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Abstract: An operationally simple Ag(I)-catalyzed approach for the synthesis of isoquinoline and
quinazoline fused 1,2,3-triazoles was developed by a condensation and amination cyclization cascade
of amino-NH-1,2,3-triazoles with 2-alkynylbenzaldehydes involving three new C-N bond formations
in one manipulation, in which the group of -NH of the triazole ring serves as a nucleophile to form the
quinazoline skeleton. The efficient protocol can be applied to a variety of substrates containing a range
of functional groups, delivering novel pentacyclic fused 1,2,3-triazoles in good-to-excellent yields.
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1. Introduction

Broad attention has been paid to 1,2,3-triazole-containing heterocycles, which have
been widely applied in the fields of medicine [1–5], pesticide [6–10], biochemistry [11–14],
and material science [15–20] since the ‘Click’ triazole chemistry was founded at the begin-
ning of this century [21,22]. For instance, some of the well-known drugs bearing triazole
moiety are presented in Figure 1, including A (Cefatrizine) and B (Tazobactum) as β-lactam
antibiotic [1,23–27], C as anti-cancer reagent [23,28], D as potential nonpeptidic angiotensin
(II) receptor antagonists [29,30], E as a toll-like receptor [29,31], F as a mental disorders
medicine [32], and G as a wall teichoic acid active antibiotic [11].
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Owing to these pharmaceutical and biological properties, the constructions of various
1,2,3-triazoles are of paramount significance. The 4-monosubstitued 1,2,3-triazoles play
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remarkable roles in the triazole family [32–41]. Though the main access to this kind of
compound, referring to the cycloaddition reaction of acetylene or its substitute with an
azide source [42–47], could deliver respectable structures, the variations with the core
are far from enough. So, direct modifications of the triazole ring, using its -NH moiety to
expand diversity, attract broad attention. Over past decades, most work focused on one C-N
bond formation process, especially on N2 of the heterocycle [32–35,39,48–58]. In early 2011,
Buchwald demonstrated a Pd-catalyzed selective C-N2 coupling of 4-monosubstitued 1,2,3-
triazoles with aryl bromides, delivering a series of arylated structures, 2,4-disubsituted
1,2,3-triazoles [33], which could not be obtained by traditional cycloaddition reactions.
Later, Chen et al. reported a highly N2-selective C-N coupling using pyrrole or indole
as an arylation reagent using N-iodophthalimide [34] or N-iodosuccinimide [48] as a
mediate. Vinylation of the N2 was also explored by Shi et al. through Au-catalyzed alkyne
activation with about 80% selectivity [49] (Scheme 1a(I)). Meanwhile, N2-selective allylation
and benzylation were investigated, employing allenamide [50], aryldiazoacetate [32], and
conjugate olefine (ketone) [51,52] as a reaction partner, respectively. Moreover, the N2-
selective alkylation could be also achieved through an additional reaction of the N(H)
group with (conjugate) alkene (ketone) [35,39,53,54] or by substitution with epoxide [55],
dialkylamide [56], and alcohol [57] (Scheme 1a(II)). Additionally, Reddy et al. realized a
highly regioselective N2-sulfonylation of 4-aryl-NH-1,2,3-triazoles with sodium sulfinate or
thiosulfonate as a sulfonylating agent, mediated by I2 [58] (Scheme 1a(III)).
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Scheme 1. Modifications of the NH-1,2,3-triazoles via C-N bond formation. (a) One bond formation to
substituted 1,2,3-triazoles; (b) Two bonds formation to tricyclic fused 1,2,3-triazoles; (c) Three bonds
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Compared to the numerous N2-selective functionalizations, modifications on N1 and
N3 of the 4-monosubstitued 1,2,3-triazoles are much more rare. In 2020, Ma group reported
a Cu-catalyzed site- and enantio- selective ring opening of cyclic diaryliodoniums, deliver-
ing N1-arylation products of 1,4-disubstituted-1,2,3-triazoles [40] (Scheme 1a(IV)). Maddani
et al. reached a selective N1-benzylation by 1,6-addition of the -NH to para-quinone
methides mediated by acid of ClCH2CO2H [51]. Breit developed a rhodium-catalyzed
asymmetric N1-selective allylation of triazole derivatives with internal alkynes and ter-
minal allenes [36]. Very recently, Ji et al. reported a selective N1-alkylation of azoles
through a three-component process involving ketones as alkylation reagents and N,N′-
dimethylpropionamide as a carbon source [59] (Scheme 1a(V)). The N3-selective couplings
of the 1,2,3-triazoles were demonstrated by Taylor and Li et al. with vinyl ketone (catalyzed
by borinic acid) and alkyne (promoted by TBAF), delivering 1,5-disubstituted derivatives,
respectively [60,61] (Scheme 1a(VI)).

In addition to the above one-bond-formation processes, cascade strategies to construct
novel and diverse fused structures are more valued and important themes in organic synthe-
sis. In 2013, Shi et al. [62] designed 4-(ortho-halo-aryl) 1,2,3-triazoles to merge with activated
nitriles, forming a series of 5-amino-[1,2,3]triazolo-[5,1-a]isoquinoline derivatives, a kind of
valued tricyclic fused 1,2,3-triazoles (Scheme 1b). Though some achievements were reached
in this field, there is still a lack of strategies for constructing interesting and complex fused
1,2,3-triazole derivatives, which attracts us considerably as we are persistently interested
in this area [63–70]. Sparked by the vigorous performance of 2-alkynylbenzaldehyde in
the synthesis of fused cyclic compounds [71–79], herein, we designed 2-(1H-1,2,3-triazol-5-
yl)anilines 1 to react with 2-alkynylbenzaldehydes 2 to construct isoquinolino [2,1-a] [1–3]
triazolo [1,5-c] quinazolines 3 through a cascade process involving three C-N bond forma-
tions in one manipulation. This method features high efficiency, excellent atom economy,
and only green by-products of H2O (Scheme 1c).

2. Results and Discussion

At the outset of our studies, the cascade reaction between 2-(1H-1,2,3-triazol-5-yl)aniline
1a and 2-alkynylbenzaldehyde 2a was investigated as a model (Table 1). To our delight,
the reaction proceeded very successfully in the presence of 10 mol% AgNO3 at 80 ◦C for
1 hour using DMF as a solvent, delivering the product isoquinolino [2,1-a] [1–3] triazolo
[1,5-c] quinazoline 3aa with excellent yield (82%) (Entry 1). The structure of 3aa was
unambiguously confirmed by X-ray crystallography analysis (CCDC NO: 2133327) (see
Supplementary Materials) [80]. The screening of solvents was then performed. Unfortu-
nately, we found that other solvents, including toluene, DCE, MeCN, and DMSO, were less
effective than DMF (Entries 2–5). Increasing or decreasing the temperature of the reaction
could not lead to any further improvements in the yield (Entries 6–8). Changing the catalyst
to AgOTf resulted in a slightly decreased yield, and the desired product 3aa was obtained
with 76% yield (Entry 9). However, the reaction proceeded very reluctantly in the presence
of other catalysts (Ag2O, Ag2CO3, and AgOAc, without any target molecules detected
(Entry 10–12)). When CuSCN or CuI is used instead of AgNO3, the yield drops sharply
(Entry 13–14). However, the yield of the reaction slightly decreased when different amounts
of AgNO3 catalyst were used (Entry 15–17). After testing different reaction concentrations,
0.2 M DMF was kept as the optimum one (Entry 18–19). Lastly, when the reaction time was
extended to 2 hours, the target product was obtained in excellent 92% yield (Entry 20).

With the optimized reaction conditions in hand (Table 1, entry 18), the substrate scope
of the cascade cyclization reaction was investigated with o-alkynyl aldehydes first. To our
delight, a variety of o-alkynyl aldehydes with different alkynyl bearing substituted groups
(including various aryl, alkyl, and heteroaryl) could work efficiently with 2-(1H-1,2,3-triazol-
5-yl)aniline (1a), as shown in Figure 2. Reactions of alkynylbenzaldehydes containing
electron-donating (3ab–3af) and electron-withdrawing (3ag–3al) groups on the phenyl
ring proceeded smoothly to afford the corresponding products in moderate-to-good yields
(37–88%). Generally, electron-donating groups substituted with alkynylbenzaldehyde
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(3ab–3af) were more successfully converted into target products than those with strong
electron-withdrawing groups (3ak–3al). It should be noted that alkynylarylaldehyde
with 2-pyridyl (3aq) was also suitable for this reaction, furnishing the corresponding
products in satisfactory yield. Unfortunately, to substrates with aliphatic groups. such
as pentyl, methoxymethyl, and hydroxymethyl on the 2-position of the alkynyl moiety
(3an–3ap), the reaction could not provide the desired product. Surprisingly, when 2-
((trimethylsilyl)ethynyl)benzaldehyde 2m was used, the desilylation product (3am) was
obtained in a low yield of 16%. Then, the effects of substituents on the core benzene ring
linked directly to the formyl group were also studied. It was found that both electron-rich
(–Me and –OMe) and -poor (–F, –Cl, and –CF3) groups were well tolerated in the reactions,
and good yields were obtained (3ar–3av).

Table 1. Optimization of the reaction conditions a.

Entry Sol. (x mL) Temp. (◦C) Cat. (x mol%) Yield (%) b
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5 DMSO (2) 80 AgNO3 (10) 74
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9 DMF (2) 80 AgOTf (10) 76
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12 DMF (2) 80 AgOAc (10) ND
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a Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), 1 hour. b Isolated yield. c Reaction time, 2 h.

To gain further insight into the reaction, we continued our study by examining the
2-(1H-1,2,3-triazol-5-yl)aniline substrate scope, as shown in Figure 3. Gratifyingly, different
electron-withdrawing group (–F, –Cl, –Br, –CN) and electron-donating group of -Me on 4-
or 5-position of the phenyl ring (3ba–3ja) were perfectly tolerated, with the corresponding
products obtained in moderate-to-good yields (60–88%).

To illustrate the synthetic applicability of the protocol, the reaction was conducted on
a gram-scale. A reaction of 5 mmol of 1a and 2a in 25 mL of DMF was carried out, and it
could proceed smoothly under the optimized conditions to produce the product 3aa in 92%
(1.60 g) yield within 2 h (Scheme 2).
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Based on our studies and previous reports [72–75], a plausible mechanism for the
formation of target product 3aa is presented in Scheme 3. The condensation reaction of
2-(1H-1,2,3-triazol-5-yl)aniline 1a and 2-alkynylbenzaldehyde 2a gives an imine in which
the C≡C bond coordinates to AgNO3 catalyst to generate intermediate 4. Then, two
possibilities may exist for the formation of compound 3aa. In path A, intermediate 4 would
first undergo the intramolecular nucleophilic attack of the 1,2,3-triazole’s N3 atom onto the
imine carbon center to form intermediate 5 (the first amination). Intramolecular proton
transfer then occurred, producing fused tricyclic intermediate 6, which would undergo a
second intramolecular nucleophilic attack of the –NH group onto the triple bond, upon the
π-activation by AgNO3, to afford 7 (the second (hydro-) amination), then deliver the desired
compound 3aa through protonolysis. Alternatively (path B), from the N-nucleophilic attack
of the imine to the triple bond activated by AgNO3, imine cation intermediate 5’ could
be formed initially, followed by intramolecular nucleophilic attack of triazole’s N3 to the
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carbon center of the formed imine to produce the fused pentacyclic intermediate 6’, which
would then give the final compound 3aa through the subsequent deprotonation.
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3. Materials and Methods
3.1. Synthesis of Various Substituted 2-(1H-1,2,3-Triazol-5-yl) Aniline (Take 1a as An
Example) [81,82]

A 15 mL flask equipped with a magnetic stir bar was charged with 2-iodoaniline S1
(2 mmol), trimethylsilylacetylene S2 (3 mmol), bis(triphenylphosphine)palladium (II) chlo-
ride (1 mol%), cuprous iodide (5 mol%), and 5 mL of triethylamine. The solution was
stirred at room temperature under argon for 12 h. Upon completion of the reaction, the
solvent was evaporated under vacuum, and the crude product was purified by column
chromatography on silica gel (EtOAc:Petrol = 1:50), giving the pure product S3 (Scheme 4).

A 15 mL flask equipped with a magnetic stir bar was charged with 2-((trimethylsilyl)eth
ynyl)aniline S3 (2 mmol), potassium carbonate (4 mmol), and 5 mL of methanol. The solu-
tion was stirred at room temperature for 4 h. Upon completion of the reaction, the mixture
was added to H2O (15 mL) and extracted with EtOAc (3 × 15 mL). The combined organic
layer was washed with brine (3 × 5 mL), dried over Na2SO4, and concentrated under
reduced pressure to afford product S4 (Scheme 4).

A 15 mL flask equipped with a magnetic stir bar was charged with 2-ethynylaniline S4
(2 mmol), TMSN3 S5 (3 mmol), cuprous iodide (5 mol%), and 5 mL of mixed solvent
(DMF/MeOH = 9/1). The solution was stirred at 100 ◦C under argon for 12 h. Upon
completion of the reaction, the mixture was added to H2O (15 mL) and extracted with
EtOAc (3 × 15 mL). The combined organic layer was washed with brine (3 × 5 mL),
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dried over Na2SO4, and concentrated under reduced pressure to afford a crude product.
Purification by column chromatography on silica gel (EtOAc:Petrol = 1:3) afforded the pure
product 1a (Scheme 4).
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3.2. Synthesis of Various Substituted 2-(Phenylethynyl)benzaldehyde (Take 2a as An Example) [83]

A 15 mL flask equipped with a magnetic stir bar was charged with 2-bromobenzaldehy
de S6 (2 mmol), phenylacetylene S7 (3 mmol), bis(triphenylphosphine)palladium (II)
chloride (1 mol%), cuprous iodide (5 mol%), and 5 mL of triethylamine. The solution was
stirred at 80 ◦C under argon for 12 h. Upon completion of the reaction, the solvent was
evaporated under vacuum, and the crude product was purified by column chromatography
on silica gel (Petrol), giving the pure product 2a (Scheme 5).
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3.3. General Procedure for Synthesis Pentacyclic Fused Triazoles (Take 3aa as An Example)

A 15 mL flask equipped with a magnetic stir bar was charged with 2-(1H-1,2,3-triazol-
5-yl)aniline 1a (0.2 mmol), 2-alkynylbenzaldehyde 2a (0.2 mmol), and 1 mL of DMF. The
solution was stirred at 80 ◦C under air for 2 h. Upon completion of the reaction, the mixture
was added to H2O (15 mL) and extracted with EtOAc (3 × 15 mL). The combined organic
layer was washed with brine (3 × 5 mL), dried over Na2SO4, and concentrated under
reduced pressure to afford a crude product. Purification by column chromatography on
silica gel (EtOAc:Petrol = 1:3) afforded the desired product 3aa.

4. Conclusions

In summary, we developed a cascade process of condensation/in-situ generated imine
and alkyne aminations of 2-(1H-1,2,3-triazol-5-yl)anilines with 2-alkynylbenzaldehydes
catalyzed by AgNO3 to deliver novel isoquinoline and quinazoline-fused 1,2,3-triazoles in
good-to-excellent yields. The methodology mainly features three new C-N bond formations
in one convenient manipulation to construct various pentacyclic fused 1,2,3-triazoles, which
may possess broad potential applications. Furthermore, the gram-scale reaction, broad
substrate scope, excellent functional-group compatibility, and H2O as the only by-product,
further demonstrate the atomic economy of this method.
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