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Abstract

All cereal crops, particularly rice are perpetually affected due to drastic climatic changes

which triggers different stressors resulting in food shortage scenarios across the globe. In

modern era, application of nanotechnology holds the pledge in combating the climate

change mediated environmental stressors through nanomaterials such as pesticides, nano-

biosensors, nano-clays and nano-seed priming technologies. Current study is a part of

experiment conducted to comprehend the behaviour of rice plants raised from Zinc Oxide

nanoparticles (ZnONPs) primed seeds under the water shortage environment. The seed

priming treatment concentrations included 0, 5, 10, 15, 25 and 50 ppm. In the experimental

results an increase in plant height, total chlorophyll contents, plant fresh and dry weights

was obtained by use of seed priming with ZnONPs. The study results proved that seed prim-

ing with 25ppm of ZnONPs increased seed and straw yield with value of 85.333 and

123.333, respectively under water deficit environment. The analysis depicted that 25 ppm

has been found more suitable for increasing the 1000 paddy weight of rice plants under both

well irrigated and water shortage conditions. Seed priming with ZnONPs results in 53%

reduction in MDA contents of water stressed rice plants Drought stress leads to reduction in

plant height by 31%, plant fresh weight by 22% and plant dry weight by 28%. Seed priming

treatments imparted in current study show significance increase in plant biomass. Priming

with ZnONPs further enhances the levels of proline amino acid facilitating the plant to com-

bat water shortage stress. A further elevation in activities of SOD, CAT and POD takes

place in rice plants raised from ZnONPs primed seeds by 11%, 13% and 38%, respectively.

An elevation in activities of antioxidant enzymes was found and the levels of oxidative stress

indicators decreased upon seed priming with ZnONPs. Furthermore the yield characteristics

such as panicle length, number of tillers, paddy yield and straw yield of the rice plants raised

through ZnONPs primed seeds enhanced. The ZnONPs at concentration of 25 ppm proved

optimum in alleviating drought induced damages. It can be inferred that seed pre
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conditioning with ZnONPs is helpful in increasing yield attributes under the water shortage

environment.

1-Introduction

Climate change is posing extreme environmental challenges to wild plants and crops such as

frequent droughts temperature increase, rise of CO2 conc. and fluctuating weather patterns

worldwide. The Intergovernmental Panel on Climate Change (IPCC) has warned that CO2

concentration will reach up to 550 ppm by year 2050 and there will be elevation in temperature

of globe in the range of 2-to-5˚C [1]. Climate change (CC) is going to threaten the agricultural

countries of Asia and Africa bringing frequent water shortages and erratic rains impact severe

threat of food security.

Drought affects more than one third percent of croplands across the globe causing food

threat to people [2]. The previous research work depicted that water shortage leads to average

yield losses up to 50% worldwide [3]. It is reported that water deficit scenario has led to drop

in plant metabolism, stomata conductance and gaseous exchange leading towards poor agro-

nomic traits [4]. Usually, water shortage environment leads to production of Reactive Oxygen

Species (ROS) which may act as mutagen as well as destructive for plant metabolism as it leads

to enzymatic denaturation [5]. ROS leads to lipid peroxidation of biological membranes affect-

ing transport processes across the membranes [6]. Under water deficit environment plant

increase activities of antioxidant enzymes such as Superoxide Dismutase (SOD), Peroxidase

(POD), and Catalase (CAT) [2]. Plants accumulate the sugar osmolytes such as proline and

vitamins in their cytosol as internal defence mechanism to ROS mediated oxidative stresses

[7]. The seed priming treatments and foliar spray with osmolytes and minerals leads to check

in ROS production and stress mitigation [8].

Rice (Oryza sativa L.) is a cereal providing food security to more than half of the world pop-

ulation [9]. The rice is a source of caloric intakes for more than 520 million people living in

Asian countries [10]. In Pakistan, rice is the second major crop after wheat and it is cultivated

on 2.531 million hectares producing an average of 5.5 million tonnes of paddy grains per

annum [11]. About 90 percent of the worldwide rice production is from Asian countries and

the Asian countries such as Pakistan are the most vulnerable to climate change mediated

weather patterns [12].

Since the last decade nanotechnology has emerged as a fascinating field in agronomy and

crop industry [13]. The research momentum has changed dramatically toward green synthesis

of nanoparticles and their application in alleviating abiotic and biotic constraints [14]. Nano-

particles are serving as magic bullets in transforming agricultural world with novel set of nano-

material which can serve as potential candidates in stress mitigation and in increasing food

production [15]. The potential of nanoparticles in alleviating drought has been reported by

various researchers [16–18].

The mechanism of Zinc functioning is presented in many previous papers and it is inevita-

ble for many life functions of the plants. It is stated that Zn is an essential nutrient for normal

homeostasis of plants as it is actively involved in boosting metabolism of proteins, biosynthesis

of hormones and cofactor for enzymes [19]. For normal homeostasis plants require zinc at

concentration of 27-150mg per Kg biomass [20]. Zinc improves activities of SOD by acting as

activator and it improves plant water relationship [21]. Zinc is helpful in alleviating ROS

induced damages and improves nutrient profiles of cereals [22].
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Seed pre-conditioning is an efficient modulation effect against oxidative stress damages

faced by the plants [23]. Seed priming with biologically active compounds is an efficient tool to

combat oxidative stress mediated damages [24]. To the best of our knowledge little work has

been reported on seed priming with nanoparticles and their role in combating stresses espe-

cially in perspective of climate change. The hypothesis is cultivation of ZnONPs primed seeds

might alleviate water deficit mediated yield losses in rice and current study is aimed to explore

the potential of ZnONPs to be used as seed priming agent in rice specifically in Pakistan where

almost all rice croplands are Zinc deficient and subsequently it has drastic effects in mitigating

drought stress hazards and improving yield.

2-Materials and methods

2.1-Experimental layout

Current study was conducted in field experimental trial plots at Department of Botany Mirpur

University of Science and Technology (MUST),of District Bhimber (33˚900.72@N 73˚44041.53@

E), Azad Jammu and Kashmir (AJK), Pakistan. Experimental conditions were having mean

day and night temperature of ca. 35˚C and 28˚C, respectively. The rice plants were grown

under experimental conditions of 12 hours of photoperiod exposure. The seeds of rice variety

IRRI-6 were obtained from National Agricultural Research Centre (NARC) Islamabad. In the

experiment seeds (150 seeds per 100mL) were dipped thrice in 10% solution of H2O2 and

immersed in 1% Sodium hypochlorite soln. for period of one hour. After this, seeds were

rinsed in double distilled water (ddw) three to five times to remove excessive soln. immersion.

In the experimental, for control trial sterilization step with Sodium hypochlorite was not per-

formed while in second control trial 2% Sodium hypochlorite soln. was added to remove the

excessive hypochlorite coating materials [25]. For soil structural and physiochemical analysis,

about 10 Kg of upper 10-20cm soil was taken from farmland area of Bhimber AJK and the soil

was air dried and sieved (2mm sieve). The soil characteristics were examined and found to

have pH of 7.45, EC of 1.99 dsM-1. The total organic matter was around 1.98%. The soil sam-

ples were found to have ratio of sand silt and clay with respect to 36:41:23%. The soil was put

in plastic pots having diameter of 26cm. Soil was supplied with basal dressing treatment of

Nitrogen-Phosphorus Potassium (NPK) at the rate of 70kg of Nitrogen, 40kg of P2O5 and

25kg of K2O per hectare in the form of Urea, TSP and K2SO4, respectively (Table 1). Half of

the nitrogen was given at the time of seed sowing and remaining half of the nitrogen was pro-

vided at the time of panicle initiation and/or emergence. Rice seeds were given seed priming

treatments and were cultivated. The pot experiment was piloted in a randomized layout with

three replicates per treatment. Nine seeds were planted per pot and after periodic thinning

their number reduced to 5 plants per pot. Three plants were selected as treatment replicates

from each pot [26, 27].

Table 1. Characteristics of experimental soil used for rice production.

Soil Character Recorded Value

Soil Type Loam

EC 1.99 dsM-1

pH 7.46

Organic Matter 1.98%

Sand 36

Silt 41

Clay 23

https://doi.org/10.1371/journal.pone.0264967.t001
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2.2-Drought treatment

The water holding capacity (WHC) of well irrigated pots was maintained at 70% with double

distilled water and the pots having drought treatment experienced water holding capacity

maintenance at 35% with distilled water following protocols of Adrees et al., [26]. continuously

from the time of sowing up to harvesting.

2.3-Treatment application

ZnONPs were purchased from Alpha Genomics Plot 4-C, Main PWD Rd, Islamabad, Punjab

Pakistan. The characterization of ZnONPs data suggested that the particles size was in range of

20-30nm with 98% purity level. The density of ZnONPs was ca. 5.2 km-3. For seed priming

treatment different concentration of ZnONPs were prepared which include 0ppm as control

treatment, while other trials were 5, 10, 15, 25 and 50 ppm applied on experimental units. Ini-

tially a little volumetric quantity of ZnONPs was put in de-ionized water. The mixture was

ultrasonicated for 30 minutes to make uniform dispersions and subsequently the desired con-

centrations of ZnONPs were raised, as prepared as per adopted standard protocols. The con-

trol seeds were soaked in de-ionized water while rest of the seeds were dipped in their

respective concentration range for 24hours under dark provided with continuous aeration

treatment during priming [27].

2.4-Biomass production

Plant fresh and dry weights (Biomass production) was noted using a manual electronic and

digital balance. After observing the fresh weights (FWs) of replicates the samples were sub-

jected to high temperature (70˚C) with the help of an oven for a time duration of 48 hours and

then their dry biomass (DWs) was measured. A scale (meter rod) was used to measure the

plant length in centimetres or in mm, where required. The samples were labelled carefully

with respect to each treatment applied and their length was recorded in field notebook [2].

2.5-Analysis of Total Chlorophyll Content (TCC)

By using protocol devised by Arnon [28], the total chlorophyll contents of each experimental

trial’s plants were assayed. The chlorophyll concentration in plant leaves was determined after

25 days of germination in plastic pots. Fresh leaves (0.25 g) were taken from each treatment

and placed overnight chlorophyll extracted with 80% acetone at 0.4˚C. These extractions were

centrifuged at 10,000 rpm for 5 min. The supernatant obtained was used for measuring

absorption pattern at wavelength of 663, 645 and 480 nm by using spectrophotometer (Hita-

chi-U2001, Tokyo, Japan).

2.6-Extraction of anti-oxidant enzymes

Antioxidant enzymes were extracted from the leaf collected samples. The leaf tissues (ca. 0.5g)

were grounded by mortar and pestle in 5mL of 50mM using chilling phosphate buffer. The

mixture was filtered and centrifuged at 15000 rpm for 20 minutes at 4C. Activity potential of

antioxidant enzymes were studied as follow using the mixture prepared.

2.6.1-Estimation of superoxide dismutase (SOD) activity. Super oxidase (SOD) func-

tioning was measured by method of Giannopolitis and Ries [28]. The process depends upon

principle of photochemical reduction inhibition of nitroblue tetrazolium (NBT) at 560 nm.

SOD functioning was noted having reaction mixture of enzyme extract 50 uL used in solution

with 50 uM NBT, 1.3 uM Vitamin B2 (riboflavin), 13 mM methionine, 75 nMEDTA, 50 mM

phosphate buffer (pH 7.8). Light source used for reacting solution of 30 W florescent in a
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chamber. When lamp turned on reaction started for 15 min and after turned it off, the reaction

was ceased. The blue formazone which formed on photo reduction of NBT was calculated at

560 nm by using UV-visible spectrophotometer.

2.6.2-Determination of Peroxidase (POD) activity. Method of Chance and Maehly [29]

was used to determine the POD functioning. In reaction mixture POD is fully dependent on

guaiacol oxidation. The reaction mixture contained 50mM phosphate buffer, 20 mM guaiacol,

40mM H2O2 and 100 uL enzymes extract. When guaiacol poured to solution reaction begins.

Variations in absorbance patterns were noted after 20 sec, at 470 nm.

2.6.3-Determination of Catalase (CAT) activity. The reaction solution made for CAT

comprised of 50mM phosphate buffer (pH 7.8), 59 mM H2O2, and 0.1 mL enzyme extract fol-

lowing Chance and Meheley [29]. The decrease in the absorbance of the mixture was taken as

disappearance of H2O2 as a basic phenomenon behind the estimation of CAT activity.

2.7-Malondialdehyde contents

The membrane lipid peroxidation was estimated by measuring quantity of malondialdehyde

in the tissue described by Cakmak and Horst [30] with modest modifications. One gram of

fresh leaf material was ground in 10 mL of TCA (10% solution prepared in dH2O). The super-

natant (0.5 mL) as obtained from the homogenized material was mixed with 2 mL of 0.5%

thiobarbituric acid (TBA), prepared in 20% TCA. Test tubes having the triturate were kept at

95˚C for 50 min, and then cooled immediately in chilled water. After centrifugation (10,000×
g) of mixture for 10 min, the absorbance of coloured part was read at 600 and 532 nm. The

content of MDA was calculated using the formula:

MDA ðnmolÞ ¼ D ðA 532 nm � A 600 nmÞ=1:56� 105

Absorption coefficient for the calculation of MDA is 156 mmol−1 cm−1.

2.8-Hydrogen peroxide contents

H2O2 contents were measured by using the method of Velikova et al., [31] with some minor

modifications as required. Test mixture was prepared by homogenizing the fresh leaf (0.1g)

with 5 mL volume of 0.1% TCA on an ice bath. The extract was centrifuged at 12000 rpm for 5

minutes. About 0.5 mL of test extract and 0.5 mL of Potassium Phosphate Buffer was taken in

a test tube for further analysis. To reaction mixture 1mL of 1 M Potassium Iodide was incorpo-

rated. Then the mixture was shaken well before taking the reading at 390 nm using

spectrophotometer.

2.9-Estimation of proline values

The method devised by Bates et al., [32]. was followed for the estimation of proline. Briefly, 0.1

g of leaf (fresh material) was crushed in 5 mL of sulfosalicylic acid (3%). After filtration, 100 μL

of the extract was mixed well with 20 mL of 6 M phosphoric acid (2 mL each). Then, the mix-

ture was reacted with glacial acetic acid (2 mL of each) and acidic ninhydrin heated the mix-

ture in a water bath for 1 h at 95˚C. After cooling well, 1 mL of toluene was mixed with

reaction mixture and the optical density of colored phase was read at 520 nm. Proline concen-

tration was measured following the equation:

Proline mmol g � 1 Fw ¼ mL of toluene=115 g� mg proline mL � 1Þ=sample ðgÞ
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2.10-Agronomic profile

2.10.1-Estimation of seed starch contents. Starch contents were analyzed via iodine test

in randomly selected rice caryopsis with glucose as a standard in accordance with the proce-

dure given by Sullivan [33]. Each sample to be evaluated was mixed with 1 mL of iodine solu-

tion (4 g of potassium iodide and 1.27 g of iodine) for 10 min. Absorbance was measured at

660 nm with a spectrophotometer.

2.10.2-Estimation of seed protein contents. Rice caryopsis were crushed into powder to

analyse protein contents. Paddy protein contents were studied by using the method given by

Gornall et al., [34]. In this method, bovine serum albumin was taken as the standard protein.

Burette reagent was prepared by mixing 0.3 g of CuSO4�5H2O, 0.5 g of KI, and 0.9 g of sodium

potassium tartrate in up to 100 mL of distilled water. The same concentration of reagent was

mixed with standards as well as rice caryopsis and subjected to spectrophotometric analysis at

540 nm in accordance with the procedure.

2.10.3-Yield profile. Current study evaluated yield profile of rice plants by counting num-

ber of tillers per plant, number of panicles per plant, number of spikelet per panicle, panicle

length (cm), straw yield of rice (g) per pot, paddy yield of rice (g) per pot and 1000 paddy

weight (g). A meter rod or measuring scale was used to determine the panicle length and a

manual electronic balance was used to determine weight profile following previous protocol

[25].

2.11-Statistical analysis

The data collected was incorporated on Microsoft excel sheet. For principal component analy-

sis (PCA) and Spearman correlation software matrix XLSTAT version 2014 was used. The

analysis of variance studies (ANOVA) and LSD test were performed using Co-STAT version

6.3 (developed by Cohort Software Berkley, CA, USA).

3-Results

3.1-Yield profile

Experimental results of the current study highlight the drought induced damages in yield

quantity and quality of rice plants and subsequent improvement by ZnONPs priming treat-

ments. The number of tillers of the rice plants under study were determined and experimental

data has been given in Fig 1. The tiller count was directly linked to paddy yield and biomass

production and it was explored that drought stress had decreased yield viz number of tillers of

rice plants (Fig 1A). The data clearly shows that ZnONPs priming treatments applied at con-

centration 15ppm and 25 ppm which significantly increased the number of tillers of the rice

plants and are helpful in alleviating the drought compromised yield.

The yield parameter related to panicle count was tested and data obtained has been pre-

sented in Fig 1B. Similarly the data related to panicle length and number of spikelet per panicle

were also recorded in current study and has been presented in Fig 1C and 1D, respectively.

The number of panicles per plant, panicle length and spikelet count per panicles are helpful in

determining the rice caryopsis yield. The mentioned figures clearly indicated that water short-

age environment leads to significant reduction in panicle count, panicle length and spikelet

count per panicle leading to losses in yields. The seed priming with ZnONPs as pre sowing

treatment has been found encouraging in removing drought induced reduction in yield attri-

butes. All the concentrations of ZnONPs have been found encouraging however the 25ppm

ZnONPs concentration has been found the best among all. Data presented in Fig 2 shows that

water shortage environment leads to decrease in yield of rice in terms of both straw yield of
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rice and paddy yield of rice. The seed priming with ZnONPs is helpful in updating the yield

profile of rice under both well irrigated and water deficit environment.

The mean value of paddy yield of rice and straw yield of rice per pot under water deficit

environment without seed priming treatment is 71.6 and 102.3 grams, respectively and under

well irrigated environment mean values were at 92 and 136 grams, respectively. The seed prim-

ing with 50 ppm ZnONPs increases these mean values by 85.333 and 123.333 grams, respec-

tively under water deficit environment. Under well irrigated conditions the mean values of

paddy yield per pot and straw yield per pot also increased significantly showing enhancement

in their mean values by 104 and 145.77 grams, respectively (Fig 2A and 2B; Table 2).

The data presented in Fig 2C and 2D describes experimental results for seed vigour parameters

seed starch and seed protein, respectively. Water shortage environment reduces the grain starch

and protein values significantly leading to poor endospermic values. The nano priming with

ZnONPs proves beneficial in raising seed starch and protein values overall seed vigour. The

experimental data of 1000 paddy weight is being presented in Fig 4A, which clearly depicts that

1000 paddy weight of rice significantly decreases upon exposure to water shortage conditions.

Various nano priming treatment concentrations of ZnONPs were used as drought ameliorating

agents. All the treatments affected the 1000 paddy weight differentially however priming with

ZnONPs used at concentration of 25ppm has been found more suitable for increasing the 1000

paddy weight of rice plants under both well irrigated and water shortage conditions.

3.2-Total chlorophyll and levels of osmotic stress indicators

To improve the yield profile a plant must produce photosynthetic pigments efficiently. Fig 3A

represents the total chlorophyll contents of rice plants which is associated with yield of seed.

Fig 1. Yield attributes of rice plants. (A) Number of tillers per plant (B) Number of panicles per plant (C) Panicle

length and (D) Number of spikelet per panicle as affected by various regimes of ZnONPs under water scarce and well

irrigated environment (mean ± SE; n = 3).

https://doi.org/10.1371/journal.pone.0264967.g001
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Fig 2. Yield attributes of rice plants. (A) Straw yield of rice (B) paddy yield of rice (C) seed starch contents and (D)

seed protein contents as affected by various regimes of ZnONPs under water scarce and well irrigated environment

(mean ± SE; n = 3).

https://doi.org/10.1371/journal.pone.0264967.g002

Table 2. Mean square and p values from the ANOVA of data obtained through ZnONPs application on rice seeds.

Variation Source df NOT/P NOP/P PL NSPP H2O2 MDA

Water Stress (WS) 1 156.25��� (0.0000) 294.694��� (0.0000) 156.25��� (0.0000) 2070.25��� (0.0000) 342.25��� (0.0000) 121 ��� (0.0000)

Priming Treatment (PT) 5 22.4277��� (0.0000) 24.9833 ��� (0.0000) 4.3611 ns (0.0625) 145.11 ��� (0.0000) 86.2944��� (0.0000) 8.4891��� (0.0000)

WS X PT 5 1.98333��� (0.0000) 1.29444 ns (0.0625) 0.716 ��� (0.0000) 3.5166 ns (0.0562) 0.65 ns (0.8957) 5.6186��� (0.0000)

Error 24 0.91666 0.5257 1.7777 1.38388 2.0277778 0.0980

Variation Source df SYR PYR SS SP PRO CAT

Water Stress (WS) 1 7028.027��� (0.0000) 3306.25��� (0.0000) 128.822��� (0.0000) 3.14471��� (0.0000) 604.053��� (0.0000) 853.61��� (0.0000)

Priming Treatment (PT) 5 214.9611��� (0.0000) 165.0277��� (0.0000) 9.87627��� (0.0000) 0.3153��� (0.0003) 15.2780� (0.109) 57.0416��� (0.0000)

WS X PT 5 39.4944��� (0.0000) 3.91666 � (0.02333) 0.8171 � (0.0296) 0.0217ns (0.7660) 4.23963 ns (0.4058) 5.0442 ��� (0.0001)

Error 24 2.88888 2.47222 0.27027 0.042711 3.9933 0.5608

Variation Source df 1000 Wt PH PFW PDW SOD POD

Water Stress (WS) 1 195.533��� (0.0000) 633.445��� (0.0000) 378.9511��� (0.0000) 18.2044��� (0.0000) 1536.104��� (0.0000) 742.835��� (0.0000)

Priming Treatment (PT) 5 7.28512��� (0.0000) 67.3790��� (0.0000) 11.35311��� (0.0000) 0.2913ns (0.1666) 50.1441��� (0.0000) 31.337��� (0.0000)

WS X PT 5 1.37627� (0.0235) 1.2032 ns (0.1376) 0.9137 ns (0.0954) 0.3704 ns (0.0881) 1.9610��� (0.0000) 1.5954 ns (0.8300)

Error 24 0.42944 0.6441694 0.4275 0.16861 0.87445 0.71202

ns non-significant, df. degree of freedom, NOT/P Number of Tiller per Plant, NOP/P Number of panicles per plant, PL Panicle length, NSPP Number of Spikelet per

Panicle, H2O2 Hydrogen peroxide, MDA Malandialdehyde, SYR Straw Yield of Rice, PYR Paddy Yield of Rice, SS Seed Starch, SP Seed Protein, PRO Proline, CAT

Catalase, 1000 Wt. 1000 Paddy Weights, PH Plant Height, PFW Plant Fresh Weight, PDW Plant Dry Weight, SOD Superoxide Dismutase, POD Peroxidase.

�, �� and ��� = significant at 0.05, 0.01, and 0.001 levels, respectively.

https://doi.org/10.1371/journal.pone.0264967.t002
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The bar chart shows significant decline in values of total chlorophyll upon imposition of

drought stress. The seed priming with ZnONPs has been fruitful in enhancing production of

total chlorophyll contents. A look at Fig 3B provides the idea that there exists strong correla-

tion between increase in total chlorophyll and yield attributes. Data presented in Fig 3C and

3D indicates elevated levels of osmotic stress indicators Hydrogen peroxide and Malondialde-

hyde contents, respectively upon exposure of experimental rice pots to water deficit environ-

ment. Water stress leads to damages in lipid bilayer structure of biological membranes and as

a result MDA accumulation takes place. Seed priming treatments leads to significant reduction

in MDA contents of rice plants both in control and drought stress conditions. Seed priming

with ZnONPs results in 53% reduction in MDA contents of water stressed rice plants. The val-

ues of ANOVA mentioned in Table 2 showed that ZnONPs are highly significant in decreasing

MDA contents.

Water stress leads to increased accumulation of hydrogen peroxide as shown in Fig 3C.

Nano priming with ZnONPs mitigates hydrogen peroxide levels by decreasing them indicating

lowering of osmotic stress. All the treatments affect hydrogen peroxide level in both water

Fig 3. A. Total chlorophyll values of plants under current study. B. Spearman Correlation map of all studied attributes.

Values of some biochemical attributes and antioxidant enzymes activities in rice plants (C) H2O2 (D) Malondialdehyde

contents.

https://doi.org/10.1371/journal.pone.0264967.g003
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stress and controlled environment however the decreasing effect of a treatment on the parame-

ter is treatment specific.

3.3-Biomass production

The study revealed that increase in total chlorophyll values also lead to increase in biomass

production. Data regarding growth attributes plant height, plant fresh weight and plant dry

weight has been presented in Fig 4B–4D, respectively. Drought stress leads to reduction in

plant height by 31%, plant fresh weight by 22% and plant dry weight by 28%. Seed priming

treatments imparted in current study show significance increase in plant biomass. There is

highly significant correlation of plant height with plant fresh weight and plant dry weight

(0.9267��� and 0.8245���, respectively). Data presented in Fig 5A represents increased proline

levels under the water stress conditions. Priming with ZnONPs further enhances the levels of

proline amino acid facilitating the plant to combat water shortage stress.

3.4-Analysis of activities of anti-oxidant enzymes

The activities of all the anti-oxidant enzymes are increased in rice plants upon induction of

water stress (Fig 5A–5D). The drought stress leads to increase in activities of SOD, CAT and

Fig 4. Yield and growth attributes of rice plants. (A) 1000 paddy weight (B) height of plants (C) Plant fresh weight

and (D) plant dry weight as affected by various regimes of ZnONPs under water scarce and well irrigated environment

(mean ± SE; n = 3).

https://doi.org/10.1371/journal.pone.0264967.g004
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POD by 67%, 33% and 92%, respectively. A further elevation in activities of SOD, CAT and

POD takes place in rice plants raised from ZnONPs primed seeds by 11%, 13% and 38%,

respectively. The best effects in increasing the modulation of anti-oxidant enzymatic machin-

ery takes place from ZnONPs used at 25 ppm concentration however the 50 ppm concentra-

tion is also fruitful in enhancing the potentials of anti-oxidant enzymes.

4. Discussion

Drought stress significantly affects the performance of crops in terms of their nutrient profile,

growth and agronomic vigour [2]. Nano seed-priming is an efficient tool to combat climate

change induced drought and other abiotic stresses [35]. Current study presents analysis of var-

iance studies of the data obtained from rice plants raised through nano ZnO primed seeds.

Present data obtained through analysis of total chlorophyll contents revealed that total chloro-

phyll contents were decreased significantly upon exposure to drought stress. The rice plants

raised from ZnONPs primed seeds enhanced the plant biomass which is indicator of active

photosynthetic machinery. Similar results have been reported by Rizwan et al., [36] on wheat

plants. The increase in chlorophyll contents may promote carboxylation and enzymatic

machinery of C3 plants [37].

The enhanced activities of antioxidant enzymes (CAT, SOD and POD) under drought were

examined in current study. This enhancement in enzymatic activities is a part of plant internal

defence mechanism to combat abiotic stresses [7]. The seed priming treatments with ZnONPs

Fig 5. Values of some biochemical attributes and antioxidant enzymes activities in rice plants. (A) Proline values

(B) Catalase (C) Super Oxide Dismutase (D) Peroxidase activities as affected by various regimes of ZnONPs under

water scarce and well irrigated environment (mean ± SE; n = 3).

https://doi.org/10.1371/journal.pone.0264967.g005
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further enhanced the activities of these antioxidant enzymes proving their efficacy in drought

amelioration. These results are in accordance with previous study reported by Itroutwar et al.

[38], where the efficacy of biogenic ZnONPs has been documented in rice plants. The

enhanced SOD activity might be due to Zn acting as activator for the enzyme [39]. Increased

activities of POD cause decomposition of hydrogen peroxide into water and oxygen [36].

The values of hydrogen peroxide and malondialdehyde (MDA) were also elevated in rice

plants upon imposition of water shortage conditions. The elevated levels of these osmotic

stress indicators were mitigated effectively by ZnONPs treatment. The decrease in lipid peroxi-

dation product MDA might be due to nanoparticles mediated membrane recovery [40]. Simi-

lar behaviour of Zn nanoparticles primed Lupin seeds has been reported by Latef et al., [41].

Water shortage leads to decrease in plant height, plant fresh weight and dry weight in rice

plants. The seed priming with ZnONPs improves the growth and morphology of rice plants

(Table 3). These results are in compliance with a study conducted by Khan et al., [26], where

similar results have been reported while experimenting with AgNPs primed pearl millet seeds.

The increase in plant height might be due to Zn acting as activator in biosynthesis of amino

acid tryptophan which is involved in the biosynthetic pathways of auxin [36].

Various researchers have documented increase in plant biomass upon treating seeds with

nanoparticles priming [26, 36, 42]. Seed priming strategies might be helpful in transforming

crops into climate change resilient crops [43].

The agronomic profile of a plant is indicator of its proper homeostasis and physiological

wellbeing culminating into good yield. In present study, starch and protein contents of rice

caryopsis were examined and found depressed upon exposure to osmotic stress. The ZnONPs

Table 3. Spearman correlation matrix for studied variables and yield attributes of rice plants raised from ZnONPs primed seeds.

Variables NOT/P NOP/P 1000 Wt PYR SYR SP SS PL NSPP

PH cm 0.9501��� 0.9648��� 0.9338��� 0.9709��� 0.9546��� 0.9131��� 0.9746��� 0.8553��� 0.9709���

PFW g 0.8833��� 0.9112��� 0.9074��� 0.9424��� 0.9306��� 0.8525��� 0.9368��� 0.8919��� 0.9360���

PDW g 0.7767��� 0.8328��� 0.8431��� 0.8575��� 0.8309��� 0.8289��� 0.8487��� 0.8861��� 0.8478���

MDA -0.8927��� -0.8980��� -0.8646��� -0.9214��� -0.9282��� -0.8054��� -0.9148��� -0.7532��� -0.9100���

H2O2 -0.9168��� -0.9050��� -0.8452��� -0.8916��� -0.8800��� -0.8818��� -0.9007��� -0.7614��� -0.9005���

SOD -0.3638��� -0.5174��� -0.5514��� -0.5201��� -0.5195��� -0.4399��� -0.4940��� -0.6083��� -0.5221���

POD -0.3467��� -0.5168��� -0.5472��� -0.5241��� -0.5336��� -0.4209��� -0.5032��� -0.6356��� -0.5222���

CAT -0.3647��� -0.5102��� -0.5607��� -0.5177��� -0.5327��� -0.4448��� -0.4983��� -0.6111��� -0.5184���

Proline -0.3422��� -0.4694��� -0.5136��� -0.5161��� -0.5157��� -0.3457��� -0.5064��� -0.5241��� -0.4842���

T.Chlo 0.9310��� 0.9717��� 0.9480��� 0.9833��� 0.9717��� 0.8794��� 0.9788��� 0.8590��� 0.9709���

NOT/P 1 0.9234��� 0.9005��� 0.9462��� 0.9364��� 0.9082��� 0.9461��� 0.8277��� 0.9452���

NOP/P 0.9234��� 1 0.9507��� 0.9778��� 0.9714��� 0.9173��� 0.9788��� 0.8648��� 0.9819���

1000 Wt 0.9005��� 0.9507��� 1 0.9611��� 0.9499��� 0.8878��� 0.9552��� 0.8790��� 0.9507���

PYR 0.9462��� 0.9778��� 0.9611��� 1 0.9828��� 0.9134��� 0.9907��� 0.8965��� 0.9926���

SYR 0.9364��� 0.9714��� 0.9499��� 0.9828��� 1 0.9003��� 0.9801��� 0.8829��� 0.9851���

SP 0.9082��� 0.9173��� 0.8878��� 0.9134��� 0.9003��� 1 0.9177��� 0.8620��� 0.9245���

SS 0.9461��� 0.9788��� 0.9552��� 0.9907��� 0.9801��� 0.9177��� 1 0.8830��� 0.9842���

PL 0.8277��� 0.8648��� 0.8790��� 0.8965��� 0.8829��� 0.8620��� 0.8830��� 1 0.8977���

NSPP 0.9452��� 0.9819��� 0.9507��� 0.9926��� 0.9851��� 0.9245��� 0.9842��� 0.8977��� 1

Values with ��� are different from 0 with a significance level alpha = 0.05.

NOT/P Number of Tiller per Plant, NOP/P Number of panicles per plant, PL Panicle length, NSPP Number of Spikelet per Panicle, H2O2 Hydrogen peroxide, MDA

Malandialdehyde, SYR Straw Yield of Rice, PYR Paddy Yield of Rice, SS Seed Starch, SP Seed Protein, PRO Proliine, CAT Catalase, 1000 Wt. 1000 Paddy Weights, PH

Plant Height, PFW Plant Fresh Weight, PDW Plant Dry Weight, SOD Superoxide Dismutase, POD Peroxidase.

https://doi.org/10.1371/journal.pone.0264967.t003

PLOS ONE Seed nano-priming with Zinc Oxide nanoparticles in rice

PLOS ONE | https://doi.org/10.1371/journal.pone.0264967 March 24, 2022 12 / 18

https://doi.org/10.1371/journal.pone.0264967.t003
https://doi.org/10.1371/journal.pone.0264967


based seed pre-conditioning improved the starch and protein contents of the paddies. Data

presented in the table shows spearman correlation matrix. The data presented shows that all of

the studied variables have strong correlation with yield attributes of rice plants. Increase in

agronomic and growth attributes might be due to ZnONPs mediated enhancement in amylase

activities resulting in nutrient uptake and mobilisation [43]. To make agronomic profile of the

rice plants the parameters such as number of tillers per plant, number of panicles per plant,

number of spikelet per panicle, panicle length, straw yield of rice per pot, paddy yield per pot

and 1000 paddy weight was recorded. All of the studied agronomic attributes were found

declined upon imposition of drought stress. The decrease in yield characteristics is reflection

of poor nutrient acquisition patterns due to water stress [44]. The seed priming with ZnONPs

increases all the yield attributes and the optimum effects were observed with 25ppm concen-

tration. The improvement in agronomic profile of maize plants might be due to increased

rates of photosynthesis induced by priming treatments. Similar results of priming treatments

with ZnONPs in maize have been reported by Tondey et al., [45]. The potential of biogenic

zinc nanoparticles priming in rice has been documented by Itroutwar et al., [38] proving better

biofortification of rice plants by seed priming measures. Furthermore experiments of Yasmeen

et al., [46] reported that nano-priming with copper and iron nanoparticles in wheat is fruitful

in increasing spike length, number of grains per spike and grain weights. The increase in nutri-

ent profile of rice by nano-priming with Zinc oxide nanoparticles might be due to increased

biosynthesis of enzymes involved in nutrient uptake and acquisition [47].

The principal component analysis (PCA) results of current study showed a strong association

for growth and physio-biochemical attributes of rice plants along with agronomic parameters

with ZnO priming treatments. These results are in accordance with the previous study of Tondey

et al., [48–50] where similar association has been documented in case of maize plants [Fig 6].

Similarly, the results documented in this study depicted a strong correlation and association

to priming treatments as deciphered by increased grain weight per plant, increased plant

height and spike length where these outcomes are coincidence with previous work performed

by Popovi´c et al., [48, 51, 52]. The drought stress or any biotic stress such pathogenic attack

on crops has also drastic impact on yield of crops and it was reported in study of Capsicum

crop [53]. The other cereal crops which are under stress have been explored for heat stress in

rice and the comprehensive review was presented by the researchers [54, 55]. This plethora of

rice crop has been addressed by mitigating mechanism of heat stress similarly zin oxide prim-

ing may also be used improvement of yield. The nano technology can also be useful not only

in field of crops but also for production of biodiesel from seeds of plants and lot of work has

been conducted on this field [56]. This use of nano technology through use of seed priming in

terms of ZnOxidees and which be assisting in enhancing the yield of seed or grain of the crops

as well and it will boost agronomic yield of the country.

5. Conclusion

Nano priming with ZnONPs of rice seeds is a promising field for exploitation in agricultural

industry as deciphered by the results presented in this research paper. Keeping in view climate

change mediated food insecurity such applications might prove beneficial in future. Seed

priming with ZnONPs is helpful in water stress mitigation by modulating anti-oxidant

enzymes and osmolytes accumulation. ZnONPs are potential candidates in updating the agro-

nomic profile of rice by increasing yield traits. Current study recommends the nano priming

with ZnONPs for rice seeds as pre sowing treatment. However further experimentation in

field is necessary and it is recommended to explore the potential of nano seed priming in other

crops as well.
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