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Auditory event-related potentials (ERP) may serve as diagnostic tools for schizophrenia

and inform on the susceptibility for this condition. Particularly, the examination of

N1 and P2 components of the auditory ERP may shed light on the impairments of

information processing streams in schizophrenia. However, the habituation properties

(i.e., decreasing amplitude with the repeated presentation of an auditory stimulus) of

these components remain poorly studied compared to other auditory ERPs. Therefore,

the current study used a roving paradigm to assess the modulation and habituation of

N1 and P2 to simple (pure tones) and complex sounds (human voices and bird songs)

in 26 first-episode patients with schizophrenia and 27 healthy participants. To explore

the habituation properties of these ERPs, we measured the decrease in amplitude over

a train of seven repetitions of the same stimulus (either bird songs or human voices). We

observed that, for human voices, N1 and P2 amplitudes decreased linearly from stimulus

1–7, in both groups. Regarding bird songs, only the P2 component showed a decreased

amplitude with stimulus presentation, exclusively in the control group. This suggests that

patients did not show a fading of neural responses to repeated bird songs, reflecting

abnormal habituation to this stimulus. This could reflect the inability to inhibit irrelevant

or redundant information at later stages of auditory processing. In turn schizophrenia

patients appear to have a preserved auditory processing of human voices.

Keywords: schizophrenia, auditory, EEG, event-related potentials, habituation, N1, P2

INTRODUCTION

The orienting response to novel/rare stimuli is considered a fundamental reaction in
living organisms. However, when confronted with the repetition of stimuli in stable and
non-threatening conditions, neural responses are expected to fade with repetition, demonstrating
that humans tend to adapt to the surrounding environment (1). Auditory event-related
potentials (ERP) and early components such as the N1 and P2, allow tracking the time
course of neural activity related to auditory processing (2) and respective habituation

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2021.630406
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2021.630406&domain=pdf&date_stamp=2021-03-18
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:prunemazer@gmail.pt
https://doi.org/10.3389/fpsyt.2021.630406
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.630406/full


Mazer et al. Abnormal P2 Habituation in Schizophrenia

(i.e., component amplitudes decrease with successive repetitions)
and sensory gating processes (i.e., inhibition of the processing of
repeated information).

N1 is a negative component that peaks around 100ms after
the onset of an auditory stimulus and is followed by the P2, a
positive component occurring approximately after 200ms (3).
N1 and P2 are sensitive to the exogenous physical properties
of the stimuli (4), although they also encompass endogenous
characteristics (2, 3). At the exogenous level, early auditory
categorical differences have been reported for distinct categories
of sounds (e.g., voices and bird songs) such that results suggest
a rapid brain discrimination of human voices (5–8). At the
endogenous level, N1 also seems to reflect a selective-orienting
attention response toward novel/rare stimuli (9, 10), while P2
probably represents a subsequent stage of stimulus recognition
toward specific stimuli (e.g., human voices) independently of
attentional demands (5–7, 11).

Regarding habituation processes, the N1-like orienting neural
responses are likely to decrease in magnitude with the repeated
presentation of an auditory stimulus (1, 9). Similarly, P2 also
shows habituation and sensory gating properties, especially for
the consecutive stimuli repetition with shorter and constant
inter-stimulus intervals (1, 4, 12). Nevertheless, the mechanisms
underlying ERP adaptation are complex (13) and further
investigation is still required in order to unveil their potential
clinical applications.

Several studies have focused indeed on the potential of
auditory ERP components and habituation properties (e.g., P50
and P300) as diagnostic tools for schizophrenia (14, 15). N1
and P2 can be particularly useful to study the mechanisms
underlying the pathophysiology of schizophrenia since they
are especially sensitive to early cortical auditory processing
(that appears to be affected by this disorder) and seem to
arise from temporal lobe generators, which are also affected in
schizophrenia (9, 16). More specifically, the ability to filter out
irrelevant or repetitive information—as assessed through sensory
gating and habituation processes—maps early pre-attentive and
later-stages of information processing, respectively (17). Research
consistently reports reduced N1 amplitudes in first-episode, as
well as chronic schizophrenic patients and first-degree relatives
using both simple (18–21) and complex stimuli (22, 23).
Conversely, P2 is often examined in the context of the N1/P2
complex, and thus it has been less studied independently. Studies
that have examined both components show either smaller P2
amplitudes (19) or no differences in first-episode schizophrenia
(using simple stimuli) compared to healthy controls (21), despite
systematic reductions in N1. A meta-analysis by Ferreira-Santos
et al. (24) reviewed 20 studies on P2 in schizophrenia and
showed that patients exhibited smaller amplitudes to standard
stimuli and larger amplitudes for target stimuli when compared
to controls in oddball tasks. In addition, even if fewer studies have
assessed habituation processes for N1 and P2, there is evidence
of less attenuation in schizophrenia (25, 26), although a meta-
analysis by Rosburg (27) found that patients with schizophrenia
display reduced N1 gating due to the initial/novel stimulus—not
to effects of repetition/habituation. Such abnormalities extend
to the processing of voice stimuli with N1 being smaller to

pre-recorded voices (23, 28) and P2 exhibiting larger amplitudes
for voices with affective content (29) and no differences in
amplitude for neutral content (30) in Schizophrenia.

Studying voice processing in schizophrenia is particularly
important since auditory verbal hallucinations and abnormal
social cognition represent well-recognized symptoms of this
pathology. Also, the study of pre-attentive and later-stages of
information processing could help us understand which stages of
the auditory cortical information processing are impaired (and
which are intact) in schizophrenia, as well as if the type of stimuli
(i.e., complex, simple, or social) interferes with this process. Since
neurobiological impairments precede the beginning of a full
clinical syndrome, it is of extreme relevance to study the N1 and
P2 in pre-psychotic and early-psychotic states of schizophrenia
(31) to explore deficits underlying genetic susceptibility for
schizophrenia (9, 20). For this purpose, the current study assessed
the habituation of auditory ERP components in first-episode
schizophrenia such that amplitude attenuations at N1 and P2
time-windows were measured in a roving paradigm including
both complex sounds (human voices and bird songs) and a
target/rare pure sinusoidal tone. In healthy participants, the
reviewed literature indicates that (a) N1 increases for rare
stimuli vs. frequent stimuli (9, 10), (b) P2 is particularly
responsive to human voices vs. bird sounds (5), and (c) both
components decrease as a function of repetition/habituation
(1, 4, 12, 32). Inversely, we hypothesized that patients with
schizophrenia would show: (H1) a diminished N1 amplitude for
target stimuli—pure tones (9); (H2) a diminished P2 to human
voices, considering P2 specificity to voices (5) and deficits in voice
processing in schizophrenia (33); and (H3) reduced habituation
of N1 and P2 when compared to controls (25), considering
deficits reported in sensory gating in early ERP components in
schizophrenia (34).

METHOD

Participants
Twenty-seven first-episode patients diagnosed with
schizophrenia were originally recruited, but one was excluded
due to excessive noise in EEG recordings. Thus, the clinical
group included 26 participants (8 female; 2 left-handed), with a
mean age of 27.88 years (SD = 11.94) and a mean education of
11.73 years (SD= 2.69). All patients were medicated with second
generation antipsychotics corresponding to, on average, 12.63mg
of olanzapine equivalents (SD = 5.01). Mean illness duration
was 15.11 months (SD = 8.01). The control group included 27
healthy individuals (seven female; two left-handed), with a mean
age of 27.56 years (SD = 7.79) and a mean education of 13.67
years (SD = 2.26). All participants reported being free from
head injuries, other neurological disorders, learning disabilities,
or substance abuse, and all disclosed having normal hearing.
There were statistically significant differences between groups
for education (p =0.006) but not for age (p = 0.897). Although
education varied between groups, all participants in the patient
group had completed at least compulsory school (9 years), except
for one who completed 8 years. All participants signed the
informed consent before the beginning of the experiment.
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Stimuli and Procedures
The selection of auditory stimulus for the task was based
on a preliminary validation study (for more details see
section Validation study of the auditory stimuli in the
Supplementary Material). Using a modified version of the
roving standard frequency paradigm (35), auditory stimuli
(i.e., bird songs, voices, and the pure tone) were delivered
via headphones and E-Prime 2.0 (Psychology Software Tools,
Pittsburgh, PA) with an intensity of 90 dB SPL.

The protocol included 16 complex auditory stimuli (i.e., eight
bird songs and eight non-speech human voices) with a duration
of 200ms each (10ms rise and fall times). The complex sounds
were presented in fixed trains composed of seven repetitions
of the same sound with an inter-stimulus interval of 1,000ms.
Each train was randomly repeated 5 times during the protocol,
resulting in a total of 80 blocks. The target tone was randomly
presented 40 times during the entire protocol (i.e., probability of
∼7%) and only appeared between trains (Figure 1). This target
consisted of a 1,000Hz pure tone with 70ms duration (10ms rise
and fall times). During the task, a black screen with a fixation
point was presented. Behavioral data was collected on the target
tone with themain purpose ofmaintaining participants’ attention
and avoiding sleepiness and fatigue (which could impair EEG
data quality due to alpha activity). Thus, participants were
asked to pay attention and rapidly identify when the target
tone was presented by pressing a button (i.e., in a SRBOX
display; E-Prime).

EEG Data Collection and Pre-processing
EEG data were recorded with a digitizing rate of 500Hz from
128 channels (Hydrocel Geodesic Sensor Net, NetAmps 300
amplifier, NetStation 4.2. software—Electrical Geodesics Inc.).
The electrodes were referenced to the vertex (Cz) during
recording and re-referenced offline to the average reference.
Impedances were kept below 50 k� for all electrodes (high input
impedance system). Data was pre-processed using EEGLAB
(v11.4.2.2b) (36, 37) and custom MATLAB scripts. Continuous
EEG records were downsampled to 250Hz and band-pass filtered
(0.2–30Hz) and submitted to an Independent Components
Analysis (ICA) decomposition after interpolation of bad channels
(maximum of 10% per record). Correction of eye blink artifacts
was carried out semi-automatically using the CORRMAP
EEGLAB plug-in (38). We used a correlation threshold of 0.80
to identify the artifactual ICs and then subtracted their activity
from the EEG data. Pre- and post-subtraction EEG traces were
visually inspected to ensure that signals were not altered outside
the timewindows of eye blinks. EEG records were segmented into
1,000ms epochs (−200 to 800ms in peri-stimulus time). Epochs
with voltages below −100 or above 100 µV were automatically
rejected and all segments were subjected to visual inspection
and manual artifact rejection. Finally, all epochs were baseline
corrected (200ms pre-stimulus) and averaged by condition for
each participant.

ERP Analysis
Grand-averaged ERPs were computed and visually inspected
to ensure that the expected ERP morphology was present. We

analyzed frontal scalp regions in the left (i.e., FC5 cluster: E24,
E27, E28, E29, E34, and E35) and right hemispheres (i.e., FC6
cluster: E110, E111, E116, E123, E124, and E117), where the
frontotemporal positivity to voices has been shown to bemaximal
(5). Time-windows for the N1 and P2 components were based
on the visual inspection of the grand-averages and on the typical
settings described in the literature on auditory ERPs. Therefore,
peak amplitudes were quantified as the minimum voltage in the
80–200ms post-stimulus presentation time-window for N1 and
as the maximum voltage in the 200–300ms time-window for
P2. Peaks were extracted for each participant at each channel
and then averaged per train position (i.e., 1–7, for bird songs
and voices) and stimulus type (i.e., bird songs, vocalization, and
pure tone).

Statistical Analysis
For the analysis of behavioral data on the target detection
task, responses were divided according to the sound (i.e.,
bird songs or voices) that was presented previous to the
target (i.e., pure tone) and submitted to paired-sample
t-tests to assess possible differences in reaction times (RTs).
Additionally, independent samples t-tests were performed
to assess group differences (i.e., patients vs. controls) in RTs
(ms) and accuracy (percentage of times the target tone was
correctly identified).

For neural data, separate Mixed Repeated Measure ANOVAs
were conducted for N1 and P2. Pure tones (H1) were analyzed
by hemisphere (within-participants factor: left, right) and group
(between-participants factor: controls, patients). To replicate
the conditions from previous studies that did not analyze the
seven positions in the train (5), we explored group differences
in the processing of complex stimulus (H2) only for the first
stimulus of the train (within-participants factors: hemisphere—
left, right, and stimulus category—bird songs, human voices).
Finally, to explore the habituation properties of these ERPs
for bird and human voices stimuli, we measured the decrease
in amplitude across stimulus repetition in each train from S1
to S7 using linear contrasts (H3). As such this model entered
with between groups and within-participants factors (train
sequence—stimuli repetition from 1 to 7; stimulus category—
voices, bird songs; hemisphere—left, right). All the pairwise
comparisons were corrected for multiple comparisons using the
Bonferroni Correction, and effect sizes were calculated (i.e.,
partial eta squared and Cohen’s d).

RESULTS

Behavioral Results: Target/ Pure-Tone
Detection
RTs were significantly longer for targets following the
presentation of human voices (M = 423.70, SD = 93.78)
compared to targets following bird songs (M = 392.60, SD =

80.15), t(50) = −5.26, p < 0.001, d = 0.737. For targets following
the presentation of bird songs, patients had significantly longer
RTs (M = 419.14, SD = 80.85) compared to controls (M =

364.98, SD = 70.2), t(49) = 2.54, p = 0.014, d = 0.713. Patients
also had significantly longer RTs for targets following human
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FIGURE 1 | Modified version of the roving standard frequency paradigm (Baldeweg et al., 2004). (A) There were 16 complex auditory stimuli divided into two

categories: eight bird songs and eight human voices (non-speech voices). Each complex sound was presented in trains composed of seven repetitions of the same

sound (ISI = 1,000ms). Each train was randomly repeated five times during the protocol, resulting in a total of 80 blocks. Additionally, a target tone (i.e., a pure tone

with duration of 70ms) was randomly presented 40 times in between the trains of complex sounds. (B) Within the trains, each sound was presented for 200ms (ISI =

1,000ms) while a black screen with a fixation point was displayed.

FIGURE 2 | Auditory event-related potentials [i.e., N1 (80–200ms); P2 (200–300ms)] for the pure tone (i.e., the target tone) in patients with schizophrenia (SQZ) and

healthy controls (CTR): (A) in the left hemisphere (i.e., cluster FC5) and (B) in the right hemisphere (i.e., cluster FC6).

voices (M = 461.95, SD = 92.71) compared to controls (M =

383.92, SD= 78.32), t(49) = 3.24, p= 0.002, d = 0.909.
The differences in accuracy between patients (M = 96.50%,

SD = 7.01) and controls (M = 99.19%, SD = 2.19) were not
statistically different, t(51) =−1.87, p= 0.067, d = 0.518.

H1: Category— Simple Sound (Pure
Tones—Target Stimuli)
At the N1 time-window, a significant hemisphere∗group
interaction was found, F(1,51) = 4.52, p = 0.038, η2p =0.081,
revealing lower N1 amplitudes in patients (M = −3.02,

SD= 1.48) compared to controls (M = −4.42, SD = 1.87) in
the right hemisphere, t(51) = −3.01, p = 0.024, d = 0.83 (see
Figure 2). No other significant effects were found for the N1.

For P2, a significant effect was found for hemisphere, F(1,51)
= 5.35, p = 0.025, η2p = 0.095, indicating higher amplitudes for
the left (M= 1.82, SD= 1.89) comparing to the right hemisphere
(M = 1.02, SD= 2.12), t(52) = 2.34, p= 0.023, d = 0.31, for both
groups. No other significant effects were found for the P2.

All descriptive statistics of peak amplitudes and results of the
separate Mixed Repeated Measure ANOVAs for N1 and P2 can
be found in the Supplementary Tables 1, 2).
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FIGURE 3 | Auditory event-related potentials [i.e., N1 (80–200ms); P2 (200–300ms)] for complex sounds in patients with schizophrenia (SQZ) and healthy controls

(CTR): (A) for bird songs in the left hemisphere (i.e., cluster FC5) and (B) right hemisphere (i.e., cluster FC6); and (C) for human voices in the left hemisphere (i.e.,

cluster FC5) and (D) the right hemisphere (i.e., cluster FC6).

H2: Category—Complex Sounds (Voices
vs. Bird Songs)
There were no main effects of stimulus category, nor
category∗group or category∗group∗hemisphere interactions
on N1 amplitude (see also Supplementary Table 3).

A main effect of category was found on P2 amplitude,
F(1,51) = 78.63, p < 0.001, η2p = 0.607, indicating that
voices elicited increased P2 amplitude (see Figure 3) than
bird songs for both groups (all p < 0.036). No group
or hemisphere∗group interactions were found (see also
Supplementary Table 4).

H3: Habituation Effects
For N1, we found a significant linear contrast effect of order for
human voices, F(1,51) = 10.00, p = 0.003, η2p =0.164, but not
for bird songs F(1,51) = 1.75, p = 0.192, η2p = 0.033. No further
effects were observed.

For P2, we found a significant linear contrast effect of order
in bird songs F(1,51) = 21.71, p < 0.001, η2p = 0.299, and
voices, F(1,51) = 81.10, p < 0.001, η2p = 0.614. Also, a significant
interaction order∗group was found in P2 for bird songs, F(1,51)
= 4.21, p < 0.045, η2p = 0.760 [vs. human voices, F(1,51) =

0.294, p = 0.590, η2p = 0.006], independently of the hemisphere,
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FIGURE 4 | P2 habituation effect in patients with schizophrenia (SQZ) and healthy controls (CTR) for complex sounds. P2 peak amplitudes to each position of the

stimuli in the train for: (A) bird songs in the left hemisphere (i.e., cluster FC5) and (B) the right hemisphere (i.e., cluster FC6); and (C) human voices in the left

hemisphere (i.e., cluster FC5) and (D) the right hemisphere (i.e., cluster FC6), for each position in the train.

F(1,51) = 1.02, p= 0.319, η2p = 0.020. This finding (see Figures 3,
4) represents a gradual decrease in P2 amplitude for controls
from Bird1 to Bird7 at both hemispheres (Bird1:MFC5 = 1.85, SD
= 2.44,MFC6 = 1.49, SD = 2.21; Bird7:MFC5 = 0.30, SD = 1.38,
MFC6 = −0.01, SD = 1.31, both ps < 0.040). This habituation
effect on birds was not observed in patients (Bird1:MFC5 = 1.35,
SD = 1.19, MFC6 = 1.31, SD = 1.41; Bird7: MFC5 = 0.94, SD =

0.86,MFC6 =−0.92, SD= 1.75, all ps > 0.820).

DISCUSSION

The habituation of the auditory N1 and P2 components of the
ERPs remains largely unexplored in schizophrenia, especially
when compared with the body of research directed to P50 and
P300 components. The current work intended to expand the
knowledge on these components. For this purpose, N1 and P2
amplitudes were measured in a roving paradigm. Our hypotheses

considered not only the habituation properties of N1 and P2,
but also the different modulations induced by distinct stimulus
categories. Supporting H1, we found a diminished N1 amplitude
for pure tones in patients at the right frontotemporal region. In
turn, H2 was not confirmed since human voices elicited higher
P2 amplitudes than bird song at frontotemporal locations for
both groups. Finally, H3 was partially verified, since habituation
effects were moderated by group differences in P2, but not in N1
and only for bird songs. Our results showed that human voices
(but not bird songs) specifically elicited a pattern of habituation
in N1 in both groups. However, P2 amplitudes faded with
train repetitions of bird songs only in the control group, while
habituation effects to human voices were present in both groups.

The results concerning H1-Pure tones—resemble previous
findings from oddball tasks, since patients with schizophrenia
seem to have difficulties in allocating attention to target/relevant
auditory stimuli, as reflected in the attenuation of the N1
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component (9). However, for H2 we found no evidence that
deficits in voice processing in schizophrenia would lead to a
diminished P2. Notwithstanding, our results support previous
literature that reported higher P2 amplitudes elicited by human
voices compared to bird songs at Frontocentral locations (5,
7, 11), but these results did not interact with group. In other
words, patients showed similar response amplitudes as controls
in the initial discrimination of human voices, despite the
literature describing abnormalities in P2 modulation for this
group (24, 25). It may be the case that the P2 reflects an early
preference for human voice processing that goes in line with
the social nature of the human brain and the priority given to
social cues within the species (6, 7). Although there have been
descriptions of abnormalities regarding voice processing when
negative emotional content is added (29), no differences have
been found for non-semantic speech and neutral voice sounds
(28, 30), suggesting that early stages of voice processing might be
unaffected in early schizophrenia.

Taking together H1 and H2, N1 seems to mirror an
orienting response toward target/simple stimuli that is impaired
in schizophrenia, while P2 is likely to index more specific,
elaborated categorization processes of complex sounds that
are not necessarily impaired in schizophrenia. Given the
differences in functional significance, these findings further
unveil that the current experimental manipulation led to the
dissociation of N1 and P2 amplitude, which is also reflected in
habituation processes.

Furthermore, our results provide evidence that both N1 and
P2 are habituating components (1, 13), notwithstanding that
habituation effects are category dependent for N1. Interestingly,
habituation effects were moderated by group differences in P2,
but not in N1. This partially contradicts H3, as we expected
a general dysfunction in habituation processes at both time-
windows and stimuli in patients (25). Importantly, this effect
was specific to birds and not voices, with patients showing the
expected pattern of non-habituation for birds in P2. Patterns
of abnormal habituation have been found for this component
in schizophrenia using simple stimuli (25), and the same seems
to be the case for bird songs [complex non-vocal stimuli. The
specificity regarding auditory processing of the human voice may
help to understand this differential effect. The early positivity
that occurs around the P2 time-window has been described as
sensitive to voices with increased amplitudes for these stimuli
when compared with other sound categories (5). Our results
corroborate these findings i.e., human voices elicited higher
P2 amplitudes than bird songs for both groups]. In fact, the
preference for sensory information of conspecifics is observable
on the visual N170 and its increased amplitudes for faces when
compared with objects (39, 40). Thus, it is possible that both
auditory and visual preference for conspecific stimuli plays a
relevant role in social information processing (41). From the
available evidence on this matter, one study by Williams et al.
(42) analyzed the habituation of brain activations in response to
faces in schizophrenia. No habituation was found in several brain
regions of patients (e.g., primary visual cortex and hippocampus),
but when looking at the putative generator of the N170—the
Fusiform Face Area (43)—patients and controls showed a similar
pattern of habituation to faces. It remains plausible therefore

that conspecific signals (such as voice and faces) are processed
by specialized brain modules that are somewhat independent
of other stimulus categories, considering how crucial it is for
communication and social interactions. Developmental studies
highlight indeed that preference for voices emerges early, with
habituation to human voices (vs. environmental stimuli) being
observable in preschoolers (44). Additionally, brain regions
responsible for voice processing are thought to maturate during
the 1st year of life (45), whereas P2 modulations by stimulus
category and habituation are mature in 5-year-old toddlers (46,
47). So, it is possible that voice processing specializes much
earlier than the onset of schizophrenia symptoms and possibly
explaining how first-episode patients exhibit normal patterns of
brain response to neutral non-speech human voices.

Limitations of this study comprise the absence of a formal
assessment of mental and hearing abilities and the inclusion of
groups on antipsychotic medication, making it impossible to
dissociate the effects of the medication from the abnormalities
found, as it has been previously suggested [e.g., (48)]. Also,
only mid-latency ERP components were studied, not allowing
us to investigate later stages of the auditory processing. Future
research should consider additional stages of voice processing
and investigate more nuanced associations with schizophrenia
symptoms, such as hallucinations, as possible predictive factors
of impairment [see e.g., (33)]. Nonetheless, regarding abnormal
habituation for bird songs, it is important that future research
uses other stimuli to understand if this pattern of habituation is
generalized for non-voices or specific for bird songs. In addition,
our results show that preference for human voices seems to
be unaffected in early diagnosed schizophrenia patients. The
investigation of abnormal patterns of brain activity in patients
with schizophrenia, such as the ones found in the current work,
allows researchers to better understand the impairments and
symptoms of this pathology. More specifically, the ability to filter
out irrelevant or repetitive information in early and later stages of
information processing. This growing knowledge may be crucial
for the future development of neurobiologically-informed early-
diagnosis, assessment, and treatment for schizophrenia.
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