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Abstract. We previously tested the identifiability of six versions of Gaborized outlines of everyday 
objects, differing in the orientations assigned to elements inside and outside the outline. We found 
significant differences in identifiability between the versions, and related a number of stimulus metrics 
to identifiability [Sassi, M., Vancleef, K., Machilsen, B., Panis, S., & Wagemans, J. (2010). Identification 
of everyday objects on the basis of Gaborized outline versions. i-Perception, 1(3), 121–142]. In this 
study, after retesting the identifiability of new variants of three of the stimulus versions, we tested 
their robustness to local orientation jitter in a detection experiment. In general, our results replicated 
the key findings from the previous study, and allowed us to substantiate our earlier interpretations of 
the effects of our stimulus metrics and of the performance differences between the different stimulus 
versions. The results of the detection task revealed a different ranking order of stimulus versions 
than the identification task. By examining the parallels and differences between the effects of our 
stimulus metrics in the two tasks, we found evidence for a trade-off between shape detectability and 
identifiability. The generally simple and smooth shapes that yield the strongest contour integration and 
most robust detectability tend to lack the distinguishing features necessary for clear-cut identification. 
Conversely, contours that do contain such identifying features tend to be inherently more complex 
and, therefore, yield weaker integration and less robust detectability.
Keywords: shape detection, perceptual grouping, figure–ground, contour, Gabor patterns, density, orientation jitter.

1 Introduction
Gabor elements are in widespread use as experimental visual stimuli, owing to the fact that these ele-
ments match the receptive field properties of orientation-selective simple cells in primary visual cortex 
and are thus well suited to the targeted stimulation of specific and relatively small subpopulations of 
neurons (Loffler, 2008; Marčelja, 1980). The use of “snakes” rendered by combining Gabors at dif-
ferent positions and with different orientations has long become commonplace to study the process 
of contour integration (Field, Hayes, & Hess, 1993; see Loffler, 2008 for a comprehensive review). 
In addition, displays consisting of Gabor elements have served to investigate texture grouping and 
segmentation (e.g. Casco et al., 2009; Giora & Casco, 2007; Harrison & Keeble, 2008) and to study 
the grouping of both contours and textured surfaces in conjunction (Machilsen & Wagemans, 2010).

In the contour integration literature, the underlying linking mechanism is traditionally hypoth-
esized to rely on local interactions between neighbouring cells in primary visual cortex (V1). There 
is, however, evidence that more global shape properties influence contour integration. One often-
researched example is the allegedly enhanced detectability of closed versus open contours (Kovacs & 
Julesz, 1993; Mathes & Fahle, 2007; but see also Tversky, Geisler, & Perry, 2004). Other studies found 
evidence for the importance of constant direction and magnitude of curvature, rather than closure 
per se (Pettet, 1999; Pettet, McKee, & Grzywacz, 1998). In any case, this body of research indicates 
that contour linking can depend in part on shape properties that only emerge when integrating over a 
larger spatial extent than that of connections between neighbouring V1 cells. Although such spatial 
integration could be mediated by long-range connections within early visual areas, electrophysiologi-
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cal recordings suggest the involvement of extra-striate areas (Loffler, 2008), particularly V4, where 
curvature is strongly represented (Pasupathy & Connor, 1999).

All aforementioned studies used artificial and fairly simple shapes as stimuli, from open contour 
fragments and simple textured areas to circular, elliptic, or other basic geometric shapes for contours 
and textures. We reasoned that if one is interested in the role higher-level brain areas might play in 
contour integration, then it makes sense to use stimuli that are likely to elicit responses at the highest 
levels of the visual hierarchy. One possibility is to use contours corresponding to real-world objects’ 
shapes. In a previous study (Sassi, Vancleef, Machilsen, Panis, & Wagemans, 2010), we gathered 
identification norms for Gaborized outline versions of the Snodgrass and Vanderwart (1980) set, de-
signed precisely with this purpose in mind. The aim was to start from a stimulus set that has a long 
tradition of being used in visual perception research (e.g. De Winter, & Wagemans, 2008; Dickerson &  
Humphreys, 1999; Gaffan & Heywood, 1993; Lloyd-Jones & Luckhurst, 2002; Magnié, Besson,  
Poncet, & Dolisi, 2003; Panis, De Winter, Vandekerckhove, & Wagemans, 2008; Panis & Wagemans, 
2009; Rossion & Pourtois, 2004; Soldan, Hilton, Cooper, & Stern, 2009; Torfs, Panis, & Wagemans, 
2010; Wagemans et al., 2008), and to create new versions of these stimuli geared towards studies of 
contour and texture grouping.

Sassi et al. (2010) tested the identifiability of six different versions of these Gaborized outlines 
using a computerized free naming task. Stimulus versions differed with regard to the orientations of 
background elements inside and outside the contour, whereas element positions remained constant 
across versions. Contour elements also retained their curvilinear (C) orientations in all versions. In-
terior elements were given either random orientations (R) or orientations parallel (P) to the main axis 
of the outline shape (for details, see Sassi et al., 2010). Exterior elements were given either random 
orientations (R), or orientations parallel (P) or orthogonal (O) to the main axis, resulting in a total of 
six permutations of interior and exterior element arrangements.

Besides providing norms for the identifiability of the Gaborized outlines, the results of Sassi et al. 
(2010) established a ranking order of the stimulus versions in terms of identifiability. Average iden-
tification performance clearly benefited from placing iso-oriented Gabor textures within and outside 
the contour. Of the six versions tested, two contained homogeneously oriented textures both inside 
and outside the contour: the version with orthogonal exterior, curvilinear contour, and parallel interior 
element orientations (OCP); and the version with parallel exterior, curvilinear contour, and parallel 
interior orientations (PCP). Both the OCP and PCP versions were significantly better identified than 
the version with randomized exterior, curvilinear contour, and randomized interior orientations (RCR), 
which most closely resembles the typical arrangement used in studies focusing on contour integration 
in isolation. OCP outlines were, on average, also somewhat easier to identify than PCP, although the 
performance difference between the two was not statistically significant. An example of each of the 
stimulus versions described here is shown in the left column of Figure 1.

In addition, the Sassi et al. (2010) study found three stimulus metrics to be generally predictive 
of the identifiability of the embedded outline: the number of Gabor elements that form the contour, 
the number of elements contained in the area inside each contour, and the mean inter-element angle 
along the contour path. Briefly summarized, contour length was positively linearly related to identifi-
ability, whereas the mean inter-element angle and the number of interior elements showed a quadratic, 
inverted U-shaped, relationship to identifiability. In other words, there was an identifiability advantage 
for longer contours, whereas extreme values—both low and high—of the remaining two metrics gen-
erally corresponded to lower identifiability. The effects of the stimulus metrics were framed within a 
theory of object identification that distinguishes two stages: a bottom-up grouping stage followed by 
a top-down matching stage (Panis et al., 2008; Panis & Wagemans, 2009; Torfs et al., 2010; see also 
Biederman, 1987). Accordingly, certain subsets of the stimuli with low identifiability were character-
ized as suffering primarily from problematic contour integration whereas the low identifiability of 
other subsets was interpreted as reflecting difficulties in matching the integrated shape to memory 
representations (see Sassi et al., 2010 for detailed analyses and discussion).

In this study, we ran a yes/no detection task using three variants of the stimulus versions men-
tioned above (OCP, PCP, and RCR). We systematically jittered the orientations of each element in the 
display to weaken both the grouping by contour integration, and the grouping by orientation similarity 
of the interior and exterior elements in the OCP and PCP versions. The data presented here describe 
the robustness, in terms of how much orientation jitter can be tolerated, of shape detectability on the 
basis of Gabor contours and textures for a diverse set of complex everyday object shapes. We investi-
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Figure 1. Three Gaborized outline versions (OCP, PCP, and RCR) of Snodgrass object no. 98 “fox” (target-
present, left) and their target-absent counterparts (right). The 0° jitter level shown here contains perfectly 
curvilinear contour elements and, in the OCP and PCP versions, perfectly aligned interior and exterior elements. 
Each target-absent stimulus contains the exact same orientations as its target-present counterpart, but the elements 
are randomly positioned.
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gated whether the effect of orientation jitter on detectability differed between stimulus versions and/
or depending on the stimulus metrics as it did for identifiability in Sassi et al. (2010). Comparing the 
results of the detection and identification tasks also allowed us to further substantiate the interpretation 
in terms of grouping versus matching difficulties of the findings from the previous study.

We note here that the level of identification specificity required by Sassi et al.’s (2010) scoring 
rules, save for a few exceptions, generally corresponded to basic-level categorization (Rosch, Mervis, 
Gray, Johnson, & Boyes-Braem, 1976). There has been some debate surrounding the distinction be-
tween detection and basic-level categorization within the object recognition literature. Typical models 
of object recognition assume that visual objects need to be matched to stored knowledge for categori-
zation but not for detection (e.g. Riesenhuber & Poggio, 1999). Grill-Spector and Kanwisher (2005), 
however, showed that participants did not need more processing time for basic-level categorization 
than for detection of objects in natural images, and controversially claimed the two to be mutually 
necessary or equivalent processes. Bowers and Jones (2008) subsequently showed that detection did 
require less processing time than categorization if Grill-Spector and Kanwisher’s (2005) paradigm 
was modified by removing the mask presented after each stimulus and by selecting the available re-
sponses for the categorization task from the same superordinate category (e.g. presenting “dog” and 
“cat,” rather than “dog” and “car” as response alternatives). Finally, Mack, Gauthier, Sadr, and Palmeri 
(2008) showed that detection also required less time than categorization when the natural images used 
as stimuli were inverted or degraded by adding visual noise.

Although this literature suggests that detection and basic-level categorization may indeed be based 
on the same information or process in specific cases (as initially reported in Grill-Spector & Kanwisher,  
2005), we had a number of reasons to expect differences between our identification and detection 
tasks. First, we did not use masking in either experiment (see Bowers & Jones, 2008). Second, our 
identification task (Sassi et al., 2010) required a basic-level response to a free naming task rather than 
a choice from a fixed number of alternatives. This further increased categorization difficulty compared 
with Bowers and Jones’ (2008) study and also further lessened the likelihood that participants would 
be able to purposely focus on particular features indicative of specific categories. Finally, our stimuli 
were strongly degraded (see Mack et al., 2008) compared with natural images: the Gaborized outlines 
required contour integration, and/or texture grouping and texture segmentation, to extract a shape that 
itself was a rendering of an outline derived from a line drawing. Considering the relatively degraded 
nature of the stimuli—compared with the natural images typically used in this line of research—and 
the demands of the free naming task in the identification experiment, we predicted a number of differ-
ences and similarities in performance between identification and detection.

Regarding the stimulus versions, we expected to find a qualitatively similar pattern to Sassi et al. 
(2010). Machilsen and Wagemans (2010) have previously shown that an interior texture consisting 
of a cluster of similarly oriented elements embedded in a background of randomly oriented elements 
allows shape detection even in the absence of curvilinear contour elements, whereas earlier work by 
Nygård (2009) showed that such textures without contours do not allow shape identification (see also 
Nygård, 2009; Nygård, Sassi, & Wagemans, 2011). For this reason, we expected the OCP version, of 
which the interior and exterior could be segmented on the basis of the difference in average orienta-
tion, to show a clear advantage over the other versions in the detection task, where contour integration 
need not be the limiting factor. Although the similarly oriented interior and exterior textures of PCP 
stimuli would not allow orientation-based segmentation, the mostly uniformly oriented display might 
cause contour element positions to pop out due to their different curvilinear orientations. Hence, we 
also expected PCP versions to yield better performance than RCR versions, in which shape detection 
relies entirely on the grouping of contour elements, as in the typical contour detection experiment.

As for the effects of the different shape metrics, in order for the interpretation of Sassi et al. 
(2010) to be corroborated, any decreases in identification performance hypothesized to be due to 
mainly matching problems should be mitigated in the detection task, for which we assume matching 
the shape to memory is not a necessary condition. Specifically, we do not expect the lower perform-
ance for extreme—both large and small—numbers of interior elements and for small values of the 
average inter-element angle, as found in the identification task, to show up in the detection results. In 
addition, certain grouping difficulties might be alleviated in a detection task, but this would concern 
very specific cases, namely those in which an incomplete grouping failed to incorporate one or more 
features essential for identification (see Sassi et al., 2010) but might still allow detection.
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2 Experiment

2.1  Participants
Two hundred and sixty-eight first-year psychology students—232 women and 36 men—aged 17–37 
(M = 18.38, SD = 1.60) took part as a mandatory component of their curriculum. Participants were 
explicitly instructed to wear any corrective glasses or contact lenses usually worn during everyday 
activities, and had not previously taken part in experiments with similar or related stimuli.

2.2  Stimuli
The stimulus set was based on a previously selected set of 184 outlines of everyday objects (De Winter 
& Wagemans, 2008; Sassi et al., 2010) derived from the Snodgrass and Vanderwart (1980) collection 
of line drawings. The 184 outlines were embedded in arrays of non-overlapping, even-symmetric 
Gabor elements on a uniform grey background, yielding Gaborized outlines similar to those employed 
in Sassi et al. (2010). Although the previous study yielded a considerable set of well-identifiable con-
tours, it also highlighted a number of limitations of the stimuli, some of which could be overcome 
by relatively simple manipulations to enhance the resolution of the Gabor rendering. Using smaller 
Gabor elements placed in a denser arrangement results in finer sampling of the contour shape. This 
renders the outline smoother and thus easier to integrate (see e.g. Field et al., 1993), and at the same 
time preserves more detailed shape features that should facilitate the matching of the integrated shape 
to stored knowledge.

In this study, we used Gabor elements defined by the product of a sinusoidal luminance grating 
with a frequency of 5 cycles per degree and a circular Gaussian with a standard deviation of 0.06°. 
The stimulus construction procedure was very similar to that of Sassi et al. (2010), but is, nevertheless, 
explained in considerable detail later, owing to a number of non-negligible differences.

We positioned the centroid of each object outline in the centre of a 496 × 496 pixels array, and 
scaled each outline to the maximum possible size for which no side of its bounding rectangle was 
within 30 pixels of the sides of the whole array. Starting from a random location on the outline, Gabor 
elements were placed along the outline at regular intervals of 2.7 times the Gabor wavelength, with 
small adjustments to the inter-element distance permitted when necessary to avoid spatial overlap be-
tween neighbouring elements. All such contour elements were oriented curvilinearly, that is, parallel to 
the local tangent of the object outline. We then added randomly positioned elements inside and outside 
the Gaborized outline until each array contained a total of 1,100 elements.

Subsequently, we checked for each of the 184 arrays separately whether the local density was 
similar between interior, contour, and exterior elements. For each Gabor element located sufficiently 
far from the array’s edge to be surrounded on all sides by other elements, we determined the mean Eu-
clidean distance of the element to its nine nearest neighbours in the Gabor array. Differences between 
the grand means of these Euclidean distances for the groups of interior, contour, and exterior elements 
were tested by comparing each pairwise difference with its approximate null distribution obtained 
from 10,000 random permutations of the individual per-element mean Euclidean distances. When 
necessary, the placement of interior and exterior elements for a particular array was repeated until no 
significant differences in local density were observed.

Table 1 summarizes the distributions of the number of contour, interior, and exterior elements 
across the resulting set of 184 Gabor arrays. In addition, Table 1 contains summary statistics for the 
distribution across the set of two shape properties: compactness (area divided by squared perimeter; see 
Zusne, 1970) and mean contour path angle (mean absolute value of the difference in orientation between 
pairs of consecutive contour elements, expressed in degrees of arc). A full listing with metrics for the 
individual stimuli is available as Supplementary Material on our website at http://www.gestaltrevision.
be/en/resources/supplementary-material/76-resources/supplementary-material/228.

Comparing the properties of the present stimulus set with those in Sassi et al. (2010, Table 1), it 
is obvious that using denser arrays and rescaling the embedded outlines indeed resulted in Gaborized 
outlines that were longer and smoother, containing more elements with on average smaller inter-
element angles. Evidently, this finer sampling of the contour also provided more detailed information 
with regard to the outline shape. Thus, we predicted a general increase in identifiability compared with 
the results of Sassi et al. (2010), as both the initial grouping of the contours and the later matching of 
the grouped shape to memory representations (see Panis et al., 2008; Panis & Wagemans, 2009; Torfs 
et al., 2010) should be facilitated with the present stimuli.

http://www.gestaltrevision.be/en/resources/supplementary-material/76-resources/supplementary-material/228
http://www.gestaltrevision.be/en/resources/supplementary-material/76-resources/supplementary-material/228
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We created three versions of each of the 184 Gaborized outlines, 552 stimuli in total, only differ-
ing in the orientations of interior and exterior elements. Element positions as well as orientations of 
contour elements were kept constant across stimulus versions. We created three combinations of inte-
rior and exterior orientations: orthogonal exterior, curvilinear contour, parallel interior (OCP); parallel 
exterior, curvilinear contour, parallel interior (PCP); and randomized exterior, curvilinear contour, ran-
domized interior (RCR). An example of each stimulus version is shown in the left column of Figure 1.

We re-ran the identification task of Sassi et al. (2010) using these new, denser stimuli, to check 
whether their relative ranking order of the versions and their effects of stimulus metrics were repli-
cated, and whether identification rates would indeed increase. Briefly summarizing the findings of the 
identification task, the ranking order for these three versions was replicated and performance for OCP 
stimuli was now significantly higher than for PCP stimuli. Overall identifiability showed an increase as 
expected, and the linear effect of contour length and quadratic, inverted U-shaped effect of the number 
of interior elements were replicated. The quadratic effect of the mean path angle found in the previ-
ous study was, however, not replicated. Instead, we found a simpler linear effect that predicted lower 
performance for larger mean path angles, and this trend was specifically significant for the OCP and 
RCR versions but not for the PCP version. The lower performance for small mean path angles, inter-
preted by Sassi et al. (2010) as mostly due to matching difficulties, appeared to have been mitigated 
by the higher density stimuli. A detailed report of the findings of the identification task, including all 
stimuli and identification rates for each of them, is available for download as Supplementary Material 
to this article. We will return to these findings below in the discussion of the results of the detection 
experiment.

We created further variants of the stimuli to serve as target-present stimuli in our detection task, by 
adding jitter to the local orientations of all elements in the arrays. For each of the 552 (184 objects ×  
3 versions) stimuli, we first generated the highest possible jitter level by assigning each element a 
random orientation. Subsequently, we created eight intermediate jitter levels by interpolating linearly 
spaced steps between the original and fully randomized orientations for each element in every array. 
Thus, we obtained 10 instances of each of the 552 arrays, with maximum levels of element orientation 
jitter ranging from 0° to 90°, in steps of 10°. For each stimulus version, the left columns of Figures 1–3  
contain examples of target-present stimuli with orientation jitter levels of maximum 0°, 90°, and 40°, 
respectively.

We then created sets of target-absent stimuli, each matched pairwise to a set of target-present 
stimuli belonging to a particular object. Each set of target-absent stimuli was created by first filling a 
new array with 1,100 randomly positioned elements while ensuring that average inter-element spacing 
did not differ from that of the corresponding target-present set. In order to also match the local element 
orientations between specific target-absent and target-present arrays, we generated a random mapping 
so that each element in the target-absent array corresponded to one element in the target-present array. 
Three sets of 10 target-absent stimuli were then created by mapping the element orientations from each 
jitter level and stimulus version in the target-present set to the corresponding jitter level and stimulus 

Table 1. Summary statistics on the distribution of the number of contour, interior and exterior Gabor elements, 
compactness, and mean path angle across the set of 184 Gaborized outlines (statistics Q1 and Q3 denote the first 
and third quartiles, respectively). The compactness value is defined as the ratio (A/P²) of the continuous area (A) 
to the squared perimeter (P) of the embedded outlines. As rescaling has no effect on this ratio, the compactness 
values for each of our stimuli are exactly the same as those in Sassi et al. (2010)

Number of Gabor elements

 Contour Interior Exterior Compactness Mean path angle

M 89.12 205.95 804.93 0.0297 18.83

SD 22.77 125.46 130.22 0.0175 8.94

Min 49 10 441 0.0029 5.59

Q1 72 111 722.5 0.0156 12.08

Mdn 84 182 819 0.0263 16.72

Q3 105.5 277.5 896.5 0.0400 23.93

Max 153 535 1032 0.0728 58.51
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Figure 2. The three Gaborized outline versions of Snodgrass object no. 98 “fox” (target-present, left) and their 
target-absent counterparts (right) at the 90° jitter level. Compared with Figure 1, element positions are identical 
but each element in the target-present display has been assigned a random orientation, which was then assigned 
to the corresponding target-absent element as well.

version in the target-absent set. Thus, after repeating this process for all sets of target-present arrays, 
the end result was a target-absent counterpart for each of the 5520 target-present arrays, containing 
the exact same element orientations, in a random but comparably dense spatial arrangement. The right 
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columns of Figures 1–3 display the target-absent counterparts to each of the target-present stimuli 
shown in the left column.

Figure 3. The three Gaborized outline versions of Snodgrass object no. 98 “fox” (target-present, left) and 
their target-absent counterparts (right) at the 40° jitter level. Element positions remain identical, but by linear 
interpolation between the original (Figure 1) and random (Figure 2) orientations each element has an orientation 
deviation (again matched between target-present and target-absent stimuli) of up to 40° from original.
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The complete set of stimuli is available for download as Supplementary Material to this article. In 
addition, the software used to generate the stimuli has since been expanded, documented, and made pub-
licly available as the Grouping Elements Rendering Toolbox for Matlab (Demeyer & Machilsen, 2012).

2.3  Procedure
Participants sat in a classroom equipped with 32 identical computer systems, taking part in groups of 
up to 30 at a time. Each of them viewed the 496 × 496 pixel Gabor arrays on a 17-inch CRT moni-
tor, set to 1024 × 768 pixel display resolution and 75-Hz refresh rate. From an approximate but not 
strictly controlled viewing distance of 0.6 m, angular size of the stimuli was approximately 14° both 
horizontally and vertically.

We designed the yes/no detection task using the E-Prime software suite (Schneider, Eschman, & 
Zuccolotto, 2002). Written instructions before the start of the experiment informed participants that 
they would be shown arrays either containing a shape or not, and that their task was to indicate whether 
or not this was the case by pressing the left or right mouse button, respectively. To acquaint partici-
pants with the task, they were shown a number of example target-present arrays containing simple 
geometric shapes and a number of target-absent arrays, each with varying degrees of orientation jitter. 
The correct response was stated before each set of example arrays, and participants were required to 
press the correct response button to advance through the examples.

During the actual experiment, each trial consisted of a single array displayed in the centre of the 
screen until a response was recorded. We did not impose any fixed limits on presentation duration as 
we had only had the opportunity to pilot test the task on expert observers, and we sought to avoid mak-
ing the task unnecessarily difficult for naïve participants by presenting stimuli too briefly or making it 
unnecessarily tedious by forcing them to view the stimuli for a fixed or minimum duration before ac-
cepting responses. Instead, we measured reaction times but relied on the participants to find a suitable 
pace themselves. To this end, the written instructions informed participants that they would be shown 
no less than 736 arrays, but that 30 minutes would be ample time for anyone to perform the task at 
a relatively quick, but not rushed, pace. Participants received no feedback on their responses, and as 
soon as a response button was pressed, the next array was displayed.

Stimulus version (OCP, PCP, or RCR) was manipulated between participants. Within each ver-
sion, we generated 50 pseudorandomizations, ensuring that (a) every participant was shown two out of 
the ten target-present arrays for each object, and two out of the ten corresponding target-absent arrays; 
and (b) every group of five consecutive participants for a particular stimulus version provided exactly 
one response to each of the target-present and target-absent arrays of that version. The order of trials 
was randomized for each participant. All 268 participants completed one session of 736 trials, which 
across participants yielded 17–18 responses to each of the 11,040 unique Gabor arrays.

3 Results

3.1  Reaction times and data trimming
As the first step in processing the data, we examined the reaction times to look for any that might 
point towards unreliable responses. Participants responded well within 1 s on average (M = 866 ms) 
although the distribution was strongly positively skewed (Mdn = 608 ms, SD = 959 ms). Some exces-
sively long or implausibly short reaction times were immediately evident.

We thought it preferable to remove the records with the very longest reaction times, as participants 
were not individually supervised and it was therefore unclear what was causing these extremely de-
layed responses, with reaction times occasionally in the tens of seconds. Some participants may have 
been distracted, for instance, or some may have taken miniature breaks at their leisure. Removing 
these records from the data set would place the focus on the data collected while participants were per-
forming the task as we had intended, at a steady pace and with relatively short presentation durations. 
We reasoned that the very shortest reaction times, occasionally even below 50 ms, must have been due 
to accidental button presses. Hence, we decided to remove the records with the shortest reaction times 
from the dataset as well.

Although the choice of precise bounds for trimming the data was necessarily arbitrary, we opted 
to remove the 2% of records with the most extreme reaction times (the highest and lowest percentile). 
This resulted in an upper bound of 4655 ms, making allowance for considerable decision time, while 
keeping presentation time below the 5 s maximum used in our identification experiments (see Sassi 
et al., 2010; Supplementary Material), and disregarding the most markedly delayed responses. The 



754 Sassi M, Machilsen B, Wagemans J

resulting lower bound was 215 ms, which was sufficiently strict to eliminate the most obvious errors 
without rejecting potentially real, stimulus-dependent responses. This method of trimming the data 
naturally left the median reaction time unaltered at 608 ms, and resulted in a somewhat less skewed 
distribution (M = 810 ms, SD = 617 ms). The trimmed dataset contained 14–18 responses to each of 
the stimuli, with only 9 out of the 11,040 different bitmaps retaining fewer than 15 responses.

Although the amount of trimming performed was relatively conservative, it did not appear to 
introduce any systematic bias—by stimulus version, jitter level, target-present versus target-absent, or 
even object identity—in the retained responses, whereas attempts at stricter trimming started showing 
evidence for such biases. In this respect and with regard to the upper bound specifically, it should be 
noted that participants were never explicitly asked to perform the task as fast as possible on every trial, 
but to pace themselves across the experimental session as a whole. Thus, it is not at all unlikely that 
they genuinely and consciously took several seconds to reach a decision on a small amount of difficult 
or ambiguous trials, without this necessarily being an indication of distraction. We did not perform fur-
ther detailed analyses of reaction time, but cursory exploration of target-present versus target-absent 
trials showed that median reaction times were indeed the longest for target-present stimuli at interme-
diate jitter levels, where participants are likely to be somewhat ambivalent towards how to respond. 
The lowest and highest jitter levels in target-present trials generally elicited fast yes or no responses, 
respectively. Median reaction times to target-absent stimuli were comparably short, and were stable 
across all jitter levels.

3.2  Performance by stimulus version and jitter level
As expected, performance in target-absent trials was consistently high. Averaged across object shapes 
and participants, the proportions of false alarms were small and stable across jitter levels, but differed 
among the between-subjects conditions of stimulus version: approximately 2% for the OCP version, 
5% for PCP, and 4% for RCR. Average performance in target-present trials, too, followed the expected 
pattern, decreasing monotonically with increasing jitter. Maximum performance was markedly higher 
for the OCP version (ranging from 97% to 3% for 0° and 90° of jitter, respectively) compared with PCP 
(from 81% to 5%) and RCR (from 85% to 5%).

Figure 4 shows sensitivity measures d′ calculated by stimulus version and jitter level, across par-
ticipants and objects. The d′ values, which aggregate across target-present and target-absent trials 
taking response bias into account, paint the same picture as the percentages correct. Sensitivity was 
highest and most robust to orientation jitter in the OCP condition, where performance was near perfect 
at the lowest jitter levels. Between the PCP and RCR conditions, sensitivity was similar, with d′ for 
both versions asymptoting at lower levels than for OCP, and starting to decrease already from lower 
levels of orientation jitter.

Figure 4. d′ by stimulus version and by jitter level, across all participants and object shapes.
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At the zero jitter level, participants in the OCP condition were on average nearly unbiased (crite-
rion c = 0.06), whereas those in the PCP and RCR conditions showed a moderately conservative bias 
(c = 0.38 and 0.32, respectively). As the number of hits decreased with orientation jitter whereas the 
number of false alarms remained relatively constant, c increased monotonically with orientation jitter 
in all conditions up to the level of 90°, at which there was essentially no difference between target-
present and target-absent stimuli. The increase was most pronounced in the OCP version (c = 1.92 
at 90° jitter), reaching a lower maximum in the PCP (c = 1.63) and RCR (c = 1.65) versions. Taken 
together, the d′ and c values show that participants in the OCP condition were more accurate in terms 
of both hits and rejections than those in the PCP and RCR conditions, for whom misses occurred much 
more frequently even without orientation jitter and false alarm rates were higher as well.

3.3  Relationships between stimulus metrics and detectability in the different conditions
The focus of our statistical analyses was on finding general relationships between the stimulus met-
rics shown in Table 1 and the detectability, or robustness to jitter, of the respective object shapes in 
our stimuli. To obtain a metric for this robustness to jitter, we first recalculated d′ for each subset of 
responses to target-present and target-absent trials corresponding to the same object, version, and jit-
ter level. As participants were never shown the same stimulus twice, this necessarily meant that data 
were combined across different observers in the same stimulus version condition. However, system-
atic differences in observers’ bias between the different conditions were controlled for by using this 
sensitivity measure. Extreme values of the number of hits or false alarms that would have resulted in 
an undefined d′ were adjusted using the 1/N correction suggested for yes/no experiments by Hautus 
and Lee (2006), that is, by simply subtracting or adding one hit or false alarm. A complete listing of d′ 
values for each combination of object, version, and jitter level is available as Supplementary Material.

For each object and stimulus version, we then determined the highest jitter level with a d′ value 
greater than or equal to 1.5, and used these threshold jitter levels as the dependent variable for subse-
quent model fitting. The threshold level of 1.5 for d′ corresponded roughly to a traditional threshold of 
75% correct across target-present and target-absent trials corresponding to the same object, version, and 
jitter level. As it turned out, the 1.5 criterion for d′ differentiated well between the different objects and 
versions. The resulting threshold jitter levels ranged from 0° to 70°. There were 21 cases—out of 552  
object × stimulus version combinations—of a particular object and version not reaching the criterion 
even without any orientation jitter. These cases were nevertheless assigned the lowest possible threshold 
jitter level of 0° and included in the analyses that we report below, as we reasoned that their low detect-
ability might be informative with regard to the role of our stimulus metrics in contour detection. (How-
ever, we later performed analyses from which we excluded these 21 cases. Those additional analyses are 
not reported in detail here, but showed that the inclusion or exclusion of these stimuli had no bearing on 
the results.)

Using the threshold jitter levels as the outcome variable, and fixed effects of stimulus version and 
our stimulus metrics (see Table 1) as the explanatory variables, we fitted multilevel regression models. 
Because we were not focusing on the idiosyncratic effects of specific object shapes, we included object 
identity as a random factor in all candidate models. We added a random object identity × stimulus ver-
sion interaction, to account for some of the variability in the effect of stimulus version on particular 
object shapes. The inclusion of these random effects served to keep the focus on those effects of stimu-
lus version and of the stimulus metrics that generalize across the entire set.

On the basis of preliminary analyses by stimulus version, we fitted several models to the combined 
data from all versions, testing for a main effect of stimulus version, main linear and quadratic effects 
of the number of contour elements, number of interior elements, and mean path angle, and interactions 
of each of these numerical predictors with the stimulus version factor. Note that the value used for the 
mean path angle metric for each object was that which corresponded to the contour without orientation 
jitter, and did not derive from the actual inter-element angles at the threshold jitter level. We used a 
manual stepwise procedure in which χ² likelihood ratio tests between pairs of nested models served to 
decide on the inclusion of the main effects, and of interactions of stimulus version with the remaining 
predictors in the model. The final model retained the random object × stimulus version interaction.

Table 2 summarizes the effects in the fixed part of the model. The fixed main effect of stimulus 
version contributed significantly to model fit. However, not all pairwise differences between versions 
were significant. The estimates and p values in Table 2 use RCR as the reference level and show that 
the threshold jitter level for the PCP version was slightly lower than but did not differ significantly from 
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the RCR version. Threshold jitter for the OCP version, however, was significantly higher than for RCR 
and PCP (both Bonferroni-corrected p < .001), which did not differ significantly from each other, as 
confirmed by additional model fits using either OCP or PCP as the reference level (not included in Table 
2). The stimulus version factor additionally interacted with all three remaining numerical predictors pre-
sent in the model: the number of contour elements, number of interior elements, and mean path angle.

There was a significant positive effect of the number of contour elements within the RCR and PCP 
versions, whereby detection of longer contours was generally more robust to orientation jitter. A slightly 
but not significantly more pronounced positive effect was apparent in the PCP version, where the thresh-
old jitter level increased or decreased more steeply as a function of the number of contour elements. 
Within the OCP version, on the contrary, the estimate corresponded to a negative, but non-significant 
trend (p = .14 for the refitted model with OCP as the reference level, not included in Table 2, which 
instead contains the significant interaction term for the OCP version).

We found a significant quadratic effect of the number of interior elements, but the precise relation-
ship to the threshold jitter level again varied between versions. Within the RCR version, only the first-
degree term was significant (see Table 2), and the effect corresponded to a relatively constant threshold 
jitter level for small to average numbers of interior elements followed by an increase in the threshold 
jitter level for larger numbers of interior elements. Both the first- and second-degree interaction terms 
for the PCP version (versus RCR as the reference) were significant. There, large numbers of interior 
elements also corresponded to the highest threshold jitter levels, but a much stronger decrease in the 
threshold jitter level was apparent with smaller numbers of interior elements. For the OCP (versus 
RCR) interaction, only the first-degree interaction term was significant. Within the OCP version, the 
fitted values described a U-shaped relationship, with higher threshold jitter levels for both the largest 
and smallest numbers of interior elements.

Finally, the model contained a quadratic effect of the mean path angle, which again interacted with 
the different stimulus versions. Within the RCR version, both the first- and second-degree terms were 
significant, and threshold jitter decreased monotonically with increasing mean path angle. The first-
degree interaction term for the PCP version (versus RCR) was significant, and the fitted values for the 
PCP version show a U-shaped relationship, with a trend towards higher threshold jitter levels for the 
smallest and largest mean path angle values. The first-degree interaction term for the OCP versus RCR 

Table 2. Parameter estimates, standard errors, test statistic values, and p values for the fixed effects in the final 
model
Parameter Estimate SE t p
RCR vs. OCP  15.4  0.73  21.13  <.001**

RCR vs. PCP  −1.14  1.06  −1.08  .281

# Contour  9.24 × 10−2  4.00 × 10−2  2.31  .022*

# Contour × OCP  −1.29 × 10−1  3.93 × 10−2  −3.27  .001**

# Contour × PCP  −0.90 × 10−1  5.69 × 10−2  1.58  .114

# Interior  85.60  18.96  4.51  <.001**

(# Interior)²  13.26  18.10  0.73  .464

# Interior × OCP  −81.82  18.66  −4.38  <.001**

(# Interior)² × OCP  17.43  17.81  0.98  .328

# Interior × PCP  127.20  27.00  4.71  <.001**

(# Interior)² × PCP  −99.18  25.77  −3.85 <.001**

Mean path angle  −254.30  21.73  −11.70  <.001**

Mean path angle²  54.69  18.32  2.98  .003**

Mean path angle × OCP  161.94  21.38  7.57  <.001**

Mean path angle² × OCP  −29.06  18.03  −1.61  .108

Mean path angle × PCP  −05.61 30.93  6.65  <.001**

Mean path angle² × PCP  −27.57 26.09  −1.06  .291

Note: *p < .05; **p < .01.
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comparison was significant as well. Within the OCP version, threshold jitter decreased monotonically 
from small to average mean path angles, after which the threshold remained stable for average to large 
mean path angles.

4 Discussion

4.1  Detectability differences between stimulus versions
The graphical comparison of d′ by jitter level between the stimulus versions shown in Figure 4, as well 
as our subsequent analyses, showed a striking difference in the robustness to orientation jitter of the 
OCP version, on the one hand, and the PCP and RCR versions, on the other hand (both the OCP versus 
PCP and OCP versus RCR comparisons resulted in a p < .001).

The detectability advantage for the OCP version was expected, as it is the only version for which 
the target-present stimuli contain two distinct textured regions that can be segmented based on their 
different orientations, and as Machilsen and Wagemans (2010) have shown, observers readily combine 
the available contour and texture information when deciding on the presence of a shape within Gabor 
arrays. Unlike in an identification task, the grouping by orientation similarity of a central textured 
region that stands out from its surround can be sufficient to detect a shape, without necessarily hav-
ing a very detailed shape representation or being able to identify the shape in question. Consequently, 
contour integration was not strictly necessary to detect an object in the OCP version, and this is also 
reflected in our findings with regard to the stimulus metrics (see later).

Second, contour integration itself can benefit from the OCP arrangement as well, as contour ele-
ments within an OCP stimulus have a higher probability of being surrounded by near-perpendicular 
orientations on one side of the contour, due to the orthogonality of the orientations within and outside 
the contour. As Dakin and Baruch (2009) have shown by measuring the exposure duration necessary 
for contour shape discrimination, a near-perpendicular surround facilitates contour grouping whereas a 
near-parallel surround interferes with it. Robol, Casco, and Dakin (2012) found that this effect general-
izes to a simpler contour localization task more akin to our detection task. They report the same effect 
on the required exposure duration as well as a similar effect on the tolerance for orientation jitter, and 
provide evidence that the detrimental influence of the near-parallel surround is largely explained by 
crowding.

These effects of the near-perpendicular and near-parallel surrounds actually contribute to the sig-
nificant difference between the OCP and PCP versions in two ways. Although in OCP stimuli a near-
perpendicular surround was more likely than in PCP, PCP stimuli potentially contained a near-parallel 
surround on both the interior and exterior of certain contour segments—which, by definition, was 
never the case for OCP stimuli. This difference was further accentuated by the choice of the main axis 
orientation for the interior and exterior elements in PCP stimuli. As shapes tend to be elongated along 
this axis, significant portions of the PCP contours were surrounded by near-parallel orientations on 
both sides.

Whereas the higher resistance to jitter for the OCP version than for both other versions was ex-
pected, the similarity in average performance between the PCP and RCR versions was not. We pre-
dicted the same ranking order as found in our identification experiments, but the d′s shown in Figure 4 
initially suggested a reversal thereof. Despite the fact that detectability of the RCR version appeared to 
be slightly more robust to orientation jitter than the PCP version though, the difference between the two 
was not significant (p = .28) according to our further analysis of the threshold jitter level.

There were, however, significant differences in the effects of our numerical predictors between 
conditions (see later for a detailed discussion of the individual numerical predictors). These interac-
tion effects reflect that certain subsets of stimuli do yield different threshold jitter levels in the two 
conditions. Average threshold jitter was higher for PCP than for RCR versions of longer, more angular 
contours (with large numbers of contour elements and large mean path angles, see later), which im-
plies that contour integration difficulties with the RCR versions of these stimuli were mitigated by the 
additional texture grouping cue in the PCP versions. Conversely, PCP showed less robustness to jitter 
than RCR for another subset of narrow, elongated object shapes (short contours with small mean path 
angles and small numbers of interior elements, see later). In these cases, the PCP version contained a 
near-parallel surround along the majority of the contour. This introduced a different grouping problem: 
unwanted grouping of contour elements with the near-parallel surrounding elements, which rendered 
these contours very difficult to detect. This offset the advantage of the PCP version for the longer and 
more angular contours and nullified the difference between PCP and RCR when averaging across all 
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objects. We return to these findings and substantiate our interpretation in more detail in the discussion 
of the individual stimulus metrics later.

The above still leaves the question of why we found an advantage of PCP over RCR in the identifica-
tion task run with the same stimuli (see the Supplementary Material for a detailed report). We propose the 
following explanation. On the one hand, the grouping problems specific to PCP affected mostly stimuli 
for which identification performance was inherently restricted by matching problems in all versions 
(short contours with small mean path angles and small numbers of interior elements, see also Sassi et al.,  
2010 and the Supplementary Material to this article). The grouping difficulties specific to the PCP ver-
sion of this subset did not manifest themselves in the identification task due to a floor effect whereby 
performance was poor across all versions: although the RCR and OCP versions could be more readily 
grouped and detected—as the results of the detection task show—many of the integrated contour shapes 
were simply too indistinct for clear-cut matching to memory, and thus the grouping advantage of the 
RCR and OCP versions ultimately provided no significant benefit to identification compared with PCP. 
Switching to a detection task where matching was no longer necessary boosted performance for the RCR 
and OCP versions, revealing the specific grouping disadvantage of PCP for this subset of shapes.

On the other hand, the grouping problems specific to RCR affected longer, more angular contours 
for which mainly grouping—rather than matching—problems affected all versions in the identifica-
tion task, but were most pronounced for RCR. As the identification performance differences here were 
predominantly due to the grouping stage, switching to a detection task that eliminates the matching 
simply preserved the grouping disadvantage of the RCR version. Taken together, this means that the 
grouping problems specific to RCR affected the outcome of both tasks, while those specific to PCP 
only manifested themselves in the detection task. Therefore, in the identification task RCR yielded 
lower average performance, whereas in the detection task, the PCP disadvantage happened to offset 
that of RCR on average, resulting in approximately equal mean threshold jitter for the two conditions.

In what follows, we examine how the stimulus metrics in the model relate to the detectability of 
each of the three stimulus versions. The number of contour elements, the number of interior elements, 
and the mean path angle all showed different effects depending on stimulus version, and their effects 
also differed from those found in our identification tasks. As in Sassi et al. (2010), we use targeted 
visual inspection of stimuli with extreme values—below the first quartile or above the third quartile 
of the distribution of each metric across all 184 shapes—of each of the metrics, and characterize these 
subsets of stimuli as succinctly as possible, to better interpret the effects of our metrics.

4.2  Contour length
Within the PCP and RCR versions, the fitted model suggested a benefit for longer contours, and this effect 
was more pronounced, but not significantly so, for PCP compared with RCR. Within the OCP version, 
contour length did not have a significant effect. The subset of short contours with the lowest threshold 
jitter levels in the PCP version consisted almost entirely of straight and narrow shapes such as object no. 
237 “toothbrush” shown in Figure 5. The detection of this subset of stimuli was without a doubt strongly 
affected by the presence of a near-parallel surround along most of the contour in the PCP version, which 
explains why the low performance for shorter contours tends to be exacerbated in this version. This group 
notably contained nine cases, out of a total of 21 across all versions, of shapes that did not reach the 1.5 
threshold for d′ even with zero orientation jitter, no. 237 “toothbrush” being one of them.

The group of short contours with low threshold jitter levels in the RCR condition was much more 
heterogeneous than the set of almost strictly stick- or bar-shaped objects described above, and proved 
difficult to characterize succinctly. Consequently, it was difficult to isolate a single specific reason why 
such shorter contours were more difficult to integrate. The more clearly interpretable finding for the 
RCR version was that, despite the increase in threshold jitter with increasing contour length, longer 
contours did not quite reach the same average threshold jitter levels as their OCP and PCP versions. 
This was due to the fact that many of the longest contours also had large mean path angle values and 
were angular, jagged contours for which integration was most impeded in the RCR version. Compare, 
for instance, the different versions of no. 93 “fly” shown in Figure 6. Despite the trend towards higher 
threshold jitter for longer contours, the longest RCR contours also comprised six shapes, out of a total 
of 21 across all versions, which did not reach the 1.5 threshold for d′ even without orientation jitter.

The reasons for the absence of a significant contour length effect within the OCP version are 
twofold. First, the group of short and almost strictly stick- or bar-shaped objects described above was 
not at a disadvantage here, but rather, the near-perpendicular surround of the OCP version rendered 
them highly salient, as can be seen by comparing the OCP and PCP versions of no. 237 “toothbrush” 
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Figure 5. Continuous outline and Gaborized versions (0° jitter) of object no. 237 “toothbrush.” The orthogonal 
surround of OCP rendered the shape highly salient (threshold jitter level: 60°) whereas the parallel surround of 
PCP suppressed the shape to the extent that even the perfectly aligned version shown here did not reach the d9 
criterion of 1.5. The threshold jitter level for the RCR version was 40°.

in Figure 5. Second, for the longest contours (e.g. no. 93 “fly” in Figure 6), observers could also rely 
on the grouping of a sizeable textured interior area, rendering detection less sensitive to any contour 
integration difficulties for such stimuli.

4.3  Number of interior elements
Across all three versions, contours with large numbers of interior elements yielded high threshold jit-
ter levels on average. In our identification experiments (Sassi et al., 2010; Supplementary Material), 
we found consistently low performance across all versions for these stimuli. As a group, these shapes 
are compact, with a large surface surrounded by a smooth and relatively featureless contour without 

Figure 6. Continuous outline and Gaborized versions (0° jitter) of object no. 93 “fly.” Detectability of this long 
and irregular contour suffered most in the RCR version (threshold jitter level: 20°). The OCP and PCP versions 
yielded identical threshold jitter levels of 40°.
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Figure 7. Continuous outline and Gaborized versions (0° jitter) of object no. 214 “spool of thread.” Detection of 
this smooth and compact shape was very robust to orientation jitter in all versions: OCP, PCP, and RCR all yielded 
the same threshold jitter level of 60°.

many marked protrusions (e.g. no. 214 “spool of thread” in Figure 7). We had therefore reasoned that 
these contours are in theory easy to integrate (according to, for instance, association field models such 
as that of Field et al., 1993) and that the low identification performance was mostly due to matching 
problems. The findings of our detection experiment confirm that when matching is superfluous, these 
contours are among the most robust to orientation jitter. The large and solid interior surface of these 
stimuli evidently creates a strong texture segmentation cue in the OCP version, but the fact that stimuli 
with large numbers of interior elements are generally also smooth contours with long straight parts 
along different orientations—that is, long and smooth contour segments are not confined to the main 
axis orientation that would be suppressed in the PCP stimuli—means that they show strong contour 
integration as well. For instance, the three versions of no. 214 “spool of thread” in Figure 7 reached 
the same threshold jitter level of 60° in all versions.

Threshold jitter levels for the stimuli with the smallest numbers of interior elements differed be-
tween the versions. Most contours in this subset were also among the short contours that yielded low 
threshold jitter levels in the PCP version (see a discussion of contour length effect in Section 4.2) such 
as no. 237 “toothbrush” shown in Figure 5. In our earlier identification study (Sassi et al., 2010), we 
found low performance for these stimuli in all versions. Due to the simple shapes of these contours, 
which consist for the most part of long straight segments that should be readily integrated, we had 
again interpreted this low performance as resulting from matching difficulties (but see the Supplemen-
tary Material for a discussion of grouping difficulties with the PCP version of the new stimuli). Our 
present findings again substantiated this interpretation. For the RCR version, the threshold jitter level 
for these stimuli with small numbers of interior elements was not lower than for average numbers of 
interior elements, indicating that both types of contours integrated equally well. In the OCP version, 
contour integration of these narrow, elongated shapes was further enhanced by the near-perpendicular 
surround, yielding higher threshold jitter levels than for contours with average numbers of interior ele-
ments. Finally, in the PCP version, the final model shows low threshold jitter levels due to the grouping 
problems specific to the near-parallel surround in this version. The three versions of object no. 237 
“toothbrush” in Figure 5 exemplify the general performance pattern for this subset of stimuli with few 
interior elements, reaching a high threshold jitter level of 60° in the OCP condition, a somewhat lower 
40° in the RCR condition, and failing to reach the d′ threshold at all in the PCP condition.

4.4  Mean path angle
The previous (Sassi et al., 2010) identification study had found an inverted U-shaped pattern whereby 
both very small and very large mean path angles corresponded to lower identification performance, and 
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interpreted this finding as evidence for matching problems with small mean path angles but contour  
integration problems with larger mean path angles. However, when we re-ran the identification task 
with the present stimuli (see the Supplementary Material for details) we no longer found a disadvan-
tage for small mean path angles. Although we stand by our previous interpretation, the increased den-
sity of our displays may have mitigated both matching and contour integration problems by rendering 
the outlines simultaneously smoother in terms of path angle and more detailed in terms of the features 
that can be sampled sufficiently well by Gabor elements to be recognized. Hence, the data presented 
here do not corroborate or otherwise qualify our earlier interpretation with regard to the detrimental 
effect of small mean path angles in Sassi et al. (2010).

The effects of the mean path angle in the final model of the detection data were quadratic, but in 
OCP and RCR the resulting curvilinear relationship nevertheless boiled down to a monotonic decrease 
in average threshold jitter level with increasing mean path angle. The general effect is thus qualitatively 
similar to the detrimental effect of large mean path angles found in the identification data and, likewise, 
was more pronounced in RCR than in OCP (see also Supplementary Material). This similarity between 
the identification and detection effects substantiates our interpretation that grouping problems underlie 
the diminished performance for contours with larger mean path angles. Object no. 93 “fly” is one ex-
ample of such a contour: the “contour-only” RCR version yielded a threshold jitter level of only 20°, 
whereas the OCP version—containing a textured interior that allows orientation-based segmentation, 
as well as a locally near-perpendicular surround in several locations along the contour—still reached a 
threshold jitter level of 40°.

Although the fitted values for the PCP version corresponded to a shallow U-shaped relationship, 
upon inspection the difference between it and the remaining versions again turned out to be qualita-
tively the same as what we found when testing the identifiability of the denser stimuli (see also Sup-
plementary Material). On the one hand, the advantage for small mean path angles was still present but 
far less pronounced in PCP due to near-parallel orientations suppressing some of the simpler stick- or 
bar-shaped contours (such as no. 237 “toothbrush” in Figure 5) that contributed to this effect in the 
other two versions. On the other hand, there was a slight upturn in performance for the very highest 
mean path angles in the PCP version. These angular and jagged contours have appendages in different 
directions, sometimes orthogonal to the shape’s main axis, and in these cases the PCP arrangement 
actually provided near-perpendicular surround for sizeable parts of the contour, aiding its integration. 
For instance, a subset of these contours consisted of four-legged animals whose main axis was close 
to horizontal, causing the animal’s vertically oriented legs to be surrounded by near-perpendicular 
orientations on both the interior and exterior. The PCP version of object no. 93 “fly” in Figure 6 shows 
a similar phenomenon.

5 Conclusion
This study revisited the idea of using Gaborized contours of everyday objects as perceptual grouping 
stimuli, which was previously explored in the identification experiments of Sassi et al. (2010). Build-
ing on the results of the previous study, we created higher density variants of three of the stimulus 
versions (OCP, PCP, and RCR) and re-ran the identification task (see Supplementary Material) before 
using additional variants of the stimuli with jittered local element orientations in a detection experi-
ment that we reported here in detail.

Except for the identification difficulties for a subset of stimuli with small mean path angles, which 
were mitigated by the increase in density, the majority of the key findings from Sassi et al. (2010) were 
replicated when we re-ran the identification task, and the results of the detection task corroborated our 
earlier interpretations of these findings in terms of whether they reflected problematic matching of 
shapes to stored knowledge versus problematic perceptual grouping per se.

The decrease in both identifiability and robustness of detection to orientation jitter with increasing 
mean path angle, and the way this relationship varied between the stimulus versions, was consistent 
between the two tasks. This constitutes convincing evidence for the interpretation that this effect is the 
result of contour integration difficulties—which are to be expected with large path angles according to 
all current models of contour integration—that are modulated by the different orientations surrounding 
the contour in the different stimulus versions (see Dakin & Baruch, 2012; Robol et al., 2012).

Likewise, the low identifiability but high robustness to jitter we found for contours with large 
numbers of interior elements underline that these shapes are in fact among the easiest to integrate, but 
are simply too indistinct to be reliably matched to memory representations. The same argument applies 
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to the contours with small numbers of interior elements in the OCP and RCR versions. These results 
show a trade-off between the detection and identification of our stimuli. Although mostly straight or 
smoothly curved contours and large solid surfaces make for strong grouping and thus robust detection 
of contours and textures, they often lack the clearly recognizable features necessary for identification. 
Conversely, contours with conspicuous features that are diagnostic of object identity are inherently 
more complex and thus yield somewhat weaker grouping.

The identification task conducted with our new, denser stimuli (see Supplementary Material) 
showed the expected ranking order (OCP > PCP > RCR). In the detection task, however, we found 
no significant difference between PCP and RCR. Our further analyses showed that PCP versions of 
longer, more angular contours were more robust to orientation jitter than their RCR versions. RCR 
versions of narrow, elongated object shapes proved more robust than their PCP versions containing a 
near-parallel surround. These differences between the versions simply offset each other when averag-
ing across all object shapes.

The reason why we did find significantly better performance for PCP in identification tasks is that 
the grouping problems specific to PCP affect mainly shapes that are insufficiently distinct for clear-cut 
matching to stored knowledge. In an identification task, performance with these shapes is inherently 
poor across all versions due to matching problems, and whether the contour was well integrated in the 
first place or not does not alter the outcome. Hence, the specific grouping disadvantage of PCP does 
not manifest itself in identification performance, which results in higher average performance than 
RCR.

In sum, this study continued to develop the approach, introduced in Sassi et al. (2010), of using 
Gaborized contours of everyday objects as perceptual grouping stimuli, by comparing detection to 
identification. Our results replicated, and allowed us to substantiate, key findings from the previous 
study, shedding more light on the effects of our stimulus metrics and on the performance differences 
between the different stimulus versions. In addition, this study resulted in a new and considerably 
expanded stimulus set. During the course of our experiments, we collected solid data on the identifi-
ability and detectability of these stimuli. We make detailed records for each stimulus available, as well 
as the individual stimulus images, as part of the Supplementary Material to this article.
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