasgow patients (training data-

set). Models were externally validated on an independent dataset of 79 patients from

Glasgow and Edinburgh (validation dataset). Only baseline predictors shared across both

cohorts were made available for model training and validation. After excluding participants

with missing outcomes, models were built on the training dataset for EET status, period and

point remission outcomes and externally validated on the validation dataset. Models pre-

dicted EET status, period and point remission with receiver operating curve (ROC) area

under the curve (AUC) performances of 0.876 (95%CI: 0.864, 0.887), 0.630 (95%CI: 0.612,

0.647) and 0.652 (95%CI: 0.635, 0.670) respectively. Positive predictors of EET included

baseline EET and living with spouse/children. Negative predictors included higher PANSS

suspiciousness, hostility and delusions scores. Positive predictors for symptom remission

included living with spouse/children, and affective symptoms on the Positive and Negative

Syndrome Scale (PANSS). Negative predictors of remission included passive social
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withdrawal symptoms on PANSS. A key limitation of this study is the small sample size (n)

relative to the number of predictors (p), whereby p approaches n. The use of elastic net reg-

ularised regression rather than ordinary least squares regression helped circumvent this dif-

ficulty. Further, we did not have information for biological and additional social variables,

such as nicotine dependence, which observational studies have linked to outcomes in

psychosis.

Conclusions and relevance

Using advanced statistical machine learning techniques, we provide the first externally vali-

dated evidence, in a temporally and geographically independent cohort, for the ability to pre-

dict one-year EET status and symptom remission in individual FEP patients.

Introduction

Initial clinical presentation and early illness course correlates with long term outcome in first

episode psychosis (FEP).[1] The ability to accurately predict outcome at an individual level

would allow more focussed intervention. For patients, a meaningful outcome is often more

than simple symptom remission but optimising developmental pathways in early psychosis

including vocational and educational outcomes.[2–4]

FEP most often presents at the critical stage in a young person’s life when community, soci-

etal roles, educational and vocational achievement are being forged. Consequently, its onset

triggers a precipitous decline in education and employment. Missing out on such vocational

opportunities, as enshrined in Article 23 of the Universal Declaration of Human Rights[5],

impairs not only financial independence but also societal inclusion, the forming of relation-

ships and self-actualisation.[6]

Those with FEP want to work. Evidence suggests that finding employment is more impor-

tant than any specific mental health intervention.[7] Yet less than a quarter of those with severe

mental illness such as schizophrenia receive vocational rehabilitation.[8,9] Clinicians’ attitudes

towards their patients’ ability to return to work and their associated estimation of risks are

often ambivalent; this is reinforced by a continued decline in employment rates in the years

following contact with mental health services.[10]

Attitudes are changing with a new focus on employment, education and training (EET] rec-

ognised by the Meaningful Lives international consensus statement for FEP.[11] Successful

intervention strategies exist, such as the Individual Placement and Support approach in FEP,

which have been evidenced to show employment and education rates of 69% as compared

with 35% for controls.[10] If we can correctly identify those with poor EET outcomes at their

initial presentation, we could apply such vocational interventions at an earlier stage. Existing

evidence suggests this would have a much greater chance of success.[12,13]

At present, our knowledge of factors, which predict outcome in FEP is incomplete. A recent

meta-analysis by Lally et al provides the first robust evidence of remission and recovery out-

comes in FEP but was unable to establish the key clinical or demographic factors, which dis-

criminated between patients. Specifically, it did not replicate an earlier meta-analysis showing

an association between longer duration of untreated psychosis (DUP) and worse outcome in

FEP.[14,15] A systematic review identified poor premorbid adjustment, history of develop-

mental disorder, greater symptom severity at baseline and longer DUP to be the most repli-

cated predictors of poor clinical, functional, cognitive, and biological outcomes in early onset
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psychosis.[16] Within the Scottish population specifically, socioeconomic deprivation and eth-

nicity have been shown to be risk factors for developing psychosis, while substance misuse,

longer first admission, younger age of onset and male gender increased the risk of poor long-

term outcome.[17–19] However, such group level differences cannot be extrapolated to indi-

viduals–the ‘ecological fallacy’[20]–nor can observational results be readily equated with cau-

sation or accurate predictions.

Advanced machine learning techniques have potential to revolutionise medicine by looking

at causation and the prediction of individual patient outcome.[21] Within psychiatry, machine

learning has been already applied to symptomatic and neuroimaging data to classify individu-

als into diagnostic categories and to predict response to ECT, with high levels of accuracy.[22–

24]. Koutsouleris et al employed machine learning to predict 4 and 52-week outcome (Global

Assessment of Function�65) in FEP to a 75% and 73.8% test-fold balanced accuracy on

repeated nested internal cross-validation. The authors suggest that before employing a

machine learning model “into real-world care, replication is needed in external first episode

samples”.[25]

Because of the practicalities surrounding the requirement to recruit an additional and inde-

pendent cohort of patients, few studies assess predictive model generalisability via temporal

and/or geographical validation. External validation in a plausibly related population is a con-

siderably stronger test of predictive models. It assesses model transportability to an untested

situation rather than simply reproducibility alone.[26] As outlined by Koutsouleris et al, this is

considered essential before applying the predictive model to clinical practice.[25,27]

Our study is based on the hypothesis that it is possible to predict outcome in terms of

employment education or training (EET) status or symptom remission at one-year in FEP

using baseline (pertaining to the time around study entrance) demographic and clinical psy-

chometric biomarkers. We are not aware of any study to date, which has employed predictive

modelling of EET status in a FEP cohort. We then assess the generalisability of our predictive

model on an external cohort of patients.

Additionally, we seek to find the relative importance of the individual variables in contrib-

uting to prediction performance. These could have clinical relevance and may inform future

research. Focussing on patients with FEP, who have not had extensive psychotherapeutic or

pharmacological interventions, helps mitigate against potential confounders.

Methods

The study was approved by the West of Scotland Research Ethics Committee. Referece num-

ber: 11/AL/0247 and R and D approval (GN11CP130). Written informed consent was

obtained from all participants in the study.

Participants and study design

The Compassionate Recovery: Individualised Support in early Psychosis (CR:ISP) study was a

24-month non-randomised prospective study of individuals with FEP. An Integrated Care

Pathway for FEP was implemented which facilitated regular routine assessment of demo-

graphic and psychometric measures at time 0, month 3, month 6 and month 12.

Recruitment took place in mental health services in the NHS Greater Glasgow & Clyde

(NHSGGC) health board between 2011 and 2014. To be considered for inclusion participants

had to be: (a) in-patients or out-patients with (b) first presentation to mental health services

for psychosis, (c) ICD-10 diagnosis of non-organic psychosis. 83 participants were entered

into the study. The CR:ISP patients formed the training dataset.

Outcomes in first episode psychosis
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The validation dataset was formed of 79 FEP patients recruited to an earlier study (1 Sep-

tember 2006 to 31 August 2009), which took place in mental health services in the NHS in

Glasgow and in Edinburgh. Demographic and psychometric measures were assessed at time 0,

month 6 and month 12. Participants and study design have been described previously (see S1

File).[28]

Predictor and outcome measures

Baseline predictors shared across both cohorts were made available for model training and

external validation. Demographic predictors included admission to hospital, age, citizenship,

educational attainment, ethnicity, gender, household composition, EET at baseline, parental

status, relationship status, accommodation, alcohol use, and recreational drug use status. Psy-

chometric clinical predictors included individual PANSS items[29] and ordinalised depression

rating (training cohort used Hospital Anxiety and Depression Scale (HADS), validation cohort

used Beck’s Depression Inventory II (BDI-II)–scores were categorised as none, mild, moderate

or severe according to published cut offs.[30,31]

The one-year binary outcome measures included EET status at one-year, PANSS point

remission (meeting Andreasen PANSS criteria at month 12), and period remission (meeting

Andreasen PANSS criteria at both month 6 and month 12). Andreasen et al defined remission

as scores of less than or equal to 3 in PANSS items P1 Delusions, P2 Conceptual Disorganisa-

tion, P3 Hallucinatory Behaviour, N1 Blunted Affect, N4 Apathetic Social Withdrawal, N6 Lack

of Spontaneity and G9 Unusual Thought Content, present for a period of at least 6 months.[32]

Statistical analysis

All statistical analyses were carried out within the R programming environment.[33]

Between-group (training versus validation) differences were tested using Welch’s indepen-

dent t-test for continuous variables and Pearson’s chi-squared or Fisher’s exact test for categor-

ical variables. Bonferroni correction was employed for multiple comparisons.

Machine learning analysis was carried out using the ‘Caret’ package.[34] R code is available

in S2 File. The anonymised training and validation datasets are available in S3 File.

During pre-processing, data were centred and scaled, variables with zero variance and

near-zero variance removed and missing data imputed using k (5) nearest neighbour imputa-

tion, prior to model construction. In psychiatric research, data are commonly seen as ‘missing

not at random’. For example, with drop-out more frequent in those who have relapsed. Ignor-

ing this leads to systematic attrition bias in any inference drawn, in addition to a loss of power.

Imputation increases power and reduces bias.[35,36]

A logistic regression model was fit by elastic net regularisation with variable selection in

‘Caret’ with the ‘glmnet’ package.[37] This was following initial scoping utilising alternative

classifiers including linear and radial support vector machines, random forest, naïve Bayes and

linear discriminant analysis. Glmnet fits a generalized linear model via penalised maximum

likelihood.[38] The objective function for the penalised logistic regression uses the negative

binomial log-likelihood:

minðbo;bÞ�Rpþ1 �
1

N

XN

i¼0
yi:ðyi; b0 þ xi

TbÞ � logð1þ eðb0þxiTbÞÞ

� �

þ l 1� /ð Þjjbjj
2

2
=2þ ajjbjj

1

� �

The alpha (α) hyperparameter determines the balance between ridge (α = 0) and lasso (α =

1) penalty and the lambda (λ) hyperparameter determines the amount of penalty. Elastic net

regression improves upon ordinary least squares via regularisation (shrinkage) of the esti-

mated beta coefficients (β). This results in superior performance when number of predictors
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(p) approaches the number of subjects (N) (in such circumstances there is no unique least

squares estimate), or in the presence multicollinearity by offsetting a small amount of bias with

large reductions in variance. Further, a consequence of regularisation is feature selection,

which improves model interpretability.[39]

We used n (5) fold repeated (100 times) cross validation to train and tune our model over a

grid of alpha and lambda hyperparameters on our training dataset (see S1 File). All splits were

balanced by outcome class. The model was refit on the whole training set (with the best per-

forming hyperparameters) to calculate its standardised beta coefficients. The exponentials of

which, the odds ratios, are presented.

We estimated the discriminative performance of the models using receiver operating curve

(ROC) area under the curve (AUC). ROCAUC is independent of class distribution and selects

for discriminative models with false and true positive rates significantly better than random

chance.

External validity was established by using the model built on the training dataset to predict

the probability of the outcome class and comparing it to the actual outcome class in the valida-

tion dataset, then, calculating the ROC AUC performance metric using the ‘pROC’ package.

[40,41] The 95%CI of the ROCAUC was established based on U-statistic theory using the ‘clin-

fun’ package. [41,42] In addition, permutation testing was used to confirm significance,

whereby, the actual ROCAUC was compared to its null ROCAUC distribution derived by test-

ing the model on randomly permutated class outcomes, repeated 10000 times. The p value is

the proportion of permutated values greater than or equal to the actual value.[43] The model

accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value

(NPV) are presented based on the point closest to the top-left of the ROC plot. The formulae

for these quantities have been described previously.[44]

The above procedure was repeated for each of the three dependent outcome variables.

Results

Table 1 summarises the predictor and outcome data for the training and validation cohorts.

The only statistically significantly different predictor variable between the cohorts was accom-

modation. More people lived in rented accommodation in the training cohort, and more peo-

ple lived with their family in the validation cohort (p<0.001). There were no statistically

significant differences in each of the three outcomes between the cohorts.

Table 2 summarises the EET status, point remission, and period remission models’ exter-

nally validated performance. Fig 1 show each model’s respective ROC curve–EET status (A),

point remission (B) and period remission (C). All three models’ ROCAUC and 95%CI were

significantly better than chance. The model predicting EET status had particularly high perfor-

mance with a ROCAUC of 0.876 (95%CI: 0.864, 0.887; p =<0.001).

Figs 2–4 summarise the feature selected predictors and their odds ratios for the EET, point

remission and period remission models.

Discussion

We believe our study to be the first externally validated evidence, in a temporally and geo-

graphically independent cohort, for predictive modelling in FEP at an individual patient level.

This builds on existing studies of group-level differences and the elegant work of Koutsouleris

et al, which outlined the first internally validated evidence of the ability to predict functional

outcome in individual patients with FEP.[25]

Our results demonstrate the ability to predict both symptom remission and more impor-

tantly, functioning (in employment, education or training). The performance of our EET

Outcomes in first episode psychosis
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Table 1. Characteristics of training cohort and validation cohort.

Baseline Predictor Training Cohort (n = 83) Missing No. (%) Validation Cohort (n = 79) Missing No. (%) p-value

Accommodation—No. (%) Rented– 48 (59) 1 (1) Rented– 20 (28) 8 (10) <0.001�

Private with family– 30 (37) Private with family– 43 (61)

Private owner– 4(5) Private owner– 4(6)

Homeless– 0 (0) Homeless– 2 (3)

NFA– 0 (0) NFA– 1 (1)

Prison– 0 (0) Prison– 1 (1)

Age in Years—Mean (SD) 25.22 (5.54) 0 (0) 24.64 (7.08) 3 (4) 0.6

Alcohol Use—No. (%) 58 (74) 5 (6) 58 (85) 11 (14) 0.1

Citizenship—No. (%) UK– 72 (87) 0 (0) UK– 74 (95) 1 (1) 0.2

Other– 5 (6) Other– 3 (4)

Asylum seeker– 4(5) Asylum seeker– 0(0)

Refugee– 2 (2) Refugee– 1 (1)

Depression Rating—No. (%) None– 37 (50) 9 (11) None– 16 (32) 29 (37) 0.3

Mild– 11 (15) Mild– 10 (20)

Moderate– 13 (18) Moderate– 11 (22)

Severe– 13 (18) Severe– 13 (26)

Drug Use—No. (%) 42 (58) 11 (13) 37 (64) 21 (27) 0.5

Highest Educational Attainment—No. (%) Before 16–14 (18) 3 (4) Before 16–16 (23) 8 (10) 0.7

At 16–17 (21) At 16–17 (24)

17 to 18–21 (26) 17 to 18–20 (28)

College– 19 (23) College– 11 (15)

University– 9 (11) University– 7 (10)

Ethnicity—No. (%) White– 67 (81) 0 (0) White– 74 (96) 2 (3) 0.003

Other– 16 (19) Other– 3 (4)

Gender—No. (%) Male– 55 (66) 0 (0) Male– 54 (68) 0 (0) 0.8

Female– 28 (34) Female– 25 (32)

Hospital Admission at Baseline—No. (%) 32 (39) 1 (1) 40 (51) 1 (1) 0.1

Others in Household—No. (%) Parents & siblings– 42 (51) 1 (1) Parents & siblings– 38 (55) 10 (13) 0.06

Alone– 15 (18) Alone– 22 (32)

Spouse & children– 13 (16) Spouse & children– 5 (7)

Friends– 9 (11) Friends– 4 (6)

Siblings– 3 (4) Siblings– 0 (0)

PANSS Total—Mean (SD) 83.78 1 (1) 74.43 3 (4) 0.01

-24.62 -21.5

Parent—No. (%) 13 (16) 0 (0) 9 (12) 1 (1) 0.4

Employment, Education or Training—No. (%) 45 (56) 2 (2) 40 (52) 2 (3) 0.6

Relationship Status—No. (%) Single– 65 (78) 0 (0) Single– 69 (88) 1 (1) 0.3

Relationship– 12 (14) Relationship– 5 (6)

Married– 3 (4) Married– 1 (1)

Separated– 3 (4) Separated– 2 (2)

Divorced– 0 (0) Divorced– 1 (1)

One-year Outcome Training Cohort No.(%) Validation Cohort No. (%) p-value

Period Remission 33 / 67 (49) 33 / 64 (52) 0.8

Point Remission 40 / 71 (56) 46 / 67 (69) 0.1

Employment, Education or Training Status 32 / 75 (43) 27 / 67 (40) 0.8

� indicates Bonferroni corrected significance (p = 2.78×10−3).

SD = standard deviation; No. = number of subjects.

https://doi.org/10.1371/journal.pone.0212846.t001
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model was particularly robust, with an ability to accurately predict the one-year EET outcome

in more than 85% of patients. This is clinically relevant, especially in the context of the 2010

international first episode psychosis “Meaningful Lives” consensus statement on unemploy-

ment as a source of significant social disability.[11]

Predictive statistics focus on the predictive performance of models on new ‘unseen’ data.

This helps avoid the inherent problems with conventional statistical techniques, which only

explore relationships within the study dataset. Few such relationships are externally validated

and, of those that are, many lose significance.[45,46]

Because of the inherent feature selection of regularised logistic regression classifiers, which

avoids overfitting in ill-conditioned regression problems where the number of variables is

close to the sample size, our models are sparse and uniquely interpretable. Further, without a
priori selection of variables but instead allowing the classifier to select features, we avoid the

introduction of additional observer bias.[37,39]

The period remission model shares all the same predictors that are selected for the point

remission model. However, the period remission model selects for additional predictors but

with a reduced performance. This suggests possible overfitting on the training dataset,

Table 2. One-year EET status, point remission, and period remission models’ externally validated performance metrics.

Performance Metric Employment, Education or Training Status Point Remission Period Remission

ROC AUC 0.876

(95%CI: 0.864, 0.887)

p = <0.001

0.652

(95%CI: 0.635, 0.670)

p = 0.048

0.630

(95%CI: 0.612, 0.647)

p = 0.076

Accuracy 0.851 0.612 0.625
Sensitivity 0.815 0.578 0.606
Specificity 0.875 0.667 0.645
PPV 0.815 0.794 0.645
NPV 0.875 0.424 0.606

The 95%CI of the ROC AUC was established based on U-statistic theory, and significance level by permutation testing (n = 10000). Representative accuracy, sensitivity,

specificity, positive predictive, and negative predictive values are presented in italics based on the point on the ROC curve closest to the top left. ROC AUC = Receiver

Operating Characteristic Area Under the Curve; PPV = Positive Predictive Value; NPV = Negative Predictive Value; 95%CI = 95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0212846.t002

Fig 1. ROC curves for model of one-year EET status (A), point remission (B), and period remission (C). ROC = Receiver Operating Characteristic;

EET = Employment, Education or Training.

https://doi.org/10.1371/journal.pone.0212846.g001
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whereby the signal to noise variable ratio captured by the model is reduced, hence poorer gen-

eralisability to the independent validation dataset.[47]

Focussing on the shared predictors for both point and period remission, higher scores on

the individual PANSS items P4 Excitement and G6 Depression correspond to a positive out-

come. Over a century later, this continues to lend credence to a central tenant of the Kraepe-

lian dichotomy–that psychosis in the context of phenomenologically prominent affective

presentations tends to have a better chance of recovery.[48] Recent research in this area is con-

flicting and hampered by the few prospective studies looking at the influence of affective symp-

toms on outcome.[49]

PANSS item N4 passive or apathetic social withdrawal predicts poor one-year remission

outcomes, a so called negative symptom frequently found in the classical schizophrenia syn-

drome.[50] We have previously identified social and interpersonal factors as influencing out-

come in FEP.[28,51] Such initial negative symptoms persist longer and are more difficult to

Fig 2. One-year EET status model’s predictors and respective odds ratios. Features selected by elastic net regularisation and respective odds ratios for one-year EET

status model. EET = Employment, Education or Training; PANSS = Positive And Negative Symptoms Scale.

https://doi.org/10.1371/journal.pone.0212846.g002

Fig 3. One-year point remission model’s predictors and respective odds ratios. Features selected by elastic net regularisation and respective odds ratios for one-year

point remission model. PANSS = Positive And Negative Symptoms Scale.

https://doi.org/10.1371/journal.pone.0212846.g003
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treat, with limited evidence for benefit with conventional pharmacotherapy.[52] In contrast,

there is better evidence in support of psychosocial interventions. For example, cognitive beha-

vioural therapy has been shown to be effective up to 24-months.[53] Recent meta-analysis sup-

ports the use of interventions which enhance social cognition and interpersonal skills in the

treatment of negative symptoms in psychosis.[54] Our finding highlights the requirement for

a multimodal approach to treatment of FEP earlier in the illness course. Further, our model

selects variables representative of higher social support including living with spouse and chil-

dren and not renting as predictive of good symptomatic outcome which are consistent with

established literature.[55]

Similarly, living with spouse and children is predictive of a good one-year EET outcome.

Again, consistent with established literature, our model selects for good baseline EET and

higher educational attainment as positive predictors of positive one-year EET outcome.[55]

Interestingly, different individual PANSS items–P1 Delusions, P6 Suspiciousness and P7 Hos-

tility–emerged as negative predictors of one-year EET. Such features may hinder service

engagement and attachment which is known to influence recovery and adaption in FEP.[28]

That distinct variables predict EET compared to those predicting remission, suggests the out-

comes are capturing different yet complementary areas of recovery.

Our focus on EET status is timely and reflects the growing recognition within the literature

that this functional outcome is at least as important as symptom remission. Young people not

being in employment, education or training [NEET] has a considerable economic cost,

accounting for a loss of €153bn or 1.2% of the European Union’s gross domestic product. Pro-

longed economic inactivity leads to serious mental health sequelae with higher rates of depres-

sion, alcohol or substance misuse and increased suicide attempts. Reducing youth

unemployment remains a policy priority in high-income countries including the USA and

Europe but the quality of evidence available to legislators surrounding NEET status is low.[56]

We suggest that our robust finding related to the prediction of NEET outcome in first episode

psychosis is the first high quality externally validated evidence.

The use of an externally (temporally and geographically) validated dataset with the same

predictor and outcome variables is a major strength. Further, our models are interpretable,

employ easily obtained variables and, especially in relation to prediction of EET status, are

robust. However, our study has limitations. Small sample size relative to the number of

Fig 4. One-year period remission model’s predictors and respective odds ratios. Features selected by elastic net regularisation and respective odds ratios for one-year

period remission model. PANSS = Positive And Negative Symptoms Scale.

https://doi.org/10.1371/journal.pone.0212846.g004
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predictors is a potential concern. Plus, given its post-hoc nature, our analysis may have been

underpowered. Using elastic net regularised regression, which simulation studies have shown

outperforms conventional ordinary least squares or lasso while still enjoying the interpretabil-

ity of feature selection missing with ridge, helps circumvent such concerns. Another concern

may be that our cohorts have a statistically significant difference in accommodation status

with more participants renting and less living in private accommodation with family in the

training cohort as compared with the validation cohort. Similarly, changes in the wider macro-

economic environment, such as those following the 2008 financial crisis which would have

been felt by the training cohort only, are known to influence mental health and functional out-

comes.[57] However, we would contend that such differences are in fact a strength of our

study and reinforces the importance of external validation. Despite these issues, and that our

model includes the accommodation status ‘renting’ as a negative predictor of EET outcome,

our models still had a statistically significant and robust predictive performance in a geograph-

ically and temporally distinct cohort. However, we are not aware of published studies on how

expert clinicians perform at predicting these outcomes which would be a required benchmark

against which to compare new machine learning models. A further limitation is the lack of

additional social variables, such as nicotine dependence[58], which observational studies have

linked to outcomes in psychosis, or any cognitive and of biological markers of illness, includ-

ing neuroimaging and blood markers, which previous studies have highlighted as important

and may have improved predictive performance.[59]

These limitations should be addressed when designing future studies. A required next step

prior to implementation into routine clinical practice would be to establish whether, by the

accurate identification of individuals who will have poor outcomes, we can meaningful inter-

vene to improve their prognosis. Further, few machine learning studies prospectively apply

and update a prediction model to new patients in a clinical setting. Clinical problems are not

stationary and intelligent algorithms should adapt to changing circumstance and response to

treatment. Current research, including this present study, focuses on a classifier’s performance

rather than its clinical usefulness. In a clinical context, often false negatives (under treatment)

are more harmful than false positives (over treatment). Statistical performance should be

weighted by the net benefit of potential harm resulting from either over or undertreatment

versus the benefit of correct diagnosis, for example, by employing decision curve analysis.[27]

Conclusions

We have demonstrated that it is possible to accurately predict one-year symptomatic and func-

tional employment education or training status in first episode psychosis. This has not been

reported previously in an externally validated cohort. We propose that our results represent an

important and exciting next step in unlocking the potential of predictive modelling in psychi-

atric illness.
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