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IL-25, IL-33 and TSLP, which are produced predominantly by epithelial cells, can induce production of
Th2-type cytokines such as IL-4, IL-5 and/or IL-13 by various types of cells, suggesting their involvement
in induction of Th2-type cytokine-associated immune responses. It is known that Th2-type cytokines
contribute to host defense against malaria parasite infection in mice. However, the roles of IL-25, IL-33
and TSLP in malaria parasite infection remain unclear. Thus, to elucidate this, we infected wild-type,
IL-25�/� , IL-33�/� and TSLP receptor (TSLPR)�/� mice with Plasmodium berghei (P. berghei) ANKA, a
murine malaria strain. The expression levels of IL-25, IL-33 and TSLP mRNA were changed in the brain,
liver, lung and spleen of wild-type mice after infection, suggesting that these cytokines are involved in
host defense against P. berghei ANKA. However, the incidence of parasitemia and survival in the mutant
mice were comparable to in the wild-type mice. These findings indicate that IL-25, IL-33 and TSLP are not
critical for host defense against P. berghei ANKA.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Malaria, a parasitic disease caused by protozoa of the genus
Plasmodium, is one of the world's three major infectious diseases,
together with AIDS and tuberculosis. According to the WHO, ap-
proximately 200 million people are infected with malaria each
year worldwide, and about 600 thousand people die annually
[12,16]. In order to develop a prophylactic vaccine and therapeutic
agents that have stable effects, it is necessary to analyze in detail
and understand the inflammatory reaction that occurs during
parasite infection.
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Following a bite and transmission into the blood by a malaria
parasite-carrying mosquito of the genus anopheles, the parasites
transmit the mammalian body in a form called sporozoites, then
move into the hepatocytes through the bloodstream. This takes
only a few minutes, making it difficult for the host's immune
system to clear the parasites at this stage. In the hepatocytes, the
sporozoites develop to the stage called merozoites. This develop-
ment is obstructed by IFN-γ, produced by CD4þ T cells following
antigen presentation by liver Kupffer cells or produced by CD8þ T
cells following antigen presentation by the invaded hepatocytes,
but this response is not very strong [21]. Merozoites enter the
blood after destroying the hepatocytes, invade red blood cells, and
then replicate and burst out. Host dendritic cells are activated by
merozoite-derived antigens through pattern recognition receptors,
and humoral- and cellular-immune responses are induced by
various types of immune cells, including T cells, B cells, natural
killer (NK) cells, NKT cells and macrophages. These immune
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responses are induced with the objective of parasite eradication,
but they can also exacerbate the pathological condition. For ex-
ample, proinflammatory cytokines such as IL-1, IL-6 and TNF re-
leased from activated dendritic cells and macrophages cause fever
and severe malaria disease [21]. In addition, it has been reported
that TNF released by monocytes, dependent on Plasmodium falci-
parum-specific IgE induced by a Th2 response, is involved in cer-
ebral malaria and severe malaria disease [19]. Conversely, there is
a report that IgE, increased by co-infection with helminths and not
specific for malaria antigens, works to prevent cerebral malaria
and severe malaria disease [13].

Experimental cerebral malaria (ECM) in mice infected with
murine malaria parasites, Plasmodium berghei (P. berghei) ANKA, is
broadly used as a model for human malaria caused by infection
with Plasmodium falciparum [4]. So far, using this infection model,
the relationship of malaria and immune responses has been stu-
died using mice deficient in various genes, such as TLRs and Th1,
Th2 and Th17 cytokines.

Mice deficient in TLR-1, TLR-2, TLR-3, TLR-4, TLR-6, TLR-7 or
TLR-9, as well as MyD88, TIRAP and TRIF, which are adapter pro-
teins of TLRs, showed similar susceptibility to wild-type mice to P.
berghei ANKA infection, suggesting that these TLRs and TLR-re-
lated molecules are not essential for host defense against that
parasite [28]. A Th1 cytokine, IFN-γ, contributed to exacerbation of
ECM development during P. berghei ANKA infection of IFN-γR1-
deficient (IFN-γR1�/�) mice [17], while Th17- and Th17-related
cytokines such as IL-17 and IL-23 were not essential for develop-
ment of ECM during this infection in IL-17� /� mice or
IL-23p19�/� mice [6]. In addition, IL-4�/� mice and IL-4Rα� /�

mice were resistant to infection with liver-stage sporozoites of P.
berghei ANKA, but similarly susceptible to wild-type mice to in-
fection with blood-stage parasites [22]. IgE� /� mice and
FcεRIα� /� mice were also resistant to development of ECM during
P. berghei ANKA infection [20]. In particular, FcεRIα-expressing
neutrophils, but not mast cells or basophils, were crucial for pro-
tection against P. berghei ANKA [20]. These observations suggest
that Th1- and Th2-, but not Th17-, cytokines are important for host
defense against P. berghei ANKA.

Epithelial cell-derived cytokines such as IL-25, IL-33 and TSLP
were reported to contribute to induction of Th2-type immune
responses such as host defense against helminth infection and
allergic diseases by inducing Th2 cytokine production by various
types of cells such as Th2 cells, mast cells, basophils and group
2 innate lymphoid cells (ILC2) [8,29,31]. Those findings suggested
that all and/or each of them might be involved in host defense
against P. berghei ANKA. Indeed, it was reported that the level of
IL-33 was elevated in the plasma from children (under 5 years old)
infected with P. falciparum [1]. In addition, it was recently reported
that C57BL/6 mice treated with recombinant IL-33 showed pro-
longed survival and delayed parasitemia after P. berghei ANKA
infection [2], suggesting that IL-33 has a protective role against P.
berghei ANKA infection. On the other hand, it was also reported
that mice lacking ST2, which is a component of IL-33 receptor,
were resistant to ECM, but developed parasitemia normally, during
P. berghei ANKA infection [18]. Those findings suggest that IL-33/
ST2 signaling exacerbates ECM development, but does not con-
tribute to parasitemia, in the setting. Thus, the role of IL-33 in host
defense against P. berghei ANKA remains controversial. In addition,
the contributions of IL-25 and TSLP to the pathogenesis of malaria
parasite infection are not fully understood. Therefore, in the pre-
sent study, we investigated the roles of IL-25, IL-33 and TSLP in the
pathogenesis of malaria (P. berghei ANKA) infection by using
IL-25�/� , IL-33� /� and TSLP receptor (TSLPR)� /� mice.
2. Material and methods

2.1. Mice and parasites

BALB/c- and C57BL/6-wild-type mice were purchased from Ja-
pan SLC (Shizuoka, Japan). IL-25þ /� mice were obtained by mating
male chimeric mice—which were generated by Lexicon Pharma-
ceuticals, Inc. using il25-targeted 129 ES cells (OYC069)—with
C57BL/6J female mice (N8) [7]. C57BL/6-IL-33�/� mice and
BALB/c-TSLPR� /� were generated as described elsewhere
[3,14,15]. Female mice were used in all experiments. The mice
were housed under specific-pathogen-free conditions at The In-
stitute of Medical Science, The University of Tokyo. The animal
protocol was approved by the Institutional Review Board of the
Institute, and the study was conducted in accordance with the
ethical and safety guidelines of the Institute (A11-29).

2.2. Parasite infection

Murine malaria parasite, P. berghei ANKA strain, was kindly
gifted by Drs. Chris Janse and Andrew Waters (Leiden University,
Leiden, the Netherlands). Parasites were propagated in female
BALB/c mice by intraperitoneal injection as described elsewhere
[24]. After injection, mice were monitored daily until death.

2.3. Real-time RT-PCR

Total RNA was extracted from the brains, livers, lungs and
spleens of infected mice at the indicated time points, and reverse-
transcribed to cDNA. The expression levels of IL-25, IL-33 and TSLP
mRNA were quantified by SYBR Green dye incorporation assay
using StepOnePlus real-time PCR system (Applied Biosystems,
Carlsbad, CA). The expression levels of them were normalized to
the expression levels of β-actin mRNA in individual samples. Data
show the relative values against 0 DPI (¼1). The PCR primers used
were as follows: 5′-GGCATTTCTACTCAGGAACGGA-3′ and 5′-
GGTGGAGAAAGTGCCTGTGC-3′ for IL-25; 5′-TCCAACTCCAA-
GATTTCCCCG-3′ and 5′-CATGCAGTAGACATGGCAGAA-3′ for IL-33;
5′-CAATCCTATCCCTGGCTGCC-3′ and 5′-TGTGCCATTTCCTGAG-
TACCGT-3′ for TSLP; and 5′-TCTACAATGAGCTGCGTGTGG-3′ and 5′-
TACAGGGACAGCACAGCCTGG-3′ for b-actin.

2.4. Determination of parasitemia

Blood smears were made from tail blood of mice at the times
indicated and fixed with methanol before staining with Giemsa.
Parasitemia was quantified by counting the percentage of infected
RBCs under microscopic observation.

2.5. Statistical analysis

Real-time RT-PCR data are shown as the mean with SEM and
were evaluated using a two-tailed unpaired Student's t-test.
Parasitemia data are shown as the mean with SEM and were
evaluated for statistical significance using one-way analysis of
variance (ANOVA). Survival of the mice after infection was ana-
lyzed by the Kaplan–Meier method, and p-values were calculated
by the log-rank test. Po0.05 was considered statistically
significant.
3. Results and discussion

First, we examined the expression levels of IL-25, IL-33 and
TSLP mRNA in brain, liver, lung and spleen tissues from C57BL/6-
wild-type mice on days 2, 4 and 6 after injection of erythrocytes
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Fig. 1. Kinetics and levels of IL-25, IL-33 and TSLP mRNA expression in the brain, liver, lung and spleen of C57BL/6 wild-type mice during P. berghei ANKA infection. C57BL/6
wild-type mice were injected intraperitoneally with erythrocytes infected with P. berghei ANKA (1�105 infected erythrocytes/mouse). Total RNAwas isolated from the brain,
liver, lung and spleen of the mice at 0 (¼naïve), 2, 4 and 6 days post-infection. The expression levels of IL-25, IL-33 and TSLP mRNA in these tissues were determined by
quantitative PCR. The expression level of each mRNA was normalized to those of β-actin mRNA in individual samples. Data show the mean7SEM (n¼5). *po0.05 and
**po0.01 vs. 0 day post-infection (¼naïve mice).
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infected with P. berghei ANKA (1�105 infected erythrocytes/
mouse) (Fig. 1).

In the brain, the expression levels of IL-25 and IL-33 mRNA at 2,
4 and 6 days post-infection (DPI) were unaltered compared with at
0 DPI (¼non-infected mice) (Fig. 1A). The brain expression levels
of TSLP mRNAwere also not changed at 2 and 4 DPI, but they were
significantly decreased at 6 DPI, compared with at 0 DPI (Fig. 1A).
These observations suggest that TSLP, but not IL-25 or IL-33, may
be involved in development of ECM during P. berghei infection.

In the liver, the expression levels of IL-25, IL-33 and TSLP mRNA
at 2, 4 and 6 DPI, at 2 and 4 DPI and at 2 and 6 DPI, respectively,
were comparable to at 0 DPI (Fig. 1B). However, the liver expres-
sion levels of IL-33 mRNA at 6 DPI were significantly decreased
compared with at 0 DPI (Fig. 1B), while TSLP mRNA at 6 DPI was
significantly increased compared with at 0 DPI (Fig. 1B). These
observations suggest that IL-33 and TSLP may be involved in in-
duction of hepatic disorders caused by malaria parasite infection.

In the lung, the expression levels of IL-25 mRNA gradually
decreased time-dependently and were significantly reduced at
6 DPI compared with at 0 DPI (Fig. 1C). In contrast, the lung ex-
pression levels of IL-33 mRNA were significantly up-regulated at
2 DPI and then significantly reduced at 6 DPI compared with at
0 DPI (Fig. 1C). Likewise, the lung expression levels of TSLP mRNA
were significantly up-regulated at 2 DPI, and then gradually, but
not significantly, reduced at 6 DPI compared with at 0 DPI (Fig. 1C).
These results suggest that IL-25, IL-33 and TSLP may be involved in
the development of pulmonary inflammation accompanied by
edema, in which monocytes and neutrophils accumulated fol-
lowing malaria parasite infection [23,27].

In the spleen, the expression levels of IL-25 and TSLP mRNA
were significantly reduced at 4 and 6 DPI compared with those at
0 DPI (Fig. 1D), while the expression levels of IL-33 mRNA were
significantly up-regulated at 4 DPI. These results suggest that IL-
25, IL-33 and TSLP may somehow contribute to activation of im-
mune cells in the spleen in the early stage of malaria parasite
infection.
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Fig. 2. Incidence of parasitemia in wild-type, IL-25� /� , IL-33�/� and TSLPR� /�

mice during P. berghei ANKA infection. Mice were injected intraperitoneally with
erythrocytes infected with P. berghei ANKA (1�105 infected erythrocytes/mouse).
Blood smears were made from tail blood of mice at the times indicated. (A) Wild-
type mice, IL-25� /� mice and IL-33� /� mice on the C57BL/6 background. (B) Wild-
type mice and TSLPR�/� mice on the BALB/c background. Data show the
mean7SEM and are representative of two or three separate, reproducible results.
N: number of mice in the experimental group.
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In order to elucidate whether these cytokines affected the
parasitemia and survival rate after P. berghei infection, wild-type
mice, IL-25�/� mice and IL-33� /� mice on the C57BL/6 back-
ground, and wild-type mice and TSLPR� /� mice on the BALB/c
background, were infected with P. berghei.

The development of parasitemia was comparable among the
wild-type mice, IL-25� /� mice and IL-33�/� mice on the C57BL/6
background (Fig. 2A) and in the wild-type mice and TSLPR� /�

mice on the BALB/c background (Fig. 2B). These findings indicate
that IL-25, IL-33 and TSLP were not essential for the development
of parasitemia during P. berghei ANKA infection.

The survival rates were also comparable among the wild-type
mice, IL-25�/� mice and IL-33� /� mice on the C57BL/6 back-
ground (Fig. 3A) and in wild-type mice and TSLPR� /� mice on the
BALB/c background (Fig. 3B) during P. berghei ANKA infection.
These findings indicate that IL-25, IL-33 and TSLP were not es-
sential for host defense against P. berghei ANKA. Histological
analysis of brains revealed that the experimental cerebral malaria
in the mutants was comparable to that in the wild-type mice (data
not shown).

Infection of C57BL/6 mice with P. berghei ANKA (1�105 in-
fected erythrocytes/mouse) resulted in early death due to cerebral
malaria-like symptoms, caused mainly by an inflammatory cyto-
kine storm [5,25]. Although BALB/c mice were more resistant to
that same level of infection than the C57BL/6 mice, they also ex-
perienced early death due to the same symptoms and cause [5,25].
Thus, although the immune responses during P. berghei ANKA
infection were not completely identical between C57BL/6 mice and
BALB/c mice, we clearly demonstrated that IL-25, IL-33 and TSLP
are not essential for host defense against P. berghei ANKA in both
mouse lines, despite the finding that the pattern of mRNA ex-
pression for these cytokines was altered in various tissues such as
the brain, liver, lung and spleen from the infected mice.

Like IL-33R (ST2)�/� mice [18], IL-33� /� mice normally de-
veloped parasitemia and pulmonary alterations during P. berghei
ANKA infection. ST2�/� mice were resistant to ECM during P.
berghei ANKA infection [18], whereas IL-33� /� mice showed nor-
mal susceptibility to it. The reason for this apparent difference
between ST2� /� mice and IL-33�/� mice during P. berghei ANKA
infection is unclear, but it was shown that the pathogenic phe-
notypes of IL-33�/� mice did not correspond with those of ST2� /�

mice in regard to certain immune responses such as ovalbumin-
induced airway inflammation [10,11,14,15] and collagen-induced
arthritis [26,30]. Since it was reported that full-length IL-33 can
induce inflammation independently of ST2 [9], IL-33 and/or ST2
may have alternative receptor(s) and/or ligand(s).

In summary, we elucidated the relationships between the pa-
thogenesis of murine malaria parasite infection and IL-25, IL-33
and TSLP for the first time using IL-25� /� , IL-33�/� and TSLPR� /�

mice. Although the mRNA expression of IL-25, IL-33 and TSLP was
changed in the brain, liver, lung and spleen of P. berghei ANKA-
infected mice, these cytokines were not critical for host defense
against P. berghei ANKA.
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