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Dangerous driving behavior is the leading factor of road traffic accidents; therefore,
how to predict dangerous driving behavior quickly, accurately, and robustly has been
an active research topic of traffic safety management in the past decades. Previous
works are focused on learning the driving characteristic of drivers or depended on
different sensors to estimate vehicle state. In this paper, we propose a new method
for dangerous driving behavior prediction by using a hybrid model consisting of cloud
model and Elman neural network (CM-ENN) based on vehicle motion state estimation
and passenger’s subjective feeling scores, which is more intuitive in perceiving potential
dangerous driving behaviors. To verify the effectiveness of the proposed method, we
have developed a data acquisition system of driving motion states and apply it to real
traffic scenarios in ShenZhen city of China. Experimental results demonstrate that the
new method is more accurate and robust than classical methods based on common
neural network.

Keywords: dangerous driving behavior, cloud model, Elman neural network, auto driving scenarios, active vehicle
safety management

INTRODUCTION

Driving behavior analysis is an important part of research on traffic safety, which is a reflection
of how the driver steers the vehicle including speed and attitude control. Dangerous driving
behaviors are seen as series of operations performed by the driver on public roads that may result
in abnormal traffic conditions and subsequently lead to road accidents (Dronseyko et al., 2018).
Therefore, the analysis of driving behavior can help to measure the driver’s driving safety and
prevent traffic accidents. A recent report by the American Automobile Association estimated that
56% of fatal crashes occurring between 2003 and 2007 are related to aggressive driving behavior
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(American Automobile Association, 2009). In Shanghai, China,
traffic police corps reported that 75.9% (792 out of 1,044) of
the car accidents in 2015 were caused by all kinds of dangerous
driving behaviors (Accident Prevention Division of Traffic
Police Corps of Shanghai Public Security Bureau, 2016). If the
dangerous driving behavior of vehicles can be identified in time,
the driver may be promptly alerted or the vehicle may be forcibly
taken over at a critical time by safety control devices, which will
effectively prevent the traffic accidents from happening.

Case by case modeling driver’s personal driving behavior is the
most straightforward way; however, dangerous driving behavior
involves various complex and uncertain factors, such as driving
skills, emergency response ability, gender, mood, fatigue, job
pressure and even educational background, life experience, etc.
(Horswill and McKenna, 1999; Harre and Sibley, 2007; Dula
et al., 2011; Day et al., 2018; Fountas et al., 2019; Useche et al.,
2020), thereby making it difficult to directly study personal
driving behavior. Nevertheless, during the course of driving, no
matter how complex factors the vehicle is subjected to and no
matter what driving actions the driver takes, all dangerous driving
behaviors will eventually be reflected through the corresponding
motion state of vehicle and reaction of passengers on the vehicle.
Therefore, we can detect potential dangerous driving behavior
by sensing vehicle motion explicitly and monitoring passenger’s
feeling implicitly. Based on this fact, this paper intends to use
real-time monitoring data, including explicit vehicle states and
implicit passenger feelings to study dangerous driving behavior.

The main contributions of this paper are as follows: (1)
Passenger feeling scores are introduced into the prediction system
as subjective evaluations on the driver’s behaviors; (2) cloud
model (CM) is applied to identify the state of vehicle with a
clear qualitative judgment, and combined with Elman neural
network to make predictions; (3) a complete and practical
solution including hardware and algorithms is presented for the
prediction of dangerous driving behaviors.

RELATED WORK

In the research of driving behavior analysis based on real-time
monitoring data of vehicle movement, three aspects are involved
and stated as follows: (1) real-time detection of vehicle motion
states; (2) dynamic analysis of dangerous driving behaviors; (3)
correlation analysis and regularity discovery between vehicle
motion state and dangerous driving behavior. The detection
of vehicle motion state mainly involves the use of on-board
monitoring equipment and the identification of motion state.
The common equipment include vehicle on board diagnostics
(OBD), camera, GPS, inertial sensor, smart phone, and so on.
The selection and design of the detection method of vehicle
motion state is related to the monitoring equipment and data
type being used. In Huang (2011), the real-time recognition
of vehicle Z-curve driving state based on image processing
technology was proposed, which would automatically warn
and provide feedback to the driver when the relevant image
monitoring metric exceeded the preset threshold. Omerustaoglu
et al. (2020) studied the driver’s distracted driving behavior

by combining in-vehicle and image data using deep learning.
Based on the theory of support vector machine (SVM), Jeong
et al. (2013) recognized two kinds of driving behaviors, namely
lane-changing and Z-curve driving using the data collected by
the built-in 3-axis gyroscope of vehicle. DaeHan et al. (2019)
proposed a system called ADDICT (Accurate Driver Detection
exploiting Invariant Characteristics of smartphone sensors),
which identifies the driver utilizing the inconsistency between
gyroscope and magnetometer dynamics and the interplay
between electromagnetic field emissions and engine startup
vibrations. In order to evaluate the feasibility of ADDICT, four
participants and three different vehicles by varying vehicle-riding
scenarios are tested, and the evaluation results demonstrated that
ADDICT identifies the driver’s smartphone with 89.1% average
accuracy for all scenarios. Wu et al. (2013) used multiple sensors
of vehicle monitoring cameras, 3-axis accelerometers and GPS
receivers to collect vehicles’ motion parameters including lateral
offset distance, relative distance, lateral/longitudinal acceleration,
and speed. The recognition results for 7 common vehicle driving
states (normal driving, acceleration, braking, left-turn, right-turn,
curve driving, and vehicle following) verified that the hidden
Markov model (HMM) had the best overall recognition rate.

The analysis of dangerous driving behavior mainly focuses on
the classification of drivers’ driving styles. Some studies attempt
to describe various types of aggressive driving behavior and
develop their criteria (Tasca, 2000; Murphey et al., 2009; Abou-
Zeid et al., 2011; Li et al., 2014; Carboni and Bogorny, 2015;
Mãirean and Havãrneanu, 2018; Yang et al., 2019). In general,
the classification algorithms of driving style can be divided into
two categories: statistical method and machine learning method.
Constantinescu et al. (2010) made use of vehicle-borne GPS
data including GPS speed and acceleration to model and analyze
driver’s driving style. In their research, the driving behaviors
are divided into five types: non-aggressive, somewhat non-
aggressive, neutral, moderately aggressive, and very aggressive.
Hong et al. (2014) built a sensor platform composed of Android
smartphones, OBD, and inertial measurement unit (IMU) for
collecting driving behavior data including maximum, average and
standard deviation, speed variation, longitudinal acceleration,
lateral acceleration, speed, and throttle position of vehicles. Then
the thresholds are determined that can equally divide these
features of all samples into five discretized levels. Naive Bayesian
classifier is utilized to model the relationship between driving
characteristics and driving style. In Eboli et al. (2017), driving
behaviors were divided into three types (safe, unsafe, and safe
but potentially dangerous) by calculating the 50 and 80% speed
and average speed.

For the classification of dangerous driving behavior, it is
mainly realized by detecting driving events related to safety,
such as acceleration, braking, and turning. In general, the
classification of dangerous driving behavior can be divided into
two categories: template-based matching method and threshold-
based discrimination method. From the perspective of energy
consumption, the acceleration–deceleration characteristics of
three different driving behaviors are analyzed (Xing et al., 2020).
Driving Habits Graph (DHG) (Chen et al., 2013), which indicates
the significant changes of behavior according to a series of driving
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data, was proposed to simulate driving behavior and display
the driving style intuitively. In their follow-up research (Chen
et al., 2014), dangerous driving events were transformed into
the attributed relational map (ARM), and then the two-way
fuzzy attribute mapping and matching were used to compare
the converted driving behavior with the template to determine
whether it was a dangerous driving event.

In Johnson and Trivedi (2011), for all predefined driving
events including right/left/U turn, aggressive right/left/U
turn, and acceleration/deceleration/lane drastic change, the
smartphone data were utilized to analyze these events and
determine whether a driver’s behavior is normal or aggressive
action through time series data matching and dynamic time
warping (DTW). Based on vehicle-borne GPS and OBD data
(Chen et al., 2019), a graphic modeling method was proposed
for modeling individual driving behavior through the statistical
method. Based on the assumption that drivers have specific
driving habits, the typical driving modes are detected and
extracted. Sorted by the frequency of these typical driving modes,
a driving behavior diagram is finally constructed to directly
explain the driver’s behavior characteristics. In Han and Yang
(2009), the velocity, acceleration, and yaw angular velocity of
vehicles are collected by an on-board black box for identification
of four dangerous vehicles states including accelerating,
decelerating, steep turn, and sudden lane change. Besides, a

threshold division method based on different speed intervals is
also proposed. After intensive study on the acceleration threshold
of dangerous aggressive driving behaviors Johnson and Trivedi,
2011), concluded that the turning acceleration threshold for
aggressive driving was 0.73 g, the emergency turning threshold
was 0.74 g, the U-turn threshold was 0.91 g, the turning threshold
of non-aggressive driving was 0.3 g, and the U-turn threshold
was 0.56 g. In Bagdadi (2013), the threshold for determination of
rapid acceleration and deceleration was± 0.48 g≈ 4.8 m/s2.

From above literature review and analysis, we noticed that
vehicle motion state data are almost collected by vehicle-mounted
sensor units, such as GPS, accelerometer, etc. Current research on
the dangerous vehicle state and driving behavior are most likely
focused on the human driver and the operation of vehicles. Since
the drivers are easy to be influenced by complex factors, it is
difficult to find the personal characteristics of drivers. We think
that the key to this problem lies in how to set up the evaluation
index system of dangerous driving behavior scientifically, and
to find an effective prediction algorithm that can convert these
qualitative indicators into quantitative vehicle attitude data with
high precision. In this context, this paper proposes a vehicle active
safety monitoring and early warning method integrating driving
behavior, passenger feeling, and vehicle status based on cloud
model and Elman neural network (CM-ENN), which is illustrated
in Figure 1. By following the indicators of vehicle ride comfort

FIGURE 1 | The overall framework of cloud model and Elman neural network (CM-ENN) model for dangerous driving behavior prediction.
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and passengers’ perception of vehicle motion in related ISO
standards (ISO 2631-1:1997/AMD 1:2010, 2010) and the National
Standards of China (National Technical Committee of Auto
Standardization, 2004), a CM is built to set up correspondences
between dangerous driving behavior and vehicle motion data.
Because of the advantages of ENN in dealing with non-linear
problems and dynamic information (Wang et al., 2021), a CM-
ENN model is constructed where the CM is used to evaluate
dangerous driving behavior incorporating passenger’s subjective
feeling as well as vehicle motion data (Wang and Xu, 2012). The
system was tested with the real data collected in vehicles running
on some urban roads in Shenzhen City of China. Experimental
results verified the effectiveness of the proposed method.

The remainder of this paper is organized as follows: section
“Data Acquisition System” introduces the data acquisition and
processing system of vehicle motion status. The calculation
method of vehicle motion attitude is also discussed. In section
“Cloud Model for Dangerous Driving Behavior Evaluation,”
the CM theory is introduced and the details of setting
up correspondences between dangerous driving behavior

are explained. Section “CM-ENN, Prediction Method of
Dangerous Driving Behavior” discusses the structure of ENN
and the training process. Experimental results and analysis are
presented in sections “Experimental Results and Analysis,” and
“Conclusion” concludes the paper.

THEORY AND METHOD

Data Acquisition System
In this paper, a real-time driving behavior monitoring and active
safety early warning system is designed, as shown in Figure 2.
The system consists of three parts: (1) Vehicle-borne intelligent
terminal mainly includes vehicle-borne GPS, micro-electro-
mechanical systems (MEMS) sensors, CAN-bus, and so on.

It is designed to realize the acquisition and transmission
of real-time data of six degree of freedoms (DOFs) motion
states and vehicle speed. (2) Computer platform: Main tasks
for this part are as follows: First, to pre-process the collected
data. Second, to provide real-time driving behavior information

FIGURE 2 | Real-time vehicle attitude monitoring system for dangerous driving behavior analysis.
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for users and managers through the CM discriminant criteria
and the fast discriminant algorithm of vehicle driving behavior
based on the CM-ENN model. The dangerous driving behavior
is marked, warned, and stored. Third, the prediction model
of vehicle motion attitude can be established based on the
collected data so as to realize the active safety early warning
of vehicle. (3) User/Manager: The main task is to evaluate the
driver’s performance according to the processing results of the
computer platform and to effectively curb the occurrence of
dangerous driving.

For the vehicle intelligent terminal, the six-axis MPU6500
(as shown in Figure 3) is selected as the integrated sensor of
MEMS integrated with the accelerometer and gyroscope. The
core processor of the main control module is STM32F207 VCT6,
and the NEO-6M module is selected as the GPS module. The
terminal is required to be installed at gravity center of the
vehicle with three axes of the accelerometer aligned with the
vehicle body. As shown in Figure 4, the forward direction of
the vehicle corresponds to the positive direction of the Y-axis
of the accelerometer, i.e., the longitudinal acceleration of the
vehicle. The three axes angular velocity of the vehicle is measured
by the gyroscope, and its direction is the rotation direction
around the corresponding accelerometer axis. An on-board
video driving recorder is also installed on the tested vehicle to
record the whole process of video information during the testing
process, which provides videos for the later data processing.
The position, speed, and heading of the vehicle are acquired
by output signal processing of accelerometer and coordinate
transformation (Schmidt and Phillips, 2010). Generally, the

motion state parameters of the carrier (such as attitude, speed,
position, etc.) and the outputs of the sensor are not measured
in the same coordinate system. Therefore, the coordinates need
to be transformed by rotating around three coordinate axes.
There are two coordinate systems shown in Figure 4. One is the
carrier coordinate system (also known as system b, OXbYbZb)
and the other is the navigation coordinate system (also known as
system n, OXnYnZn). According to the rotation theorem in Euler
navigation, the frame coordinates in carrier coordinate system
can be transformed into the navigation frame coordinates by
three consecutive rotations around different coordinate axes in
a certain order. The transformation process can be expressed by: xn

yn
zn

 = Cn
b

 xb
yb
zb

 (1)

where the transformation matrix Cn
b is defined by the following

equation:

Cn
b =


cosθcosψ cosθsinψ −sinθ

sinϕsinθcosψ sinϕsinθsinψ sinϕcosθ
−cosϕsinψ −cosϕsinψ

cosϕsinθcosψ cosϕsinθsinψ cosϕcosθ
+sinϕsinψ −sinϕcosψ

 (2)

where yaw angle ψ , roll angle ϕ, and pitch angle θ are
called Euler angles.

According to the fixed-point rotation theory of rigid body,
there are three methods of solving attitude matrix including Euler

FIGURE 3 | Inertial measurement unit (IMU) on vehicle.
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FIGURE 4 | Transformation from body frame (OXbYbZb) to the navigation frame (OXnYnZn).

angle method (known as three-parameter method), quaternion
method (known as four-parameter method), and direction cosine
method (known as nine-parameter method). Quaternion method
is used in this paper to solve attitude matrix Cn

b for the advantages
of real-time performance and high precision. The fourth-order
Runge-Kutta numerical integration method (Press et al., 2007) is
applied to solve attitude parameters in quaternion and implement
the transformation from system b to system n.

Cloud Model for Dangerous Driving
Behavior Evaluation
In order to predict the dangerous driving behavior using the
data collected from onboard sensors, it is crucial to create the
evaluation criteria of the dangerous driving behaviors based
on the vehicle motion states. On the one hand, the motion
state of a vehicle at any time can be precisely measured
quantitatively by various sensors in some metrics such as
the speed, acceleration, and rotation angle; on the other
hand, the dangerous driving behavior is actually a qualitative
and conceptual description commonly used in traffic safety
management, such as rapid acceleration, emergency braking,
sharp turn, and so on. Therefore, mapping between vehicle

motion state space and the dangerous driving behavior space
is crucial. Based on the CM theory, this paper designs a CM
for predicting dangerous driving behavior, which combines the
vehicle driving states with the subjective feeling of passengers and
establishes the mapping between the vehicle motion states and
the dangerous driving behaviors.

Table 1 shows the root mean square (RMS) of the total
acceleration of vehicle and the corresponding subjective feeling
of human body, which to some extent reveals the relationship
between the vehicle motion and human feeling. This classification
standard can be used as a reference for evaluating dangerous
driving behaviors. However, only comfort is considered in this
table. Thus, we extend it with some other driving behavior
description and use cloud transformation algorithm to build the
numerical characteristics of dangerous driving behaviors that are
provided as the targets for the ENN in the training process.

Cloud Model Definition and Cloud Transformation
Algorithm
CM is a cognitive model of bidirectional transformation between
qualitative concept and quantitative data, which was proposed by
Li et al. (2009). The basic concepts of CM are defined as follows:
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TABLE 1 | The root mean square (RMS) of total acceleration and subjective feeling
of the human’s body.

The RMS of the total
acceleration aω(m/s2)

Subjective feeling

0.315 Not uncomfortable

0.315 0.63 A little
uncomfortable

0.5 1.0 Fairly uncomfortable

0.8 1.6 Uncomfortable

1.25 2.5 Very uncomfortable

>2.0 Extremely
uncomfortable

Definition 1: Let U be a quantitative domain expressed by exact
numerical values, C be a qualitative concept on U, and C contains
three numerical characteristics (Ex, En, He). If a number x ∈
U, and x is a random realization of qualitative concept C. The
certainty of x to C is µ(x) (µ(x) ∈ [0,1]), which is a random
number with a stable tendency: µ(x) : [U→ [0,1], ∀x ∈ U, then
the distribution of x on domain U is called CM. For a CM, each x
is called a cloud droplet.

In Definition 1, three numerical characteristics of CM,
Ex, En, and He, are called expectation, entropy, and hyper-
entropy, respectively, which represent a concept. Expectation
Ex is the most representative concept or the typical sample in
quantification of this concept; entropy En is the uncertainty
measure of concept, which is determined by the randomness and
fuzziness of the concept; hyper-entropy He is the uncertainty
measure of entropy, which is determined by the randomness and
fuzziness of the entropy. The number x depicts the randomness
of quantitative values representing concepts, while µ(x) is the
uncertainty of the number x belonging to a concept C.

The distribution differs for different CMs. Among them, the
normal CM is the most important and of universal applications
(Li et al., 2012). By forward cloud transformation (FCT) and
backward cloud transformation (BCT), the CM realizes the
mapping between qualitative concepts and their quantitative
representations. The two algorithms of cloud transformation are
displayed in Algorithms 1 and 2.

Algorithm 1: Forward Cloud Transformation (FCT)
Input: Ex,En,He, n
Output: n cloud droplets (xi, µi), i = 1, 2, ..., n
Step 1: Generate a normal random number En

′

i =

NORM(En,He2) with En as expected and He2 as variance
Step 2: Generate a normal random number xi =

NORM(Ex,En
′

i
2
) with Ex as expected and En

′

i
2

as variance

Step 3: Calculate µi = exp
{
−
(xi−Ex)2

2(En′i )2

}
Step 4: Calculate a cloud drop (xi, µi)
Step 5: Repeat steps 1–4 for n times to generate the required n
cloud droplets drop(xi, µi);

Index Based on Passenger’s Feeling
Based on lots of previous works and literatures on human
body vibration, the International Standard Organization (ISO)
has formulated ISO 2631 guidelines for the evaluation of

human body’s response to whole body vibration. In ISO 2631-
1:1997/AMD 1:2010 (2010) titled with “Evaluation of human
exposure to whole-body vibration,” the exposure limit of human
body is quantified in the main frequency range from 1 to 80 Hz
during the transmission from solid surface to human body,
and the human comfort feeling under different acceleration
RMS is also demonstrated, as shown in Table 1. Generally in
measurement of vehicle vibrations, the three-axis acceleration of
IMU is used. Experiments show that the three-axle acceleration
can effectively evaluate severities of vehicle vibration. The total
acceleration is calculated by combining three-axis accelerations
and used as the criteria for vibration evaluation, as described in
the following:

Algorithm 2: Backward Cloud Transformation (BCT)
Input: n cloud droplets xi(i = 1, 2, ..., n)
Output: Expectation Êx, Entropy Ên and Super Entropy Ĥe
Step 1: Êx = X̄ = 1

n
∑n

i=1 xi
Step 2: Random sampling grouping
for i← 1 to m do

for j← 1 to r do
Random sampling of n cloud droplet samples;

end
Xi = {Xi1,Xi2, ...,Xir}, X̄i =

1
r
∑r

j=1 xij;
end
Y2
= {Y2

1 ,Y2
2 , ...,Y2

m}

Ên2
=

1
2

√
4(EY2)2 − 2DY2

Step 3: Ĥe2
= EY2

− Ên2

(1) For the vibration signal (three-axis acceleration), discrete
Fourier transform (DFT) is applied to transforms it into
the frequency domain using the following formula:

X(f ) =
N−1∑
n=0

x(n)e−j 2π
N t (3)

where X(n) is a finite vibration signal with the length number N
in the time domain that is the three-axis acceleration, and X(f) is
the vibration signal in the frequency domain.

(2) Calculation of the RMS of one-third octave as well as
the weight acceleration at the center of one-third octave.
Formula of computing RMS of one-third octave is defined
as:

ai =

√
1

fiu − fil

∫ fiu

fil
X2(f )df i = 1, 2, 3...20 (4)

where ai is RMS f one-third octave whose unit is m/s2, fiu is
an upper cut-off frequency in the ith frequency band, fil is a
lower cut-off frequency on the ith frequency band, and X(f) is the
acceleration signal in frequency domain.

Human body reacts differently to different frequency vibration
in different directions, therefore, weighting factors are given in
each frequency center to model the acceleration matching the
real feeling of human body. ISO 2631-1:1997/AMD 1:2010 (2010)

Frontiers in Neurorobotics | www.frontiersin.org 7 April 2021 | Volume 15 | Article 641007

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-15-641007 April 23, 2021 Time: 17:30 # 8

Xiang et al. Prediction of Dangerous Driving Behavior

gives a frequency-weight table that indicate the center frequencies
of one-third octave and the corresponding weighted factors for
each axis. Thus, the weighed acceleration of each axis is simply
calculated by looking up this table, as formulated by

awj =

√√√√ 20∑
i=1

(kijai)2 i = 1, 2, 3...20 j = x, y, z (5)

where awj is the weighed acceleration of each axis whose unit is
m/s2, and kij is a weighted coefficient in the ith one-third octave
band for j axis.

According to the random input running test method of
automobiles provided by the National Standards of China
(National Technical Committee of Auto Standardization, 2004),
acceleration of X-axis and Y-axis are weighted with 1.4, and
Z-axis weighted with 1.0, and the total acceleration is calculated
by

aw =
√
(1.4awx)2 + (1.4awy)2 + awz2 (6)

where aw is the RMS of total acceleration, and awx, awy, awz is the
RMS of each axis computed by equation (5).

(3) The subjective feelings of comfort by human body are
classified into six degrees, and the relationship between
comfort and RMS of total acceleration aw is shown in
Table 1. Lots of research have proved that some dangerous
driving behaviors such as sudden braking or sudden
turning could also bring up uncomfortable feelings, which
are classified into the category of “Very Uncomfortable” or
“Extremely Uncomfortable.”

Comprehensive Cloud Model for Dangerous Driving
Behavior Evaluation
Three measures including longitudinal acceleration ay, lateral
acceleration ax, and total acceleration aw of the vehicle are
considered in evaluation of driving behaviors where ay reflects the
intensity of vehicle acceleration or deceleration, ax indicates the
intensity of the left turn or right turn of the vehicle, and the ISO
recommend aw as measure of passenger’s feeling of comfort in the
riding process. In this paper, for simplicity we mainly adopt ay
which represents for the intensity of vehicle motion to corporate
with aw when evaluating the comprehensive state.

Based on CM theory and the input acceleration ay and aw,
this paper applied BCT to compute the numerical characteristics
of the CMs for evaluating the intensity of vehicle motion and
passenger’s feeling of comfort, as shown in Tables 2A,B. Then the
FCT is applied to generate the corresponding one-dimensional
CM maps, as illustrated in Figures 5A,B, respectively. There are
five different color CMs in Figure 5 representing five degrees
of intensity of vehicle motion, and three CMs in Figure 5B
representing three degrees of comfort. The distributions of these
one-dimensional CMs indicate the longitudinal acceleration ay
and the total acceleration aw are very discriminative for vehicle
motion states under different operating modes of drivers. In
addition, there are overlapping part being observed between
different droplet groups, which confirmed the CMs can also
describe the uncertain part under certain states.

According to concept division theory in CM, the dangerous
driving behavior description is generated based on the input
acceleration ay and aw. These accelerations all consist of 3 states,
and both comfort and intensity include 3 states. As a subset
of all possible combinations, the driving behavior, therefore, is
composed of 5 states and described by the comprehensive CM,
as shown in Table 3. The main advantage of this definition is
that it avoids direct judgment on the driving behavior based

TABLE 2 | Numerical characteristics of cloud models (CMs).

(A) CM of intensity

Numerical characteristics Description

Eχ1 Eη1 He1 Intensity

Speed up 0.6281
1.2202

0.5076
0.8511

0.1263
0.1637

Relatively large (black)
Large (blue)

Slow down −0.61
−1.635
−3.0326

0.7379
1.2357
1.4398

0.2832
0.274

0.3168

Relatively large(green)
Large(yellow)
Very large(red)

(B) CM of comfort

Numerical characteristics Description

Eχ2 Eη2 He2 Comfort

1.0682 0.5128 0.1472 A little uncomfortable (red)

1.8681 0.8931 0.2762 Not comfortable (green)

3.1463 1.5283 1.3423 Very uncomfortable (blue)

(A) In the column of “Intensity,” the color in the parentheses is correspond to the color of cloud in Figure 5A. (B) In the column of “comfort,” the color in the parentheses
is correspond to the color of cloud in Figure 5B.
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FIGURE 5 | Acceleration of 1D cloud model: (A) Comparison of 1D cloud models with longitudinal acceleration; (B) comparison of 1D cloud models with total
acceleration.

TABLE 3 | Description of dangerous driving behavior with comprehensive cloud model.

The input variable The output variable

αy αw Intensity Comfort Driving behavior

Speed up Big
large

Big
large

Relatively large
Large

A little uncomfortable
Not comfortable

Slow speeding
Urgent to accelerate

Slow down Big
Relatively large

Large

Big
Relatively large

Large

Relatively large
Large

Very large

A little uncomfortable
Not comfortable

Very uncomfortable

Slow speed reduction
General slowdown
Sharp slowdown

on the motion parameters retrieved by the motion sensor. The
driving behaviors are essentially vague concepts and it is hard
to determine the exact border of two behaviors. Incorporating
human subjective feeling as well as building mapping from
quantitative data space to concept space with CM make the
judgment more flexible and as natural as what human does in
real world. For example, if ay is a positive value, which means
the vehicle is speeding up. If the intensity is “relatively large” and
the subjective feeling is “a little uncomfortable,” which means the
action of speeding is not that bothering so the driving behavior is
defined as “slow speeding.”

For further description on different vehicle motion states, 1D
CM can be extended to 2D by cloud transformation and concept
escalation (Meng et al., 2010). Six numerical characteristics
(Exi,Eni,Hei,Ex2,Eri2,He2) are used in this paper, where the
expectation Ex1 and Ex2 are the best representation of the 2D
concepts of vehicle status including vehicle motion intensity and
comfort. The entropy En1 and En2 are the fuzzy measurements
of vehicle status, which describes the coverage over 2D values.
The hyper-entropy He1 and He2 depict the dispersion of cloud
droplets, which are implicitly represented by the thickness of
the 1D projection of the 2D CM. Taking vehicle accelerating
as an example, the 2D CMs for two acceleration status, slow
acceleration and rapid acceleration, are shown in Figures 6A,B.

As shown in Figures 5, 6, difference vehicle states have
difference numerical characteristics of the corresponding CM.
In order to make an intuitive comparison, by applying cloud
computing the numerical characteristics of comprehensive CM

are calculated based on the six numerical characteristics of 2D
CM, as formulated by

Ex = Ex1 + Ex2 (7)

En =
√

En1
2 + En2

2 (8)

He =
√

He1
2 +He2

2 (9)

In equation (7), Ex is comprehensive expectation, En is
comprehensive entropy, and He is comprehensive hyper-entropy.
The three numerical characteristics are the comprehensively
representation of the qualitative concepts of different driving
behaviors, as shown in Table 4.

CM-ENN, Prediction Method of
Dangerous Driving Behavior
After quantifying the qualitative conceptual of dangerous
driving behavior through evaluation of vehicle driving state and
passengers’ subjective feelings by CM, a real-time identification
model for dangerous driving behavior is designed, which is
referred to as CM-ENN. The input of CM-ENN is the driving
state data described before, usually in a sequence, and the target
output is the predicted dangerous driving behavior. Inside the
structure, ENN takes the charge of driving state prediction and
CM takes the charge of determining which dangerous driving
behavior it is. Considering the low-cost on-board platform with
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FIGURE 6 | 2D cloud model with different acceleration states: (A) Slow speeding; (B) urgent to acceleration.

limited computing ability, for online training or prediction, the
simple-structured ENN is an appropriate choice in this scenario.

The Structure and Algorithm Design of ENN
ENN was first proposed by Jeffrey L. Elman in 1990. Unlike static
feedforward networks such as BP network and RBF network,
Elman network is a dynamic local regression neural network.
Different from classical BP network, this network has another
feedback loop from the output of hidden layer to the input
of this layer, which constitutes the “context layer” that retains
information between observations. This type of network consists
of an input layer, a hidden layer, an output layer, and a context
layer. Typical structure of ENN is depicted in Figure 7. The input
layer and output layer play the roles of signal transmission and
linear weighting, respectively. The hidden layer is to take the
previous output as its new input as well as the input of context
layer. Thus, the context layer can be seen as a group of time-
delay operators that enable the network with the capability of
memorizing historical states. The transfer function of hidden
layer can be linear or non-linear.

ENN’s non-linear space state can be expressed as follows:

x(k) = f [w1
kxc(k)+ w2

kµ(k− 1)] (10)

xc(k) = x(k− 1) (11)

y(k) = g[w3
kx(k)] (12)

where µ(k − 1) is the external input, x(k) is the output of hidden
layer, and y(k) is the output of the network. w1

k, w2
k and w3

k are the

TABLE 4 | Numerical characteristics of comprehensive cloud model integrating
the qualitative concepts.

Driving behavior Ex En He

Slow speeding 1.6963 0.7215 0.1940

Urgent to accelerate 2.5372 0.9294 0.6600

Slow speed reduction 0.4582 0.8986 0.3192

General slowdown 0.2331 1.5247 0.3891

Sharp slowdown 0.1137 2.0997 1.3792

matrixes, which represent connection weights from the context
layer to the hidden layer, the input layer to the hidden layer, and
the hidden layer to the output layer, respectively. f and g are
transfer functions of the hidden layer and the output layer.

In this paper, the Levenberg-Marquardt backpropagation
learning algorithm is used in the training of ENN to adjust
weights of each layer, and minimize the mean square error (MSE)
between the network output and desired output, the energy
function is expressed as

E =
n∑

k=1

[y(k)− d(k)]2 (13)

where d(k) is the desired output.
Assuming that the vehicle accelerations at the first n time

points are taken to predict the acceleration at the next time point,
the mapping function can be expressed as follows:

xn = f (x1, x2, · · · xn−1) (14)

First, we construct the sample set. For the given vehicle
acceleration data, the rule of cycle prediction is adopted to build
the sample set, that is, taking the prediction of the previous
step as the input of the next step, cycle down in turn. The
driving behavior prediction therefore can be implemented by
considering the historical and current data collected in vehicle
motions instead of the specific information on driver’s driving
style, road conditions, and so on. Second, the input data of neural
network are normalized to [–1,1] using equation (15) and the
network output is denormalized by equation (16).

L̂ =
2L− Lmax − Lmin

Lmax − Lmin
(15)

L =
1
2
[
(Lmax − Lmin)L̂ + Lmax + Lmin

]
(16)

here Lmin and Lmax are the minimum and maximum of the data
in the sample set. The input layer of ENN consists of 20 neurons,
the output layer includes 1 neuron, and the neuron number in the
hidden layer is set to 13. The flow chart of the CM-ENN learning
algorithm is illustrated in Figure 8.
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FIGURE 7 | The structure of Elman neural network (ENN).

State Identification of Unlabeled Cloud Model
Whatever vehicle motion intensity feature or passenger feeling
feature are used, they have been summarized into a CM
described by a 3-element vector. And any data sequence
can be applied to inverse CM generator to get the same
length feature vector represented for an unlabeled CM. The
identification of unlabeled CM can be seen as a similarity
measurement problem of the CM. In this paper, we adopt the
measurement called maximum boundary-based cloud model
(MCM) (Yang et al., 2018), which generally is an overlapping
area calculation method between two CMs based on integral.
There are several types of CM similarity measurement, including
integral-based and vector-based methods (cosine similarity).
The main advantage of integral-based methods is that it
can describe different roles of three individual feature values,
instead of treating them the same in vector-based methods.
Moreover, in MCM, the integral calculation, which is originally
much more expensive than that of cosine-based methods,
is transformed into standard normal distribution integral

calculation, which can be pre-calculated. The simplification of
computation is quite important for the real-time monitoring
purpose. With MCM, unlabeled CM therefore can be compared
to each type of baseline CM representing different states,
as shown in Tables 2, 4, and the best-matched label is
selected for it.

EXPERIMENTAL RESULTS AND
ANALYSIS

Data Acquisition
In order to evaluate the performance of the proposed method,
we used the on-board system described in previous section
to collect the experimental data. The data acquisition area is
located in the road network of Shenzhen Software Park Phase
II on the north side of Nanshan Science Park, Shenzhen City,
Guangdong Province, China (as shown in Figure 9). The data
collection plan is carefully designed to ensure the randomness,
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FIGURE 8 | Flow chart of the cloud model and Elman neural network (CM-ENN) learning algorithm.

FIGURE 9 | Testing data acquisition: (A) The vehicle for collecting testing data; (B) urban roads for collecting testing data.
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FIGURE 10 | The response curve of RMS of total acceleration aw and longitudinal acceleration ay .

TABLE 5 | Comparison of results by Elman neural network and multi-layer neural network.

Model Network structure Learning algorithm Number of training Precision(%)

CM-ENN 20, 13, 1 Levenberg-Marquardt backpropagation 500 0.01

Artificial Neural Network (ANN) 20, 13, 1 Levenberg-Marquardt backpropagation 210 0.01

autonomy, contingency, and suddenness of driving behavior.
Besides, road safety is another concern in real-world data
acquisition. In the data acquisition process, the ways of data
recording include vehicle terminal recording, video recording,
and manual observation recording. To ensure the objectivity
and identicalness of manual observation, we invited three
passengers to rate all driving behavior indicators, respectively.
The true label is then determined by a simple on-site voting.
The onboard IMU MPU6500 is utilized to collect velocity data
and the frequency is 10 Hz. In this paper, 900 randomly selected
historical data are taken as sample data. Using the coordinate
transformation and evaluation method provided before, the
change curves of total acceleration and longitudinal acceleration
are obtained during the moving of the vehicle, as shown in
Figure 10.

Model Training and Experiments
Data sequences are treated as rolling inputs to train the models.
In this experiment, one sample is defined as a 21-length sequence
which is roughly 2 s in 10 Hz setting and the output is last value of
this subsequence, which means the models are required to predict
the value at next moment according to the previous 20-length
sequence. Thus, a 900-length sequence can be separated into 880
samples. And in this experiment, 510 of them are used to train
and the rest of them are used for validation.

To make a comparison, an ANN or called multi-layer neural
network is designed which uses the same sample set, similar
network architecture, learning algorithm, and target accuracy.
The details of these two models are described in Table 5. The
network structure is denoted by three numbers indicating the
neuron number in input layer, hidden layer, and output layer.
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In order to compare and evaluate the prediction performance
of different prediction methods, we adopt three measures
including mean absolute error (MAE), mean square error (MSE),
and root mean squared error (RMSE), which are defined as
following equations:

MAE =
1
n

n∑
i=1

(|At − Ft|) (17)

MSE =
1
n

n∑
t=1

(At − Ft)
2 (18)

RMSE =

√√√√ 1
n

n∑
t=1

(At − Ft)2 (19)

where At is the predicted value and Ft is the true value.
Figure 11 shows the predicted aw values in a certain period of

time by ENN and ANN. Table 6 shows the errors of training and
testing by ENN and ANN. As shown in Figure 11, though the
two models are capable to catch the time-series structure of input

sequence, the ENN has lower validation error with all measures
according to Table 6, which indicates that ENN performs better
than ANN in this scenario and has better ability of generalization.

After training, dangerous driving behavior can be predicted
and judged by combining the prediction model and CM. The
880 samples obtained previously all have their ground truth label
in comfort and intensity, which is described in Tables 2, 4.
Leveraging the backward Algorithm 2, the predicted sequence of
representation of comfort and intensity can be compacted into
CMs and by using MCM, the cloud similarity measurement, these
predicted CMs can be labeled and compared to their ground
truth. The accuracy results are demonstrated in Table 7. Here,
two types of predictions are made. One is using the models to
predict next 1 s sequence, which has 10 values at the setting of
10 Hz, and another is 2 s, which has 20 values in total. The
prediction accuracy of comfort, intensity, and comprehensive
dangerous driving behavior are presented in the table. The
results indicate that, as discussed before, though CM-ANN seems
not bad when handling the comfort data, CM-ENN can much
better catch the sequence structure. The errors accumulated by
models will greatly affect the prediction accuracy of dangerous

FIGURE 11 | The predicted aw values by two learning models and the recorded true values in a selected period of time: (A) Results of ENN; (B) results of ANN.

TABLE 6 | The errors of training and testing.

Comfort Intensity Driving behavior

MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

CM-ENN Train 0.4184 0.0984 0.3137 0.5300 0.1673 0.4090 0.4653 0.1239 0.3520

CM-ANN 0.3718 0.0790 0.2811 0.5910 0.2209 0.4700 0.4074 0.1050 0.3240

CM-ENN Validation 0.5692 0.1661 0.4076 0.5576 0.1789 0.4230 0.6526 0.2297 0.4793

CM-ANN 0.6072 0.1894 0.4352 0.5908 0.2014 0.4488 0.7705 0.3072 0.5543

TABLE 7 | The accuracy of dangerous driving behavior prediction by Elman neural network (CM-ENN) and CM-ANN.

Comfort Intensity Driving behavior

Prediction Length(Second) 1 s 2 s 1 s 2 s 1 s 2 s

CM-ENN 0.8921 0.8746 0.9219 0.8873 0.8909 0.7979

CM-ANN 0.8370 0.7375 0.9357 0.8815 0.7910 0.7596

Frontiers in Neurorobotics | www.frontiersin.org 14 April 2021 | Volume 15 | Article 641007

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-15-641007 April 23, 2021 Time: 17:30 # 15

Xiang et al. Prediction of Dangerous Driving Behavior

driving behavior, and CM-ENN has a more robust decay of
accuracy as the length of predicted time increases. Besides, the
prediction of dangerous driving behavior is not so accurate as
that of comfort and intensity, probably because the comfort
label is determined manually in our experiment, which may lead
to incorrect correspondences with the true dangerous driving
behavior pattern. Therefore, more accurate and interpretive
comfort measures should be considered in future work.

CONCLUSION

Based on the analysis of existing research on dangerous driving
behavior prediction, this paper puts forward a new CM-ENN
model for predicting dangerous driving behavior by combining
vehicle sensor data with passenger’s subjective feelings. The
CM theory is introduced to implement transformation from
quantitative space to qualitative space. Referring to the relevant
standards, a comprehensive evaluation CM of dangerous driving
behavior is constructed, which combines vehicle sensor data with
passenger’s subjective feelings. To evaluate the performance of the
proposed algorithm, the discriminant accuracy of this method
and ANN are compared based on the same real world dataset
and error control conditions. Experimental results verified the
better prediction accuracy of the proposed CM-ENN model.
This research provides a practical solution for safe driving
in the development of automotive active safety management
products. In addition, the driving behavior itself is also affected
by many factors such as road, environment, weather, and so

on. Many of these factors also have great uncertainty. In this
paper, these factors are not considered enough and need to be
studied in future work.
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