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Abstract: Bouea macrophylla Griffith (B. macrophylla) is one of the many herbal plants found in Asia,
and its fruit is plum mango. This plant is rich in secondary metabolites, including flavonoids,
tannins, polyphenolic compounds, and many others. Due to its bioactive components, plum mango
has powerful antioxidants that have therapeutic benefits for many common ailments, including
cardiovascular disease, diabetes, and cancer. This review describes the evolution of plum mango’s
phytochemical properties and pharmacological activities including in vitro and in vivo studies. The
pharmacological activities of B. macrophylla Griffith reviewed in this article are antioxidant, anticancer,
antihyperglycemic, antimicrobial, and antiphotoaging. Each of these pharmacological activities
described and studied the possible cellular and molecular mechanisms of action. Interestingly, plum
mango seeds show good pharmacological activity where the seed is the part of the plant that is a
waste product. This can be an advantage because of its economic value as a herbal medicine. Overall,
the findings described in this review aim to allow this plant to be explored and utilized more widely,
especially as a new drug discovery.

Keywords: Bouea macrophylla Griffith; antioxidant; anticancer; antihyperglycemic; antimicrobial;
antiphotoaging

1. Introduction

B. macrophylla Griffith is a species of the Anacardiaceae family, having a fruit similar
to mango (Mangifera indica belong to the same family (Anacardiaceae)), known as plum
mango. This species has various names in various regions, such as gandaria (Indonesia and
the Philippines), maprang or mayong (Thailand), and kundang or ramania (Malaysia) [1–4].
This plant grows to 27 m, the stem is grayish brown, and the leaves are dark green with
a diameter of 13–15 cm (Figure 1A), the fruit is yellowish-green (Figure 1B), and the
seed is purple (Figure 1C) [4]. Plum mango has seeds with purple cotyledons, one of
its distinctive characteristics. The tree is widely cultivated in Asia, including Indonesia,
Thailand, Malaysia, and India. This species grows in the tropics and thrives below an
altitude of 300 m, and are called tropical fruits. Plum mango has been used as herbal
medicine to cure headaches, diabetes mellitus, and as an antibiotic mouthwash to treat
canker sores [5].

This plant is reported to have many benefits from every part of the plant, including the
fruit, leaves, stems, and even the seeds of the fruit. In addition, it is also widely consumed by
the community; the leaves are used as fresh vegetables and the fruit is eaten rujak or juiced
for daily consumption in Indonesia. The community also uses the bark to make agricultural
and household tools [5]. The use of this plant is due to its nutritional content, which includes
protein, fiber, carbohydrates, vitamins, and the content of its phytochemical compounds; the
phytochemical compounds include flavonoids, phenols, saponins, tannins, terpenoids, and
steroids [5,6]. However, it seems polyphenolic compounds, including phenol, flavonoid,
and tannin, are the most valuable compound related to their pharmacological activity [7–9].
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Some species of the Anacardiaceae family that have the main bioactive compounds
polyphenolic compounds include Mangifera indica (mango), Rhus coriaria (sumac), and Anac-
ardium occidentale (cashew). They are reported to have various pharmacological activities
such as antioxidant, antimicrobial, anticancer, and antihyperglycemic [10–14]. Related
to these data, plum mango has been reported to have various pharmacological activities,
including antioxidant [2,3,15–22], anticancer [3,23–27], antimicrobial [3,28,29], antihyper-
glycemic [15,16,20,30], antiphotoaging [30], and can increase vegetable intake and increase
the concentration of beta carotene in the blood [31].

Figure 1. Bouea macrophylla Griffith; (A) leaves, (B) fruits, (C) seeds.

By virtue of the use of B. macrophylla Griffith as a herbal medicine and the lack of
widespread use of this plant due to the limited information about its therapeutic benefits
and compound content, we present this review of the pharmacological activities of B. macro-
phylla Griffith. In this review, each of the pharmacological activities of B. macrophylla Griffith
will be reviewed, including the source of plant parts, their activities and mechanisms, and
their relationship to the secondary metabolic content of this plant.

2. Taxonomical Classification

B. macrophylla Griffith known as plum mango has another name, B. gandaria Blume
ex Miq. and Tropidopetalum javanicum Turcz. This plant has a common name, gandaria,
but has its own name in each region, where the English names are marian plum and plum
mango, while in Indonesia it includes: wetes (North Sulawesi), buwa melawe (Sulawesi),
barania (Kalimantan), luber (North Sulawesi), Flores), remie (Gajo), gandaria (Java), ramen
(Sumatra), pao pandaria (Madura), kalawasa (Makassar), rapo-rapo kebo (Sulawesi), gan-
doriah (Minangkabau), Gunarjah, jatake, jantake, and kendara (West Java). Then in other
Asian countries such as Malaysia, it is known as asam suku, kondongan, kedungan hutan,
kundang, kundang medang asam, pako kundang, rembunia, remenya, rumenia, rumia,
serapoh, serapok, setar; while in the Philippines it is known as gandaria, and in Thailand
known as mapraang, mayong, and somprang [4].

The taxonomical classification of plum mango [32]:

Kingdom: Plantae
Division: Magnoliophyta
Class: Magnolipsida
Order: Sapindales
Family: Anacardiaceae
Genus: Bouea
Species: Bouea macrophylla (Griffith)

3. Nutrient Content of Bouea macrophylla Griffith

B. macrophylla Griffith or its fruit plum mango is a plant widely cultivated in Indonesia,
Thailand, Malaysia, and several other countries [5]. This plant is quite large and tall, similar
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to a mango tree, a species of the same family. The parts of this plant have been widely used
by the community, such as the wood, which is used to make various handicrafts [33]. In
addition, the unripe fruit, which tends to have a sour taste, is consumed as rujak, the ripe
fruit is made as juice and syrup, the leaves are used as salad, and the seeds are widely used
as traditional medicine [5].

Studies on the nutritional content of plum mango have been carried out, including
proteins, fats, carbohydrates, minerals, vitamins, and amino acids [6]. The study included
both ripe and unripe fruit of plum mango. Based on the study, unripe fruit showed
superior content in almost all nutritional parameters than ripe fruit. Among them is a
high amino acid content correlated with high protein content. The fiber content of unripe
fruit is virtually double that of ripe fruit. In addition, the sugar content of ripe fruit was
reported to be higher than that of unripe fruit, especially the content of glucose, fructose,
and sucrose [6]. The methanol extract of ripe plum mango has the highest sucrose content,
while the most elevated glucose and fructose content is found in the distilled water extract.
This is related to the high solubility of simple sugars and oligosaccharides in methanol
and water [6].

4. Phytochemical Constituents of Bouea macrophylla Griffith

Parts of the plant B. macrophylla Griffith have been reported to have high antioxidant
activity. This is due to the high content of antioxidant compounds such as polyphenols,
tannins, flavonoids, and ascorbic acid in a phytochemical screening study [19]. Studies
on phytochemical screening of B. macrophylla Griffith have been carried out on the fruit,
seed, stem, and leaves with various solvents. According to the results of these studies, it
can be concluded that water and methanol as solvents are best used to extract the active
compounds from this plant.

Ripe fruits are rich in oxygenated compounds, terpenic hydrocarbons (29.28%), ketones
(27.27%) and esters (20.73%), acetophenone (12.31%), and acetylvaleryl (10.99%), as the main
links identified. While in immature fruits, terpenic hydrocarbons predominate (32.89%)
and their subclasses such as α-cadinol (4.94%), α-murools (1.14%), deltacadines (4.80%),
and Cameron (3.65%) and acids (29.72%). Aromatic compounds such as eugenol (0.12%),
myristic acid (0.34%), α- and β-terpineol (4.41 and 0.09%), thymol (0.55%), octane (0.10%)
and ketones such as acetophenone (2.59%) and 5.6 decandione (13.99%) have also been
identified in green fruits [34].

The bioactive compounds of plum mango seed identified are gallotanin, a class of phe-
nolic compounds. These compounds are gallic acid (Figure 2A), ethyl gallate (Figure 2B),
and pentagalloyl glucose (Figure 2C), which have been reported as the main compounds
that play a role in various pharmacological activities of plum mango, but mainly anti-
cancer [3,25,26]. Some other plant parts of plum mango still have limited information
about specific bioactive compounds. The research is still ongoing regarding phytochemical
screening covering common groups of compounds, but various pharmacological activities
have been widely reported.

Figure 2. Chemical structure of gallic acid (A), ethyl gallate (B), and pentagalloyl glucose (C).

5. Pharmacological Activities of Bouea macrophylla Griffith

Based on the data from the research articles that we have collected regarding the
various pharmacological activities of B. macrophylla Griffith, we have found five activities,
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namely antioxidant, anticancer, antimicrobial, antihyperglycemic, and antiphotoaging, as
well as health benefits by increasing vegetable intake and blood β-carotene concentration.
Figure 3 belows summarized overall the pharmacological activities of B. macrophylla Griffith.

Figure 3. A summary of the pharmacological activities of B. macrophylla Griffith.

5.1. Antioxidant

Antioxidants are compounds that can ward off free radicals and prevent the harmful
effects of free radicals on the body [35]. Free radicals are unstable and reactive molecules
because they have one or more unpaired electrons [36]. It can stabilize by gaining or
losing an electron, leading to a chain reaction, which ultimately damages vital biological
substances like proteins, nucleic acids, and lipids [37]. Free radicals are harmful due
to oxidative stress, which is associated with many diseases, including carcinogenesis,
cardiovascular disease, diabetes mellitus, and atherosclerosis [38].

Plants are widely known and have been scientifically proven to be the primary sources
of antioxidants substances. Natural product metabolites such as flavonoids and pheno-
lics have been shown to possess potent antioxidant activity [39]. B. macrophylla Griffith
reported high phenolic compound levels that have possible antioxidant activity, as de-
scribed in Table 1. The antioxidant activity of B. macrophylla Griffith has been explored
in all parts of the plant, demonstrating that this species’ seed [3,40], fruit [2,15,19], and
leaves [17,18,20–22] have antioxidant activity. Although all the experiments are in vitro,
these findings give essential information about possible mechanisms of B. macrophylla
Griffith. The most common method used is the DPPH assay, an in vitro assay to measure
the radical scavenging effects, of which DPPH is a free radical molecule. The presence
of hydrogen atoms from antioxidant compounds that bind to free electrons in radical
compounds cause a change from free radicals (diphenylpicrylhydrazyl) to non-radical
compounds (diphenylpicrylhydrazine) [41], characterized by a color change from purple to
yellow (as antioxidants reduce free radical compounds) [42]. IC50 is used to determine the
antioxidant activity using the DPPH method; the concentration of the sample required to
capture DPPH radicals is as much as 50% [43]. The greatest IC50 of plum mango using the
DPPH method is its seed chloroform extract with 4.34 µg/mL; this IC50 value correlates
to its phenolic content, which is the highest compared to other part plant and extraction
methods, as represented in Table 1.
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Table 1. Antioxidant Activity of B. macrophylla Griffith.

Plant Part Extraction
Technique

Total Phenolic
Content

Antioxidant
Assay Antioxidant Activity Reference

Seed
(unripe and ripe) Ethanol maceration

0.77 mg GAE/mg
(unripe)

FRAP 114.98 µg Fe2+E/µg

[3]

TEAC 2.21 µg TE/µg

DPPH 20.87 µg/mL

0.47 mg GAE/mg
(ripe)

FRAP 94.82 µg Fe2+E/µg

TEAC 1.72 µg TE/µg

DPPH 31.14 µg/mL

Seed Chloroform
maceration 686.04 mg GAE/g DPPH 4.34 µg/mL [40]

Leaves Ethanol maceration 530.85 mg GAE/g
ABTS 1.37 µg/mL

[18]
FIC 1.70 µg/mL

Leaves Ethanol maceration 68.53 mg GAE/g DPPH 55.83 µg/mL [17]

Leaves Vacuum Evaporator
extraction 117.836 mg GAE/g DPPH 26 µg/mL [22]

Leaves
Ethanol maceration 20 mg GAE/g

FRAP

5.62 ± 0.38 mg FeSO4
equivalent/g [21]

Hexane maceration 30.84 mg GAE/g 4.5 mg FeSO4
equivalent/g

Leaves Water maceration 364.56 mg GAE/g DPPH 35 µg/mL [20]

Fruit
Ripe

Aqueous maceration
-

DPPH

83%

[19]Unripe 82%

Leaves 76%

Fruit Water maceration 372.35 µg GAE/g
FRAP 133.31 µg TEAC/g

[15]
DPPH 258.17 µg VCEAC/g

Fruit
Maceration

(methanol, Ethanol,
and distilled water)

-

FRAP 16,290.91 µM
Fe(II)/100 g

[2]DPPH 77.69%

ABTS 99.76%

Ascorbic acid, also known as vitamin C, is a potent antioxidant and is commonly
used as a comparison. The IC50 value of ascorbic acid in its inhibition of DPPH is around
5 µg/mL. The highest IC50 value of mango plum (4 µg/mL) can be compared with ascorbic
acid, so it can be concluded that the plum mango seeds extract is a powerful antioxidant.
These results show that plum mango can be a candidate for a potent antioxidant. With a
very high total phenolic content of 686.05 mg GAE/g, it can be assumed that the possible
secondary metabolite compounds that play a role in the antioxidant activity of plum mango
are phenolic compounds.

Besides DPPH assay, other antioxidant assays include FRAP, ABTS, and FIC. De-
termination of antioxidant activity with the ABTS method is to remove the color of the
ABTS cation to measure the antioxidant capacity that reacts directly with the ABTS cation
radical [44]. ABTS is a radical with a nitrogen center with a characteristic blue-green
color. When reduced by antioxidants, it will change to a non-radical form from color to
colorless [45]. Meanwhile, the FRAP method is used when carried out on antioxidant com-
pounds that can reduce ferri-tripy-ridyl-triazine (Fe(III)TPTZ) to Ferro-tripyridyl-triazine
(Fe(II)TPTZ) complexes [46].

Moreover, the FIC assay is performed to determine the ability of the extracts to chelate
ferrous ions. The antioxidant properties of the natural plant extracts can be from their
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ability to chelate transition metal ions, especially Fe2+ and Cu2+ [47]. For example, the
complex formation between ferrozine and Fe2+ can be disturbed by other complexing
agents, which causes a decrease in the red color intensity of complexes [48].

Two research articles reported antioxidant activity of B. macrophylla Griffith seeds, one
of them observed its seeds from ripe and unripe fruit. The IC50 values varied from 4.73 to
46.34 µg/mL based on the DPPH assay [3,40]. Antioxidant activity of B. macrophylla Griffith
seed with a decoction technique extraction showed a greater IC50 of 4.73 µg/mL than
Vitamin C, which has an IC50 of 5.89 µg/mL and is known as a potent antioxidant. This is
correlated with total phenolic content, which the seed extract obtained from a decoction
technique exhibiting a higher total phenolic 689.17 mg GAE/g [40]. The highest total
phenolic content of seed extract with ethanol maceration technique was 550 mg GAE/g [3].
It can be concluded that the best extraction technique for B. macrophylla Griffith seed to
obtain great antioxidant activity is a decoction.

The other plant part of B. macrophylla Griffith that possesses antioxidant activity
are the leaves. Some research articles reported that B. macrophylla Griffith leaves extract
has antioxidant activity; the IC50 values varied with different extraction techniques and
antioxidant assays. The research of B. macrophylla Griffith leaves widely observed in
different stages of maturity, compared different extraction techniques and several extraction
solvents. The greatest IC50 of B. macrophylla Griffith leaves extract was 2.6 µg/mL with the
DPPH assay. The extraction method used was a vacuum evaporator in which the leaves
were made into juice, powdered by a vacuum evaporator [22].

Furthermore, the highest total phenolic content obtained from leaves extract was
701 mg GAE/g extract using ethanol 95% maceration methods. It also showed great
antioxidant activity with IC50 1.37 by ABTS assay [18]. Hardinsyah et al., 2019 reported
antioxidant activity of B. macrophylla Griffith leaves in different maturity stages with several
solvents (ethanol, ethyl acetate, and hexane). The result showed that the highest phenolic
compound was 30.84 mg GAE/g, obtained from mature leaves with hexane extraction.
Meanwhile, the ethanol extract of mature leaves generated the best antioxidant activity
with a reducing power of 5.62 mg FeSO4 equivalent/g [21]. These reports concluded that
the mature plum mango leaves showed good antioxidant activity, while the extraction
technique to gain the most phenolic compound was maceration with 95% ethanol.

Besides seeds and leaves, the fruit of B. macrophylla Griffith has also been reported to
have antioxidant activity. It was studied with different extraction solvents in the ripe and
unripe fruit of B. macrophylla Griffith. The antioxidant activity of ripe and unripe B. macro-
phylla Griffith varied, but the unripe fruit of this plant showed better radical scavenging
activity than the ripe fruit. As reported by Rajan and Bhat (2016) and Sukalingam (2018),
unripe fruit with methanol extraction generated great DPPH scavenging activity of 70–77%.
Meanwhile, the highest phenolic content was found in methanolic extract of unripe fruit
with 50 mg GAE/g extract [2,19].

Phenolic compounds act as an antioxidant by reacting with various free radicals. The
mechanism of antioxidant actions involve either hydrogen atom transfer, transfer of a
single electron, sequential proton loss electron transfer, or chelation of transition metals.
Moreover, as reported by Adam et al., 2021 antioxidant activity of plum mango extract is
comparable to ascorbic acid as a potent antioxidant. Ascorbic acid acts directly to scavenge
oxygen or nitrogen-based radical species generated during normal cellular metabolism [40].
The antioxidant mechanisms of ascorbic acid are based on hydrogen atom donation to lipid
radicals, quenching of singlet oxygen, and removal of molecular oxygen [49]. The overall
mechanisms of B. macrophylla Griffith as an antioxidant are summarized in Figure 2.

5.2. Anticancer

Cancer is a disease that is still a relatively high cause of death, and cases continue to
increase every year. According to 2010 WHO data, cancer ranks second with the highest
number of deaths after cardiovascular disease [50]. Cancer treatment with conventional
therapy, such as chemotherapy surgery and radiation therapy, is not adequate for metastatic
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cancer [51]. The failure of cancer therapy is due to the resistance to treatment, including
both chemotherapy and radiotherapy. B. macrophylla Griffith is believed to have the anti-
cancer activity described in Table 2. The cytotoxicity assay used was methylthiazol2yl25-
diphenyltetrazolium bromide (MTT) against Vero cells from the kidney of the African green
monkey (Cercopithecus aethiops). These cells are homologous to human cells and are easy
to grow [52]. The cytotoxicity test results of the ethanol extract of plum mango leaves
on Vero cells showed a change in the morphology of Vero cells after the MTT test was
carried out. This is because the proteins that play a role in cell adhesion do not polymerize.
They interfere with cell adhesion, lipid membrane binding disrupts cells and induces cell
apoptosis [23].

Table 2. Anticancer activity of B. macrophylla Griffith.

Plants Part Extraction
Techniques Anticancer Assay Cell Lines IC50 Reference

Leaves Ethanol
maceration MTT assay Vero Cell 35.808

µg/mL [23]

Seed Ethanol
maceration MTT assay

Doxorubicin-sensitive and
resistant leukemic(K562,

K562/ADR) and lung cancer
(GLC4 and GLC4/ADR) cells

4–16 µg/mL [3]

Seed Ethanol
maceration MTT assay MCF-7/IR6 cells 215.42 nM [24]

Seed Ethanol
maceration MTT assay MCF cells 6.94 µg/mL [25]

Seed Ethanol
maceration Mammosphere formation assay Breast cancer stem cells

(CSCs) [27]

Seed Ethanol
maceration

Tumorsphere formation assay,
colony formation assay, and

apoptosis assay

Head and neck squamous cell
carcinoma (HNSCC) 14.52 µg/mL [26]

The ethanolic extract of plum mango leaves induced the mechanism of cell morphology
changes induced by apoptosis. Morphological changes of Vero cells undergoing apoptosis
include shrinkage of membrane vesicles, chromatin condensation, apoptosis determination,
and nuclear fragmentation [53]. The cytotoxic effect of cytotoxins can cause changes in
cell membrane permeability or impair the integrity of the cell membrane, rendering it non-
viable and causing cell death [54]. Cell death is related to the cytotoxicity of a substance;
this may be due to the biochemical mechanism of adenosine triphosphate (ATP) dilution
and membrane defects [55].

Dehydrogenase is an enzyme that plays a role in the formation of ATP [56]. Inactivated
dehydrogenase enzymes can produce a cytotoxic effect, resulting in a decrease in ATP
where the cell’s functional activity is affected, and the cell dies [57].

Breast cancer is one of the most common cancers in women and significantly increases
their morbidity and mortality rates [58]. Many advanced breast cancer treatment strategies
are currently being developed in each country to increase the effectiveness of treatment
and reduce cancer morbidity and mortality [59]. Unfortunately, the treatment goals for
breast cancer have not been met in all patients because the remaining cancer cells, known
as minimal residual disease (MRD), are defined as cells that can survive treatment leading
to tumor recurrence and treatment failure. There is growing evidence that treatment failure
associated with the use of cancer stem cells (CSC) represents a human population that is
more resistant to radiation and resistant to other types of cancer [60].

Recent studies have demonstrated that tumor radiation impedance mechanisms are
involved in several signaling pathways, including the epithelial–mesenchymal junction
(EMT) binding to the adenosine triphosphate binding cassette (ABC) transporter and
phosphatidylinositol3 kinase protein kinase B (PI3K/AKT) [61]. In determining the in-
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volvement of EMT in the differentiation of non-CSC into CSC and the occurrence of radiore-
sistance, CSC phenotypes such as CD44+ and CD24−/low were observed. In addition, the
high expression of transporter-resistant proteins such as P-glycoprotein (P-gp), multidrug
resistance-associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) are
involved in the resistance of breast cancer cells to drugs and radiotherapy. These proteins
are encoded by the ABCB1, ABCC1, and ABCG2 genes, respectively [62].

Irradiation led to downregulation of ABCC1 and ABCG2 genes, but upregulation
of ABCB1. MCF7 breast cancer cells that are thought to survive treatment with ionizing
radiation (MCF-7/IR6) showed a chemoresistance phenotype by expressing high levels of
MDR1 (ABCB1) but not of MRP1 (ABCC1) or BCRP (ABCG2). Overexpression of MDR1
with high Pgp pump activity and poor response to doxorubicin was found in MCF-7/IR6
compared to MCF-7 stem cells. Before irradiation, pretreatment of MCF-7 with plum mango
seed extract (MPSE) affected the chemoresistance (MCF-7/MPIR6). MCF-7/MPIR6 cells
decreased Pgp (ABCB1) mRNA expression but still expressed MRP1 and BCRP mRNA
similar to parent MCF7 [27]. This shows that pretreatment with MPSE is able to prevent
drug resistance (chemoresistance) by reducing the expression of the ABCB1 gene associated
with the drug efflux pump (P-gp).

Gallotanin-rich extract of plum mango seeds is also reported as a radiosensitizer
in overcoming radioresistance. PI3K/AKT and MAPK signaling pathways are survival
pathways that, when activated, can protect cancer cells from the toxic effects of radiation,
causing radioresistance [63]. MPSE was reported to be able to increase DNA damage caused
by radiation, which was characterized by increased expression of γH2AX in response to
DNA damage. This shows that the combination of MPSE therapy with IR can increase the
radiosensitivity of breast cancer cells and increase radiation-induced DNA damage. This
combination therapy also increases apoptosis higher than IR therapy alone [27].

MCF-7/FIR is breast cancer cells that survive after radiation, have potential as ma-
lignant cells characterized by a high migration rate compared to MCF-7 parent cells [24].
Irradiation can induce EMT characterized by upregulation of vimentin and ZEB1, which
are mesenchymal properties of cells [64]. MPSE is able to inhibit irradiation-induced
EMT-associated migration and invasion through downregulation of vimentin and ZEB1
and increase E-cadherin, which is an epithelial cell trait. Irradiation can also increase
CD44++/CD24−/low, which is a marker of breast cancer stem cells (BCSC). Pretreatment
with MPSE showed a decreased expression of CD44+/CD24−/low. Furthermore, in the
formation of mammospheres, namely aggregates of epithelial stem cells from breast tumors
that can develop into CSCs, MPSE is able to inhibit the formation of mammospheres [24].
This suggests that pretreating MCF7 cells with MPSE before radiation shows increased
sensitivity of MCF-7 cells through inhibition of IR-induced EMT and CSC formation.

The mechanism of action of MPSE in increasing the radiosensitivity of cancer cells
is through the regulation of PI3K/AKT and MAPK signaling pathways. Both of these
pathways are activated by IR and regulate cellular processes involved in radioresistance,
including apoptosis, proliferation, and metastasis [65]. IR upregulated the expression of
phosphorylated AKT (p-AKT), p-ERK1/2, and p-JNK in MCF-7 cells, whereas inhibition of
the AKT signaling pathway sensitized MCF-7 cells to IR. The combination of MPSE therapy
with IR was able to downregulate p-AKT, p-ERK1/2, and p-JNK [27]. Therefore, it can be
concluded that MPSE increases the radiosensitivity of cancer cells through the regulation
of PI3K/AKT and MAPK signaling pathways.

MPSE as a radiosensitizer was also tested on the head and neck squamous cell carci-
noma (HNSCC) cell line. Gallotanin and its main bioactive compound, pentagalloyl glucose
(PGG), may enhance the efficacy of radiotherapy in HNSCC by inhibiting IR-induced pro-
survival signaling and enhancing the effects of IR-induced DNA damage. In addition,
inhibition of IR-induced accumulation in the cancer stem cell population, which is responsi-
ble for radiation resistance in cancer, was followed by inhibiting the anti-apoptotic pathway
and increased chemotaxis IR-induced cell death in HNSCC [26]. Molecular mechanism
studies have shown that MPSE or PGG can enhance HNSCC radiation sensitivity by target-
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ing cancer stem cells via attenuated STAT3 activation to overcome resistance and improve
clinical outcomes for patients. STAT3 activation, which is known to enhance survival and
proliferation signaling, has been shown to play an essential role in regulating stem cell
angiogenesis in many cells, especially HNSCC [66]. To maintain CSC properties, STAT3
regulates the expression of some subsequent target proteins associated with lineage char-
acteristics. Many proteins and CSC markers have been identified downstream of STAT3,
such as CD44, CD133, ALDH1, and the CSC regulatory transcription factors (Oct and Sox2).
In addition, the self-renewal properties of CSCs are dependent on STAT3 activation [67].
Highly active STAT3 is positively correlated with high-quality HNSCC tissue and promotes
SCC self-renewal and HNSCC radiation resistance. Blocking STAT3 activation by specific
inhibitors effectively suppresses globular tumor formation and reduces the number of
ALDH CD44 cells, and further induces apoptosis in HNSCC [68]. Inhibition of STAT3 by
MPSE or PGG was able to suppress CSCs in FaDu and CAL27 cells. For HNSCC cells, it
has been shown that treating CSC-rich populations with MPSE or PGG or adhesive ball
derivatives helps regulate phosphorylated STAT3 expression [26].

Besides PGG, other bioactive compounds contained in MPSE are ethyl gallate (EG)
and gallic acid (GA). PGG and ethyl gallate-rich extract of plum mango seed were reported
to induce apoptosis through the mitochondria-mediated pathway [25]. This is a solution
to increase the efficacy of cancer therapy, which causes resistance to apoptosis due to
chemotherapy drugs and radiation. Apoptosis via the mitochondrial-independent pathway
(intrinsic pathway) is mainly triggered by non-receptor stimulation, including oxidative
stress and DNA damage [69]. Mitochondria are the main source of reactive oxygen species
(ROS), where excessive levels of ROS can cause mitochondrial dysfunction and induce cell
death [70].

PGG induced S-phase and G0/G1 cell cycle arrest and apoptosis in breast cancer
cells by inhibiting cyclin D1 and influencing specific apoptosis-related proteins such as
Bax and Bcl-2 [71]. PGG can also inhibit triple-negative mammary gland growth and
metastasis by inhibiting the JAK1-STAT3 signaling pathway and practicing antibiotic, anti-
proliferative, and apoptotic induction [27]. EG has been shown to suppress the proliferation
and invasion of breast cancer cells. Inhibition is regulated by the PI3K/AKT pathway,
whereas EG treatment reduced the activity of substrate metalloproteinase 2 (MMP2) and
MMP9 in MDAMB231 cells [72]. Apoptotic induction is regulated by changing the Bax/Bcl2
ratio [73]. GA has been shown to induce anti-proliferative and apoptotic activity in MCF-7
cells by increasing p27 levels, decreasing proliferation, and inducing cell cycle arrest in the
G2/M phase [74].

Apoptosis via the mitochondria pathway is triggered by DNA damage or increased
ROS. Free radical molecules can cause oxidative stress where there is an imbalance between
tissue antioxidant capacity and ROS biosynthesis [75]. Excess ROS can irreversibly induce
cell damage and death via intrinsic apoptotic pathways in mitochondria leading to dysfunc-
tional injury and increased cell apoptosis in mitochondrial DNA [76]. Deoxyribonucleic
acid (DNA) is damaged, causing p53 protein to accumulate in cells [77]. During this G1
phase, DNA repair occurs during the replication process, but if the damage involves stimu-
lation of sensors that regulate apoptotic proteins, Bax and Bak, it causes proapoptosis [78].
Synthesis of the cl2 fraction of p53 protein triggers apoptosis [79].

Studies on the anticancer activity of B. macrophylla Griffith are dominated by the seeds.
Dechsupa et al., 2019 reported that the main bioactive compounds of plum mango seed
extract are gallotanin, EG, GA, and PGG, where these bioactive compounds act as anticancer
agents [3]. These bioactive compounds work in several sites as anticancer, including DNA
damage-induced ionizing radiation, regulation of cancer marker proteins such as ERK, AKT,
STAT3, and p53 which ultimately induces the process of apoptosis. Moreover, phenolics
and their derivatives work by denaturing cellular proteins in cell membranes. Denaturation
of proteins in the cell membrane causes changes in cell permeability [80]. As a result, the
cell membrane no longer holds the cell’s contents and blocks the flow of material into the
cell, causing cell death [81].
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According to the description of the molecular mechanism of anticancer activity of
B. macrophylla Griffith above, the study was quite extensive, including how plum mango
extract could be a candidate for new cancer therapies to overcome cancer therapeutic
resistance such as chemoresistance or radioresistance by targeting CSCs as therapeutic
targets. The mechanism of action of plum mango molecularly through various signaling
pathways and regulation of protein markers lead to induction of apoptosis, as described
in Figure 4. Gallotanin works by increasing DNA damage due to ionizing radiation,
inhibiting AKT and ERK, which in turn induces apoptosis through the mitochondria-
mediated pathway. PGG works by inhibiting STAT3 and EGF, thereby inducing apoptosis
and stimulating p53 expression, which causes increased expression of p21 leads to cell
cycle arrest.

Figure 4. Anticancer molecular mechanisms of B. macrophylla Griffith.

5.3. Antimicrobial

Pathogenic microorganisms are the cause of various infectious diseases, especially
infections in various tracts or body parts [82]. The biggest problem of its treatment is the
resistance that occurs in pathogenic microorganisms to antibiotics. Cause less effective
treatment and even lead to failure of therapy [83]. B. macrophylla Griffith or known as
plum mango has been used as antibiotic by the community. Seeds and skins are usually
underutilized, so they are referred to as waste products [84]. However, it has been widely
reported that the seeds and skin of the fruit have high antioxidant value and contain many
bioactive compounds. It could be a natural source of antioxidants that is easy to obtain
and inexpensive [85]. Various fruit seeds (mango, longan, lychee, tamarind, rambutan,
etc.) have been reported to contain potential medicinal properties that can be used as an
antioxidant, anti-inflammatory, or antimicrobial [10,86–88]. The antibacterial properties of
plum mango seed extract have been tested in vitro. Plum mango antimicrobial testing in-
cludes fungi, Gram-negative bacteria and Gram-positive pathogenic bacteria. Those species
are Candida albicans (fungi), Gram-negative bacteria (Eschericia coli, Vibrio parahaemolyticus,
Shigella boydii, Shigella flexneri, Vibrio cholera, Pseudomonas aeruginosa, Salmonella enteritidis,
Proteus mirabilis, Klebsiella pneumonia, Enterobacter aerogenes) and Gram-positive bacteria
(Enterococcus faecalis, Staphylococcus aureus, Listeria monocytogenes, Streptococcus gordonii,
Bacillus cereus).
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Candida albicans is a fungus whose natural habitat is in the human body. Candida fungi
are found in the digestive tract, mouth, vagina, rectum (anal canal), and other parts of the
body that have warm temperatures [89]. When the number of Candida albicans in the body
exceeds a reasonable limit, this risks causing dangerous infections that can spread to various
organs of the body, such as the bloodstream, heart, kidneys, or brain [90]. Seed and leave
extract plum mango has antimicrobial activity to this fungi, with the minimum inhibitory
concentration (MIC) 0.21–0.25 mg/mL and minimum fungicidal concentration (MFC)
2.50 mg/mL [3,28]. Moreover, zone inhibition of plum mango seed against Candida albicans
is 13.60 mm comparable to chlorhexidine with 15.8 mm (Leelapornpisid and Poomanee,
2021). It could be concluded that plum mango extract has potential antimicrobial against
Candida albicans.

Pneumonia is an inflammatory process in the lung parenchyma and is a major cause
of morbidity and mortality in children under five years of age, especially in developing
countries. The causes are bacteria, viruses, fungi, exposure to chemicals or physical damage
to the lungs, as well as indirect effects from other diseases [91]. Bacteria that can cause
pneumonia include E. coli, P. aeruginosa, S. aureus, and B. cereus [92]. Seed plum mango
extract exhibits antimicrobial activity against E. coli, P. aeruginosa, and S. aureus with MIC
312.5 µg/mL, 312.5 µg/mL, and 156.2 µg/mL, respectively. Seed plum mango extract also
shows bactericidal to S. aureus with MBC 312.5 µg/mL [3]. Moreover, plum mango leave
extract has an antimicrobial effect against B. cereus with an inhibition zone of 24.83 mm at
500 mg/mL and is comparable to ciprofloxacin as a control [28].

Shigella is a Gram-negative pathogen and the cause of shigellosis, a potentially deadly
diarrheal disease whose symptoms range from mild intestinal discomfort to death depend-
ing on severity [93]. Shigelle flexeneri and Shigella boydii are of particular epidemiological
importance in developing nations such as African and Asian countries [94]. Plum mango
seed extract has an antimicrobial activity to Shigella with MIC 78.1 µg/mL but does not
seem bactericidal effect [3]. Meanwhile, the inhibition zone of the leave plum mango
extract is 22.5 mm at 500 mg/mL and not comparable to ciprofloxacin that was used as a
control [28].

Salmonellosis is a disease caused by infection with Salmonella bacteria in the intestinal
tract. This disease can be transmitted through food and drink contaminated with Salmonella
bacteria, one of which is S. enteritidis [95]. The seed extract of plum mango elicit an
inhibitory effect against S. enteritidis with MIC 520.8 µg/mL but have no bactericidal
effect [3].

Listeriosis is a foodborne disease caused by the bacterium Listeria monocytogenes. Gen-
erally, the symptoms that appear are not severe, similar to those of influenza, such as
fever, chills, back pain, headache, sometimes accompanied by nausea, vomiting, and diar-
rhea [96]. Plum mango leave extract shows antibacterial activity against L. monocytogenes
with inhibition zone 17.83 mm at 500 mg/mL. It also shows the inhibition zone at the
lowest concentration of 100 µg/mL with an inhibition zone of 11.5, however, this activ-
ity is incomparable to that of ciprofloxacin as a control with the inhibition zone against
L. monocytogenes is 30.66 mm at 500 µg/mL [28].

Urinary tract infection (UTI) is a condition in which infection occurs in the organs
included in the urinary system, namely the ureters, kidneys, bladder, and urethra. Often,
the cause of urinary tract infections is the bacterium Escherichia coli (E. coli), which is found
in the intestines [97]. However, this disease can also be caused by other types of bacteria
such as P. mirabilis, K. pneumonia, and E. aurogenes. When E. coli bacteria are on the skin or
near the anus, these bacteria can enter the urinary tract and move to other places [98]. Plum
mango extract reported has a bacteriostatic and bactericidal effect against these bacteria
that caused UTI. The seed extract exhibits antibacterial activity against K. pneumonia and
E. aurogenes with MIC 520.8 µg/mL and 312.5 µg/mL, respectively, whereas, it shows
bactericidal effect against P. mirabilis with MBC 1250 µg/mL and MIC 520.8 µg/mL [3].

Root canal is the term used to describe the natural cavity in the center of a tooth,
whereas pulp is the soft part inside a tooth that contains blood vessels, nerves, and connec-
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tive tissue [99]. Mixed bacterial–fungal biofilms are always present in the oral environment,
including infected root canals. E. faecalis, S. gordonii, and C. albicans are the three most com-
monly recovered species in root canals undergoing retreatment due to failure of the primary
endodontic treatment and with persistent infection [100]. The ethyl acetate seed extract of
plum mango exhibits bactericidal (MBC) and candidical (MFC) at 2.50 mg/mL to E. faecalis,
S. gordonii, and C. albicans. It also shows a significant inhibition zone against E. faecalis and
C. albicans comparable to chlorhexidine used as a control [29]. It could be concluded that
plum mango seed extract can be potentially used to treat root canal infections.

Furthermore, plum mango seed extract was also tested against several antibiotic-
resistant bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), extended-
spectrum β-lactamase (ESBL)-producing Escherichia coli and vancomycin-resistant Enterococ-
cus faecalis. MRSA is an infection caused by Staphylococcus aureus bacteria that can no longer
be treated with various classes of antibiotics that are commonly used. Staphylococcus is actu-
ally bacteria that is not harmful and usually lives on the skin and nose of humans. However,
if the growth is not controlled, these bacteria can cause various infections in the human
body. Staphylococcus infections can generally be treated with antibiotics. However, as a
result of decades of irrational use of antibiotics, a type of Staphylococcus has emerged, such
as MRSA, which can no longer be treated with various commonly used antibiotics [101].
The ethanolic seed extract of plum mango show inhibition to drug-resistant bacteria with
MIC 104.1 g/mL [3]. Furthermore, it also has an inhibitory effect on vancomycin-resistant
E. faecalis (VRE), with MIC 78.1 g/mL [3]. VRE is a major health problem in many countries
as VRE is a reservoir of glycopeptide resistance and is thought to be able to infect humans
through contact (contact) with animals or eating (consumption) meat. Although E. faecalis
infection is more common in humans, vancomycin resistance is more common in E. faecium
isolates. VRE is a pathogen in immunocompromised populations, especially patients receiv-
ing various antibiotics and undergoing long hospitalizations. VRE is one of the causes of
nosocomial infections, and its susceptibility (resistance ability) can be transferred between
organisms or other species; thus, infection control policies (infection control) and guidelines
for the administration of antibiotics are very important to be applied to control the spread
of VRE and organisms that are susceptible (resistant) to various drugs [102].

Another important bacterial resistance is ESBL. ESBL is an enzyme produced in the
plasmid of Gram-negative bacteria from the Enterobacteriaceae group that already has
resistance to β-lactam antibiotics. The most commonly recognized ESBL-producing bacteria
are E. coli and K. pneumonia and are often considered a major cause of UTI, pneumonia,
and sepsis. These ESBL-producing bacteria are nosocomial pathogens and are increasingly
being found as infectious agents in the community. There have been several studies
showing an association between the transfer of E. coli or ESBL-producing ESBL genes from
birds and pigs to humans who come into direct contact with these animals. In addition
to direct zoonotic transfer, food of animal origin has the potential to be a risk factor for
bacterial colonization or infection in humans [103]. Plum mango seed ethanolic extract has
inhibitory activity against ESBL-producing E. coli with MIC: 520.8 g/mL [3].

The plum mango tree seeds (B. macrophylla Griffith) have antibacterial properties
similar to those of the mango (Mangifera indica L.). Again, both belong to the Anacar-
diaceae family, and their properties are well documented. Plum mango seed extract has
shown significant antibacterial activity against strains of Gram-positive bacteria, including
S. aureus, Bacillus sp., Clostridium sp., and Listeria monocytogenes, with a MIC of about
50,500 g/mL [104]. The antibacterial activity of plant extracts, including plum mango seed
extract, is known to be due to the presence of hydrolyzed tannins or galotans, which
have nine galloil groups, flavonoids, and phenolic acids. Pentagloylglucopyranose is an
important compound found in plum mango seeds [105–107]. In particular, the antibacterial
activity of gelatonin increases directly with its molecular weight [108].

Terpenoids, alkaloids, and phenolic compounds reported inhibit the growth of per-
ishable bacteria and foodborne bacteria, alter bacteria’s enzymatic activity, and damage
bacteria microbial cell membrane proteins [109]. The plum mango leave components iden-
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tified considered the most important for extract bioactivity are polyphenols, flavonoids,
caryophyllene, phytols, and transgeranylgeraniol [110]. Based on these results, the ethano-
lic extract of the leaves can be a good candidate for studying natural antibacterial agents
against infections or diseases caused by the tested microorganisms.

5.4. Antihyperglycemic

Hyperglycemia is a condition in which blood glucose levels are higher than usual. This
long-term condition can lead to diabetes mellitus (DM) [111]. DM is a metabolic disease
characterized by hyperglycemia due to insulin deficiency or insulin resistance [112]. The
digestive system influences the body’s metabolism; in this process, several enzymes such
as amylase and glucosidase are involved [113]. This enzyme plays a role in converting
carbohydrates into simple sugar molecules. Therefore, interfering with these enzymes
can increase the body’s metabolism [114]. In several studies reported, inhibition of both
enzymes affects the control of hyperglycemia. B. macrophylla Griffith (plum mango) was
reported to have inhibitory activity on a-amylase and a-glucosidase enzymes, summarized
in Table 3.

Table 3. Antihyperglycemic activity of B. macrophylla Griffith.

Plants Part Extraction
Techniques

Antihyperglycemic
Assay Dose/IC50 Mechanisms of Action Reference

Seed Decoction α-Glucosidase
Inhibitory Assay 0.55 mg/mL Delayed glucose absorption

in the small intestine [40]

Leaves Water maceration α-Amylase Inhibitory
Assay 60 µg/mL Inhibit α-Amylase by

forming a complex [20]

Fruit Water maceration α-Glucosidase
Inhibitory Assay 83.44% Delayed glucose absorption

in the small intestine [15]

Plum mango juice has glucosidase inhibition. In hydrolyzed juice extracts, this may be
derived from myricetin and quercetin (previously reported as potent glucosidase inhibitors).
High blood sugar (hyperglycemia) can be returned to normal (euglycemia) by activating
carbohydrate-digesting enzymes such as glucosidase [15]. Glucosidases are known to
catalyze the final step in carbohydrates into absorbable monosaccharides [115]. To date, only
the volatile components of the plum have been identified. The main volatile components
of this fruit are ocimene (E) (68.59%) and pinene (8.0%) [34]. This compound was also
detected in the essential oil of black pepper (Piper guineense), which inhibited the glucosidase
activity of Phyllanthus acidus extract, a weak glucosidase inhibitor found previously in two
studies [116,117]. This may be due to the higher content of glucosidase inhibitors compared
to the extract.

The metabolic enzyme that contributes to hyperglycemia is amylase. It is an enzyme
that breaks down starch into simple sugars such as dextrin, maltotriose, maltose, and
glucose [118]. Inhibition of amylase enzyme activity is an effective way to control blood
sugar [119]. Therefore, the plum mango leaf extract with the highest amylase inhibition
had the highest antioxidant activity, total phenol content (TPC), and total flavonoid content
(TFC). The extract was prepared from plum mango leaves by the maceration extraction
method [20]. Adequate blood sugar maintenance can be obtained from natural sources,
such as bioactive compounds in plants that can act as amylase inhibitors [120]. Inhibitors
of natural origin, such as vegetables that are rarely eaten, are very definite because they
do not cause side effects when ingested [121]. In addition, Samudra et al. (2015) found
that secondary metabolites, compared to primary metabolites, had a high ability to inhibit
amylase enzyme activity [122]. Phenolic acids and flavonoids have been reported to
have amylase enzyme activity [123]. Phenolic acids and flavonoids form covalent bonds
with amylase to form quinones or lactones and react with nucleophilic groups, resulting
in changes in amylase enzyme activity [124]. The reaction of phenolic compounds and
proteins can inhibit the activity of enzymes, including amylase enzymes.
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Polyphenol complexes with starch so that the amylase enzyme cannot recognize
the substrate [125]. Effects of flavonoids on amylase enzymes by enzyme kinetics and
fluorescence spectroscopy have shown that flavonoids form complexes with amylase
enzymes [126]. Flavonoids are hydrophobically linked to the enzyme amylase [127].
Flavonoids can also inhibit amylase activity because they can form quinones with ox-
opiran [128]. Flavonoids are antioxidants that can prevent the gradual decline in pancreatic
cell function caused by oxidative stress [129]; this can reduce the incidence of type 2 diabetes
and prevent long-term complications of diabetes [130].

Diabetes is often accompanied by postprandial hyperglycemia, a condition in which
blood sugar levels rise excessively after eating [131]. This condition can cause an increase
in glycated hemoglobin (HbA1C) and can also lead to complications of diabetes. It is
essential to reduce postprandial hyperglycemia with oriental medicine to avoid such
complications [111]. One possible mechanism for reducing postprandial hyperglycemia
is by inhibiting the activity of glucosidase, an enzyme that hydrolyzes carbohydrates to
glucose in the gut [128]. Inhibition of glucosidase activity can slow postprandial glucose
uptake and ameliorate postprandial hyperglycemia [132]. Slow absorption of glucose from
refined is one of the mechanisms used to reduce hyperglycemia in diabetes [133]. This can
be achieved by inhibiting the glucosidase reaction in the small intestine. Glucosidase is
an enzyme that is important for digesting carbohydrates. This enzyme is present in the
membrane on the brush border surface of the upper small intestine [134]. This hydrolyzes
the terminal glucose at the non-reducing end of the substrate, namely H. maltose or
sucrose [135]. By activating glucosidase activity, less glucose is produced and absorbed in
the bloodstream, reducing hyperglycemia, especially after eating [136].

The aqueous extract of plum mango was a potent glucosidase inhibitor with an IC50
value of 57.62 g/mL [40]. This suggests that plum mango extracts can slow down glucose
absorption from the small intestine into the bloodstream, thereby reducing postprandial
hyperglycemia. Overall possible mechanisms of antihyperglycemic effects of B. macrophylla
Griffith described in Figure 5. However, the inhibitory effect of the extract was weaker
than that of acarbose as a standard drug. Acarbose strongly inhibits glucosidase activity, as
indicated by the low IC50 value (33 g/mL). This is possible because plum mango extracts
are still raw and contain a mixture of bioactive and non-bioactive compounds. It is possible
that the lower the concentration of biologically active compounds, the lower glucosidase
inhibition. Unlike plum mango extract, acarbose is a nitrogenous pseudotetrasaccharide
unit, and its glucosidase inhibitory effect has been well enhanced [137]. Similar to the
antioxidant activity, the glucosidase inhibitory activity of plum mango seed extracts may be
due to many phenolic compounds in the plant. This suggestion is consistent with previous
studies showing that phenolic compounds contribute significantly to Neptunia oleracea
glucosidase inhibition [138].

5.5. Antiphotoaging

The skin ages, causing roughness, dryness, sagging, and wrinkling. Ultraviolet B
(UVB) rays cause skin diseases such as uneven pigmentation, sunburn, skin tanning, and
skin cancer [139]. UVB stimulates the production of ROS, including hydroxyl radicals, per-
oxides, superoxides, and singlet oxygen [140]. Significantly increased levels of ROS cause
damage to cellular structures and accumulation of oxidative stress in cells, which results in
imaging phenomena [141]. B. macrophylla extract (BME) has possessed antiphotoaging and
moisturizing effects on hairless mice in vivo study. Three parameters, including wrinkle,
skinfold thickness, and elasticity were observed in dorsal mice. BME treatment shows the
ability to prevent wrinkle, skinfold thickness, and abnormal elastic fiber in dorsal mice
compared with induced-UVB without BME treatment.
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Figure 5. Antihyperglycemic mechanisms of B. macrophylla Griffith.

Increased oxidative stress induced by UVB light plays a central role in imaging through
activation of MAPK and nuclear factor kappa B (NFκB), proteins necessary for inflamma-
tion [142]. Increasing the expression or activation of the antioxidant enzyme catalase is a
vital strategy to protect the skin from photooxidative stress [143]. Activated NFκB stimu-
lates the release of inflammatory cytokines such as interleukin 6 and interleukin 8, which
induce matrix metalloproteinase (MMP) expression [144]. MMPs are a response to the
degradation of collagen, gelatin, and extracellular matrix components (ECM). BME is able
to inhibit the MAPK signaling pathway, which further inhibits NFκB, thereby suppressing
the expression of MMPs. With a decrease in MMPs, collagen degradation decreases and
maintains collagen levels in the skin.

Collagen is an essential component of the dermis and plays an essential role in wrin-
kling [145]. Type I and type III collagen are the most common types of collagen found
in the extracellular matrix (ECM) and connective tissue [146]. Type IV collagen is found
only in the basement membrane and, together with type VII collagen, plays a vital role in
the adhesion of the skin epidermis [147]. Gelatinase (MMP2 and MMP9) digests type IV
collagen (which plays an essential role in epidermal-dermal adhesion) and gelatin [148].
Upregulation of collagen synthesis gene expression leads to an increase in hydroxyproline
content, a marker of collagen fibers [149]. It can be concluded that the hydroxyproline
content increased significantly in the plum mango extract treatment. Transforming growth
factor (TGFβ) binds to its receptor, causing Smad2/3 activation and stimulating type I
procollagen synthesis [150]. Smad7 acts as an antagonist of the TGFβ/Smad signaling
pathway by inhibiting Smad2/3 activation [151]. MMP accelerates wrinkle formation in
response to the breakdown of collagen, gelatin, and other ECM components [152]. In addi-
tion, MMP3 introduces a large number of ECM components and promotes the activation of
other proMMPs [153]. MMP expression and secretion are regulated by the MAPK/AP1
complex signaling pathway [154].

Excessive oxidative stress induces activation of MAPK signaling components, resulting
in JNK phosphorylation [155]. Activated JNK stimulates cFos protein expression and cJun
phosphorylation, leading to the formation of the AP1 complex [156]. Corneal cells are late
differentiated keratinocytes that are responsible for the formation of the stratum corneum
(SC) and the production of natural hydration factor (NMF) [157]. CE is formed by cross-
linking different proteins such as loricrin and involucrin. Loricrin is the main component of
CE, and involucrin plays a significant role in CE formation. Transglutaminase participates
in CE formation by stimulating cross-linking between loricrin and involucrin. When
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filaggrin is degraded by caspase1, NMF is formed, which is a determinant of hydration.
Profilaggrin is broken down into filaggrin by profilaggrin-degrading enzymes such as
matriptase and prostasin [158]. The expression levels of matriptase and prostacyn proteins
were increased by treatment with plum mango extract in hairless mice induced by UVB
light. Previous studies have shown that activation or inhibition of Smad2/3 of ERK and
JNK, MAPK members, stimulates keratinocyte differentiation, which is required for EC
formation and skin hydration. Activated TGFβ/Smad signaling pathway, inactivated
MAPK/AP1 signaling pathway, or a combination of the two signaling pathways are also
involved in the UVB-induced moisturizing effect of plum mango extract on mouse skin.

Overall, BME shows its antiphotoaging effect, which prevents wrinkle formation in
UVB-irradiated hairless mice by downregulating the signaling pathway of the MAPKs/AP1
combination complex, which regulates MMP expression shown in Figure 6. BME increased
collagen mRNA expression and stimulated the TGFβ/Smad signaling pathway in response
to the regulation of the AP1 complex, resulting in increased collagen content in the dermis.
In addition, plum mango extract helps moisturize the skin by stimulating EC formation and
filaggrin processing. Thus, B. macrophylla Griffith could be a potential anti-aging and mois-
turizing agent in skin supplements. Further clinical research is needed to determine whether
BME is clinically effective as a natural moisturizer and anti-inflammatory supplement.

Figure 6. Mechanisms of action of B. macrophylla Griffith as an antiphotoaging.

6. Improve Vegetable Intake and Blood β-Carotene Concentration

Many components in fresh vegetables can affect skin quality, such as nutrients and
phytochemicals, including amino acids (NA-acetylcysteine), carotenoids (β-carotene, lutein,
zeaxanthin, and lycopene), atty acids (Linoleic acid, Eicosapentaenoic acid, and Docosahex-
aenoic acid), vitamins (vitamin C, vitamin E, and vitamin B3), minerals (copper, selenium,
and zinc), and polyphenols [159,160]. Some of its ingredients are useful as antioxidants
and skin pigmentation cofactors to protect the skin from damage, improve skin security
and heal wounds. The most observable indicator of skin quality is skin luminosity. Among
the components present in vegetables, carotenoids have the most significant influence on
skin color. Carotenoids are one of the most abundantly found in plants, blood, and human
tissues [161]. The primary function of carotene is to activate provitamine A. Carotene also
acts as an antioxidant in the human body and on skin quality [162]. The concentration of
carotenoids in the blood (including carotenes) is related to the concentration of carotenoids
in the skin. Consumption of carotenoids increases the concentration of carotenoids in the
blood and skin [163].
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7. Conclusions

Plum mangos have been used as folk medicine. Due to its antioxidant, antibacterial,
and anticancer activity, it may prove effective to test plum mango as a natural preservative
in the food industry. Almost all parts of the plum mango have good pharmacological
activity; the community often uses the leaves and fruit to make salads and juices, which are
very beneficial for improving body health. Interestingly, from all parts of the B. macrophylla
Griffith, the seeds, which were rarely used, actually showed good pharmacological activity.
Its antioxidant activity shows an IC50 value comparable to a potent antioxidant, namely
ascorbic acid. The anticancer activity of B. macrophylla Griffith seed extract has also been
explored to the molecular level and its association with the main bioactive component,
gallotanin. This discovery is excellent because the use of waste-product of the plant can
be a source of new herbal drug candidates so that it is related to their economic value.
However, exploratory data on this plant are still limited, starting with the lack of data on
the bioactive compounds from each part of the plant and very little data on in vivo and
clinical trials. Therefore, further research is needed to support the potential of this plant
as an herbal plant. Regarding its pharmacological activity and potential for candidate
novel drugs to improve the treatment of various diseases, the scientific community needs
to develop further the benefits of this plant, such as toxicological studies and clinical trials.
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