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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with no curative
treatment available. Exploring the genetic and non-genetic contributors to AD pathogenesis is
essential to better understand its underlying biological mechanisms, and to develop novel preventive
and therapeutic strategies. We investigated potential genetically driven epigenetic heterogeneity
of AD through summary data-based Mendelian randomization (SMR), which combined results
from our previous genome-wide association analyses with those from two publicly available
methylation quantitative trait loci studies of blood and brain tissue samples. We found that 152
probes corresponding to 113 genes were epigenetically associated with AD at a Bonferroni-adjusted
significance level of 5.49E-07. Of these, 10 genes had significant probes in both brain-specific and
blood-based analyses. Comparing males vs. females and hypertensive vs. non-hypertensive subjects,
we found that 22 and 79 probes had group-specific associations with AD, respectively, suggesting
a potential role for such epigenetic modifications in the heterogeneous nature of AD. Our analyses
provided stronger evidence for possible roles of four genes (i.e., AIM2, C16orf80, DGUOK, and ST14)
in AD pathogenesis as they were also transcriptionally associated with AD. The identified associations
suggest a list of prioritized genes for follow-up functional studies and advance our understanding of
AD pathogenesis.

Keywords: neurodegenerative diseases; dementia; aging; GWAS; mQTLs; eQTLs; Alzheimer’s
disease; Alzheimer’s disease pathogenesis; methylome-wide association analyses; summary
data-based mendelian randomization

1. Introduction

Alzheimer’s disease (AD) is the major cause of dementia and is projected to affect more than
13 million people in the United States by 2050, thus imposing huge health and economic burdens [1,2].
Late onset AD is believed to be a multifactorial disease caused by complex interactions between various
genetic and non-genetic factors [3]. Many genetic variants mapped to several chromosomal regions
and genes have thus far been associated with AD by genome-wide association studies (GWAS) [4,5];
although, the vast majority of AD cases cannot be etiologically attributed to these variants [2,6].
Also, none of non-genetic AD-associated factors (e.g., age, cardiovascular risk factors, head trauma,
depression, and educational attainment) has been proven to have a strong causal relationship with
AD [7,8].

Epigenetic modifications of gene expression in interaction with non-genetic factors are
hypothesized to contribute to AD development [6,9], particularly in light of the heterogeneous clinical
manifestations of AD observed among patients with similar or identical genetic backgrounds [10].
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The potential role of epigenetic mechanisms in AD pathogenesis has been widely investigated in
cell lines, mouse models, post-mortem brain tissue, and blood cells [6,10–13]. Several studies have
explored the global DNA methylation in AD cases compared with controls, although their findings
have been inconclusive, with some reporting global hypomethylation in AD, some suggesting global
hypermethylation in AD, and the others reporting no significant differences between cases and
controls [12]. Previous studies have also provided many lines of evidence of associations between
AD and gene-specific epigenetic modifications. They mainly investigated the DNA methylation and
histone modification differences between AD cases and unaffected controls using candidate gene or
genome-wide analysis approaches (e.g., pyrosequencing and array hybridization) which revealed
AD-associated epigenetic modifications in some well-known AD genes, such as amyloid-β precursor
protein (APP), Microtubule Associated Protein Tau (MAPT) [14], and Apolipoprotein E (APOE) [15],
as well as in other genes [12]. For instance, Iwata et al. discovered CpG hypermethylation in APP
and MAPT in post-mortem brain samples from AD patients, which were suggested to contribute to
neural dysfunction and AD development [14]. Foraker et al. found that AD patients had a lower
mean methylation level in 76 CpG sites across APOE gene compared with age-matched controls
when hippocampus and frontal lobe samples were analyzed. However, APOE methylation was not
statistically different between cases and controls in samples obtained from their cerebellum [15].

In most cases, epigenetically dysregulated genes were uniquely found in a single study [6,10,12,13],
although AD-associated epigenetic modifications of some genes have been replicated in independent
studies. For instance, several studies have reported CpG hypermethylation in the ANK1 gene in
different brain regions, such as entorhinal and prefrontal cortices, superior temporal gyrus, and/or
hippocampus in AD patients [16–18]. Hypermethylated regions overlapping DUSP22 gene were
previously detected in entorhinal and dorsolateral prefrontal cortices and/or hippocampus of AD
affected individuals [18,19], and CpG hypermethylation of SORBS3 was detected in the cerebral
cortex of AD patients and transgenic AD mouse models [11,20]. Moreover, differentially methylated
regions overlapping CDH23, RHBDF2, and RPL13 genes were reported in previous studies [16,17,21].
The mRNA expressions of these genes were also found to be altered in AD patients [16]. In addition,
several genes whose associations with AD were replicated by independent GWAS [2], such as ABCA7,
BIN1, CLU, HLA-DRB5, SLC24A4, and SORL1, are epigenetically implicated in AD as well [16,22,23].
The case-control studies and cell/animal models may not, however, reflect genetic contributions to
AD-associated epigenetic modifications as they are more likely to identify the environmentally induced
epigenetic alterations [6,9]. In addition to the studies using individual-level data, several epigenetically
AD-associated genes, such as BIN1, APOC1, HLA-DRB1, HLA-DRB5, and TOMM40, have been reported
by summary data-based analyses [24,25] which reflect genetically driven (i.e., through cis acting
variants) epigenetic alterations [26].

In this study, we performed methylome-wide association (MWA) analyses of AD using the
summary data-based Mendelian randomization (SMR) method [26] to investigate genetically driven
epigenetic contributors to AD pathogenesis. Instead of analyzing individual-level data, the SMR
method integrates the summary results from previous GWAS [27,28] and methylation quantitative trait
loci (mQTLs) studies using blood samples [29] and brain tissue [30] in order to identify associations
between AD and methylation alterations that may mediate the genetic associations examined by GWAS.
Central to our study was to investigate potential genetically driven epigenetic heterogeneity of AD.
Therefore, summary results from our previous GWAS which aimed to analyze genetic heterogeneity of
AD in contrasting groups of subjects stratified based on their sex and history of hypertension (HTN)
were used for our MWA analyses. Sex has been identified as a risk factor for AD and there are many
reports highlighting sex disparities in epidemiological and clinical features of AD [31–37]. HTN is also a
major cardiovascular risk factor for AD that may be involved in initiation and progression of the disease
by causing structural and functional damages to cerebral microvasculature and promoting amyloid
plaques formation [8,38,39]. By detecting several group-specific AD-associated single-nucleotide
polymorphisms (SNPs) at P < 5E-06, our GWAS suggested that differences in the genetic architecture
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of AD between these contrasting groups may differentially contribute to AD pathogenesis [27,28].
Thus, the current study using summary results from these two GWAS may provide novel insights into
potential genetically driven epigenetic heterogeneity of AD. To further validate significant findings,
we compared our MWA results with those from our previous transcriptome-wide association (TWA)
analyses of AD [27,28] that implemented the SMR method using the same GWAS summary results
along with data from blood-based [40] and brain-specific [30,41] expression quantitative trait loci
(eQTLs) studies.

2. Methods

2.1. GWAS Data

This study makes use of the results of our previous genome-wide association meta-analyses [27,28].
Briefly, these meta-analyses were performed using genotype and phenotype data from four independent
datasets: (1) Cardiovascular Health Study (CHS) [42]; (2) Framingham Heart Study (FHS) [43,44]; (3)
Late-Onset Alzheimer’s Disease Family Study (LOADFS) from the National Institute on Aging [45],
available to the research community through the dbGaP repository (https://www.ncbi.nlm.nih.gov/gap);
and (4) Health and Retirement Study (HRS) [46], which can be accessed through dbGaP and the
University of Michigan restricted access webpage (http://hrsonline.isr.umich.edu/index.php?p=data).
These meta-analyses were performed under five analysis plans in which the genetic basis of AD was
investigated among: (1) all subjects in each dataset, (2) only males, (3) only females [27], (4) only
subjects with a history of HTN, or (5) only subjects with no history of HTN [28]. AD patients were
mainly diagnosed clinically based on neurologic findings (e.g., using National Institute of Neurological
and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) criteria [47]) and were either identified directly (LOADFS and FHS datasets) or
reported indirectly (CHS and HRS datasets) through the International Classification of Disease codes,
Ninth revision (i.e., ICD-9:331.0 code). The numbers of AD cases were 2741, 952, 1789, 1262, and
796 under plans 1–5, respectively; and the numbers of unaffected controls were 14739, 6337, 8402,
9608, and 4010, respectively. The studied subjects were all of Caucasian ancestry to make samples
more homogeneous.

For each analysis plan, the additive genetic associations of ~2 million SNPs with AD were
investigated by fitting logistic regression (CHS and HRS cohorts with population-based design) [48]
or generalized mixed logistic regression (LOADFS and FHS cohorts with family-based design) [49]
models. The top five principal components of genotype data, birth year, and sex (except plans 2 and
3) of subjects were considered as fixed-effects covariates. In the case of LOADFS and FHS cohorts,
family identifier was also included as a random-effects covariate in the fitted models to adjust for
potential confounding from family structure. Individual GWAS results from the four datasets were
then combined by inverse-variance meta-analysis [50]. Under plans 2–5 that aimed to investigate the
genetic heterogeneity of AD through stratified analyses of datasets under consideration, group-specific
SNPs effects were identified by a Wald chi-square test (df = 1) [51] which was performed for any SNPs
with significant association signals in only one of the contrasting groups in order to determine whether
the SNPs odds ratios were significantly different between males and females (plans 2 and 3) [27] and
between hypertensive and non-hypertensive subjects (plans 4 and 5) [28].

χ2 =
(b1 − b2)

2

se2
1 + se2

2

(1)

where b1 (se1) and b2 (se2) are the beta coefficients (and their standard errors) of a SNP in each of the
two contrasting groups.

https://www.ncbi.nlm.nih.gov/gap
http://hrsonline.isr.umich.edu/index.php?p=data
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2.2. mQTLs Data

The summary results from two previous mQTLs studies using blood samples (n = 1980) [29]
and human brain tissue (n = 1160 from a meta-analysis of three independent brain-specific mQTLs
data of mostly dorsolateral prefrontal cortex and fetal brain samples) [30] were also used for our
analyses. The mQTLs studies provided genome-wide CpG methylation data using the Illumina
Human Methylation 450 K array. The mQTLs data in the format compatible for MWA analyses can
be downloaded at: https://cnsgenomics.com/software/smr/#DataResource. The annotation of probes
was in accordance with the Illumina support files for Human Methylation 450K array. Probes which
were located in the inter-genic regions (IGRs) (i.e., not located within any gene or within 1.5 kb of the
transcription start site of any gene [52]) were annotated to their closest genes.

2.3. MWA Analysis

Under each of the five analysis plans, two sets of MWA analyses (i.e., blood-based and brain-specific)
were performed by combining the results from our GWAS with publicly available summary results
from the two mQTLs studies. MWA analyses were performed by the SMR package (v 0.710) [26]
to identify SNPs that might be pleiotropically associated with AD and DNA methylation changes.
The SMR package was run using default input arguments. Probes that had at least one significant
mQTL (i.e., a SNP with PmQTL < 5E-08) that was also among the SNPs in our GWAS were included.
This resulted in the inclusion of sets of up to 90,357 and 90,848 probes with significant cis-mQTLs from
blood-based and brain-specific mQTLs studies under the five analysis plans.

Associations of any probes with AD were first sought through a SMR test, and significant
associations were determined at a Bonferroni-adjusted significance level of 5.49E-07 (i.e., 0.05/91000) to
account for multiple comparisons. Probes with significant PSMR were then selected for heterogeneity
in dependent instruments (HEIDI) testing to identify associations that were likely to arise from the
pleiotropic effects of a single locus on both methylation changes and AD status (i.e., probes with
PHEIDI ≥ 0.05) and not from the linkage between adjacent variants that affected AD susceptibility and
methylation patterns separately (i.e., probes with PHEIDI < 0.05) [26]. Here, HRS was used as the
reference panel for estimating pair-wise linkage disequilibrium and SNP clumping.

To examine the consistency of probe effects in blood-based and brain-specific analyses, the bSMR

of any probes were compared between these analyses using the chi-square test mentioned above in the
GWAS data section. In addition, probes that were detected in either males or females and in either
hypertensive or non-hypertensive groups were subject to the chi-square test to find out whether their
bSMR were significantly different between the two contrasting groups (i.e., they had group-specific
effects).

Finally, lists of AD-associated genes from MWA analyses were compared to those from our
previous blood-based and brain-specific TWA analyses [27,28] to identify any overlaps between
epigenetically and transcriptionally AD-associated genes.

2.4. Pathway Enrichment Analysis

Pathway enrichment analysis was performed to correlate nominally AD-associated genes in our
MWA results with biological processes that might contribute to AD pathogenesis. Pathway-based
analyses were performed by the GSA-SNP2 (i.e., gene set analysis-single nucleotide polymorphism2)
package [53] using 1329 canonical pathways provided by the Broad Institute gene set enrichment
analysis (GSEA) website [54] based on information from several pathway databases such as Kyoto
Encyclopedia of Genes and Genomes (KEGG) [55], REACTOME pathway knowledgebase [56], Pathway
Interaction Database (PID) [57], and Matrisome Project [58]. Significant AD-associated pathways were
determined using plan-specific false discovery rates (FDR) [59] at which the numbers of possible
false-positively detected pathways were smaller than 1 (i.e., FDR levels between 0.05 and 0.25).

https://cnsgenomics.com/software/smr/#DataResource
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2.5. Ethics Approval

This study focuses on secondary analysis of data obtained from dbGaP and the University of
Michigan [42–46] (please see the Supporting Acknowledgment in Additional File 1) and does not
involve gathering data from human subjects directly. The study was performed according to the Duke
University Institutional Review Board (IRB) guidelines.

3. Results

3.1. Blood-Based MWA Analyses

We found that 8, 31, 9, 6 and 84 probes passed both SMR at a Bonferroni-adjusted level of
5.49E-07 (PSMR between 8.73E-20 and 5.26E-07) and HEIDI (PHEIDI ≥ 0.05) tests under analysis plans
1–5, respectively (Additional File 1: Table S1). These probes were mapped to 5, 21, 9, 5, and 66
genes (71 chromosomal regions, i.e., cytogenetic bands, in total), respectively. Seventeen genes had
more than one significant probe (2–9 probes per gene that were 51–61,765 base pairs apart and, in
most cases, had the same top mQTLs). Top mQTLs corresponding to these probes were nominally
significant (6.45E-06 ≤ PGWAS) in our genome-wide meta-analyses [27,28], except for the cg06750524
probe corresponding to the APOE gene whose top mQTLs had 2.15E-83 ≤ PGWAS ≤ 8.19E-30 under the
five analysis plans of interest.

3.2. Brain-Specific MWA Analyses

There were 2, 6, 4, 4, and 27 probes that passed both SMR at a Bonferroni-adjusted threshold
of 5.49E-07 (PSMR between 1.52E-12 and 5.17E-07) and HEIDI (PHEIDI ≥ 0.05) tests under plans 1–5,
respectively (Additional File 1: Table S2). These probes were mapped to 2, 5, 3, 4, and 24 genes (located
in 26 chromosomal regions), respectively. Six genes had more than one significant probe (2–4 probes
per gene that were 5–740 base pairs apart and were mostly influenced by the same genetic signal).
Again, the top mQTLs corresponding to these probes were nominally significant (4.88E-05 ≤ PGWAS)
in our GWAS except for the one corresponding to cg02613937 probe, which had 3.73E-63 ≤ PGWAS ≤

9.84E-24. This probe was mapped to the TOMM40 gene, which is near the APOE gene.

3.3. Comparison of Blood-Based and Brain-Specific MWA Results

The consistency of blood-based and brain-specific results was examined by comparing the
probes effect sizes and directions (i.e., the magnitudes and signs of bSMR) between the two analyses.
The directions of effects were the same for ~77% of probes in both analyses and across five plans of
interest. When the blood-based and brain-specific bSMR were compared using a Wald chi-square test,
less than 1% of probes (i.e., 0.006–0.073% across the five study plans) had significantly different effects
at the Bonferroni-adjusted significance level. Probes corresponding to the following 10 genes were
significantly associated with AD in both blood-based and brain-specific analyses (Tables 1 and 2):
NANOS2 (plan 2), HLA-DQB2 (plan 3), FAM193B (plan 4), SLC6A7, BPGM, PSTK, KRTAP5-11, LECT1,
ZNF598, and C16orf80 (plan 5). All but BPGM and KRTAP5-11 had common probes in the two analyses,
with directions of effects being the same and not significantly different at Bonferroni-adjusted level.
The top mQTLs in blood-based and brain-specific analyses were the same for probes corresponding to
NANOS2, HLA-DQB2, FAM193B, SLC6A7, KRTAP5-11, and ZNF598.
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Table 1. Blood-based methylome-wide association results for genes that had significant probes in both brain-specific and blood-based analyses.

ProbeID Chr ProbePos Gene SNP Pos A1 Freq PGWAS PmQTL bSMR SESMR PSMR PHEIDI NHEIDI Current? Previous? Region?

Plan 2: Only Males

cg05206559 19q13.32 45913997 NANOS2 rs66529687 45914171 A 0.133 1.83E-04 2.84E-41 0.723 0.125 7.67E-09 3.28E-01 20 G G G
cg25673584 19q13.32 45914293 NANOS2 rs66529687 45914171 A 0.133 1.83E-04 4.40E-30 0.849 0.152 2.45E-08 1.23E-01 20 G G G
cg14192299 19q13.32 45914381 NANOS2 rs66529687 45914171 A 0.133 1.83E-04 6.71E-42 0.718 0.124 7.30E-09 1.08E-01 20 G G G
cg19702802 19q13.32 45914471 NANOS2 rs66529687 45914171 A 0.133 1.83E-04 3.22E-39 0.743 0.129 9.10E-09 1.03E-01 20 G G G

Plan 3: Only Females

cg10218546 6p21.32 32762046 HLA-DQB2 rs7768538 32762044 C 0.426 6.15E-05 1.30E-126 −0.304 0.060 3.27E-07 6.43E-02 20 S G G

Plan 4: Hypertensive Subjects

cg23395749 5q35.3 177557245 FAM193B rs1001530 177558514 G 0.046 3.36E-04 2.55E-26 −0.484 0.088 3.08E-08 8.77E-02 5 N S S

Plan 5: Non-hypertensive Subjects

cg08631357 5q32 150209647 SLC6A7 rs10076748 150209303 A 0.107 1.77E-03 1.54E-193 0.288 0.056 3.18E-07 2.02E-01 20 N N G
cg23891049 7q33 134679117 BPGM rs73441994 134679118 A 0.021 4.26E-02 1.18E-229 −0.156 0.030 1.70E-07 6.07E-01 4 N S S
cg24635736 10q26.13 122979534 PSTK rs2421140 123027854 A 0.029 8.09E-03 2.67E-77 −0.346 0.060 6.12E-09 7.16E-01 8 N N N
cg05360847 11q13.4 71576873 KRTAP5-11 rs11827208 71578103 T 0.020 1.70E-03 3.47E-13 −0.942 0.159 3.50E-09 2.02E-01 4 N N S
cg17632299 13q14.3 52738831 LECT1 rs4885947 52735009 C 0.037 1.23E-03 7.51E-54 0.592 0.085 2.67E-12 1.34E-01 20 N G G
cg09557313 13q14.3 52739039 LECT1 rs4885947 52735009 C 0.037 1.23E-03 1.46E-40 0.675 0.100 1.37E-11 1.02E-01 20 N G G
cg09397293 16p13.3 2005032 ZNF598 rs72766639 2005819 A 0.174 1.69E-04 5.78E-51 0.688 0.116 3.06E-09 2.85E-01 20 N S G
cg26804891 16p13.3 2005241 ZNF598 rs11248905 1999727 T 0.181 4.88E-05 3.56E-98 0.539 0.080 1.62E-11 7.60E-02 20 N S G
cg08576185 16p13.3 2005683 ZNF598 rs72766639 2005819 A 0.174 1.69E-04 4.06E-44 0.740 0.126 4.76E-09 3.59E-01 20 N S G
cg10470208 16p13.3 2008700 ZNF598 rs1058474 1998795 T 0.181 6.82E-05 6.56E-19 1.112 0.209 1.02E-07 7.58E-02 14 N S G
cg06998361 16q21 58110599 C16orf80 rs10445026 58109349 G 0.069 5.00E-04 5.61E-97 −0.442 0.069 1.35E-10 2.53E-01 20 N S S

Genomic coordinates are based on Human Genome version 38 (hg38). Chr: chromosomal region (i.e., cytogenetic band); ProbePos: probe position; Gene: the gene or closest gene
corresponding to the probe; SNP: top methylation quantitative trait locus (mQTL); Pos: SNP position; A1/Freq: SNP’s effect allele and its frequency; PGWAS: p-value of the SNP in
genome-wide association meta-analysis; PmQTL: p-value of the SNP in mQTLs analysis; bSMR, SESMR, and PSMR: beta coefficient, its standard error, and p-value of the probe in summary
data-based Mendelian randomization (SMR) test; PHEIDI: p-value of the heterogeneity in dependent instruments (HEIDI) test; NHEIDI: number of single-nucleotide polymorphisms used for
HEIDI test; Current?: whether there is any AD-associated SNP within ±1 Mb of the probe in the current genome-wide meta-analysis (N: None, G: SNP with PGWAS < 5E-08, and S: SNP
with 5E-08 ≤ PGWAS < 5E-06); Previous?: whether there is any AD-associated SNP within ±1 Mb of the probe in previous GWAS (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with
5E-08 ≤ PGWAS < 5E-06); Region?: whether there is any AD-associated SNP within the chromosomal region (i.e., cytogenetic band) corresponding to the probe (N: None, G: SNP with
PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06).
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Table 2. Brain-specific methylome-wide association results for genes that had significant probes in both brain-specific and blood-based analyses.

ProbeID Chr ProbePos Gene SNP Pos A1 Freq PGWAS PmQTL bSMR SESMR PSMR PHEIDI NHEIDI Current? Previous? Region?

Plan 2: Only Males

cg05206559 19q13.32 45913997 NANOS2 rs66529687 45914171 G 0.867 1.83E-04 5.86E-298 0.272 0.043 2.96E-10 8.50E-01 19 G G G

Plan 3: Only Females

cg04322111 6p21.32 32761987 HLA-DQB2 rs7768538 32762044 A 0.574 6.15E-05 0 −0.201 0.039 2.21E-07 8.61E-02 20 S G G
cg10218546 6p21.32 32762046 HLA-DQB2 rs7768538 32762044 A 0.574 6.15E-05 0 −0.198 0.038 2.18E-07 8.32E-02 20 S G G

Plan 4: Hypertensive Subjects

cg23395749 5q35.3 177557245 FAM193B rs1001530 177558514 A 0.954 3.36E-04 2.34E-15 −0.791 0.157 5.17E-07 1.01E-01 5 N S S

Plan 5: Non-hypertensive Subjects

cg08631357 5q32 150209647 SLC6A7 rs10076748 150209303 C 0.893 1.77E-03 2.82E-295 0.230 0.045 2.76E-07 2.24E-01 18 N N G
cg10308629 7q33 134670051 BPGM rs73439998 134663724 C 0.979 3.01E-02 9.28E-48 −0.520 0.101 2.88E-07 2.57E-01 3 N S S
cg24635736 10q26.13 122979534 PSTK rs13328826 122992107 A 0.970 6.26E-03 2.48E-20 −0.374 0.072 1.68E-07 8.24E-01 3 N N N
cg15567360 11q13.4 71611653 KRTAP5-11 rs11827208 71578103 C 0.980 1.70E-03 9.66E-10 −0.679 0.130 1.67E-07 3.71E-01 3 N N S
cg09557313 13q14.3 52739039 LECT1 rs4885961 52755200 C 0.960 4.63E-03 6.93E-31 0.547 0.103 1.06E-07 5.67E-01 7 N G G
cg07011318 16p13.3 2004943 ZNF598 rs72766639 2005819 G 0.826 1.69E-04 0 0.291 0.046 1.96E-10 1.12E-01 17 N S G
cg09397293 16p13.3 2005032 ZNF598 rs72766639 2005819 G 0.826 1.69E-04 0 0.282 0.044 1.86E-10 1.13E-01 18 N S G
cg05211189 16p13.3 2005402 ZNF598 rs11542302 1986934 T 0.819 7.26E-05 0 0.283 0.043 7.47E-11 1.01E-01 18 N S G
cg08576185 16p13.3 2005683 ZNF598 rs72766639 2005819 G 0.826 1.69E-04 0 0.295 0.046 2.00E-10 9.02E-02 16 N S G
cg06998361 16q21 58110599 C16orf80 rs74019790 58107923 T 0.931 5.00E-04 4.77E-20 −0.591 0.109 5.49E-08 6.81E-01 11 N S S

Genomic coordinates are based on Human Genome version 38 (hg38). Chr: chromosomal region (i.e., cytogenetic band); ProbePos: probe position; Gene: the gene or closest gene
corresponding to the probe; SNP: top methylation quantitative trait locus (mQTL); Pos: SNP position; A1/Freq: SNP’s effect allele and its frequency; PGWAS: p-value of the SNP in
genome-wide association meta-analysis; PmQTL: p-value of the SNP in mQTLs analysis; bSMR, SESMR, and PSMR: beta coefficient, its standard error, and p-value of the probe in summary
data-based Mendelian randomization (SMR) test; PHEIDI: p-value of the heterogeneity in dependent instruments (HEIDI) test; NHEIDI: number of single-nucleotide polymorphisms used for
HEIDI test; Current?: whether there is any AD-associated SNP within ±1 Mb of the probe in the current genome-wide meta-analysis (N: None, G: SNP with PGWAS < 5E-08, and S: SNP
with 5E-08 ≤ PGWAS < 5E-06); Previous?: whether there is any AD-associated SNP within ±1 Mb of the probe in previous GWAS (N: None, G: SNP with PGWAS < 5E-08, and S: SNP with
5E-08 ≤ PGWAS < 5E-06); Region?: whether there is any AD-associated SNP within the chromosomal region (i.e., cytogenetic band) corresponding to the probe (N: None, G: SNP with
PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06).
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3.4. Group-Specific Findings

No probes/genes outside the APOE cluster genes region (i.e., chromosome 19q13.32) were
significant in both males and females (i.e., plans 2 and 3). LOC154449 (chromosome 6q27 region) was
the only gene outside the APOE cluster genes region that had AD-associated probes in blood-based
MWA analyses of both hypertensive and non-hypertensive subjects (i.e., plans 4 and 5).

When the bSMR of probes were compared using a Wald chi-square test, we found that 16 of 38
blood-based probes and six of eight brain-specific probes that were detected either in males or females
had sex-specific effects at Bonferroni-adjusted significance levels of 0.00132 and 0.00625, respectively
(Additional File 1: Tables S3 and S4). Among 88 and 29 blood-based and brain-specific probes that
were detected in either hypertensive or non-hypertensive subjects, 58 and 21 probes had significantly
different effects in the two groups at Bonferroni-adjusted significance levels of 0.00057 and 0.00172,
respectively (Additional File 1: Tables S5 and S6).

3.5. Comparison of MWA and GWAS Results

To investigate the novelty of our findings with respect to their potential implication in AD
pathogenesis, we determined whether there were AD-associated SNPs with significant PGWAS at
genome-wide (PGWAS < 5E-08) or suggestive (5E-08 ≤ PGWAS < 5E-06) significance levels within ±1 Mb
regions and/or chromosomal regions of the detected probes in our genome-wide meta-analyses or in
other studies reported by GRASP [4] and NHGRI-EBI GWAS [5] catalogs.

We identified AD-associated SNPs with PGWAS < 5E-08 within ±1 Mb of probes corresponding to
APOE, TOMM40, and NANOS2 genes (all within the chromosome 19q13.32 region) in our genome-wide
meta-analyses and previous GWAS [4,5]. No SNPs with PGWAS < 5E-08 were found within ±1 Mb
flanking regions of any other probes in our meta-analyses. However, AD-associated SNPs with
PGWAS < 5E-08 were previously reported by other studies within ±1 Mb of several other probes [4,5].
These probes were mapped to 22 genes (all outside the chromosome 19q13.32 region): CLIC1,
BRD2, HLA-DPB1, ITIH2, PHLDA1 (plan 2), HLA-DQA2, HLA-DQB2, LECT1 (plan 3), and SLC25A2,
PPT2-EGFL8, EGFL8, COL11A2, TREM1, NDUFA4, ZNF394, CHRNA2, ITIH2, LECT1, CMIP, NGFR,
LOC100288866, MUM1, SIGLEC12, and EBF4 (plan 5).

In addition, the ±1 Mb flanking regions of several other probes attained 5E-08 ≤ PGWAS < 5E-06 in
our or previous GWAS. Detailed information about these probes/genes can be found in Additional File
1: Tables S1 and S2. For instance, there were AD-associated SNPs at suggestive significance levels
within ±1 Mb of probes corresponding to AP2A2, ADCY8, HLA-DQA2, HLA-DQB2, and SLC35C1 (all
outside the chromosome 19q13.32 region) in our GWA meta-analyses.

3.6. Comparison of MWA and TWA Results

Analysis of overlaps between MWA and our previous TWA results [27,28] revealed that, among
the potential epigenetically AD-associated genes, four genes also had significant AD-associated probes
in TWA analyses (Table 3). These four genes, AIM2, DGUOK, ST14, and C16orf80, had significant
probes in subjects with no history of HTN (i.e., plan 5). Of these genes, C16orf80 had significant probes
in both blood-based and brain-specific MWA analyses; DGUOK and ST14 had AD-associated probes
in blood-based analyses; and AIM2 had significant probes in brain-specific analyses. With respect to
the TWA analyses, C16orf80 had significant probes in brain-specific analyses; AIM2, and DGUOK had
significant probes in blood-based analyses; and ST14 had AD-associated probes in TWA analyses of
both blood samples and brain tissue.
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Table 3. Methylome-wide association results for the four genes that had epigenetically and transcriptionally AD-associated probes.

ProbeID Chr ProbePos Gene SNP Pos A1 Freq PGWAS PmQTL bSMR SESMR PSMR PHEIDI NHEIDI Current? Previous? Region?

Blood-based Analyses

cg03063511 2p13.1 73930386 DGUOK rs6737156 73932607 C 0.036 5.62E-03 2.71E-227 −0.247 0.041 2.74E-09 1.09E-01 11 N N N
cg02850715 11q24.3 130159317 ST14 rs34008994 130165703 T 0.096 1.55E-04 1.21E-26 −0.812 0.138 4.14E-09 7.87E-01 20 N N G
cg21029769 11q24.3 130159620 ST14 rs34008994 130165703 T 0.096 1.55E-04 4.09E-18 −1.006 0.184 4.58E-08 9.16E-01 20 N N G
cg06998361 16q21 58110599 C16orf80 rs10445026 58109349 G 0.069 5.00E-04 5.61E-97 −0.442 0.069 1.35E-10 2.53E-01 20 N S S

Brain-specific Analyses

cg11003133 1q23.1 159076601 AIM2 rs16841642 159077008 G 0.952 5.30E-03 6.30E-82 −0.312 0.062 4.62E-07 3.40E-01 18 N S N
cg06998361 16q21 58110599 C16orf80 rs74019790 58107923 T 0.931 5.00E-04 4.77E-20 −0.591 0.109 5.49E-08 6.81E-01 11 N S S

Genomic coordinates are based on Human Genome version 38 (hg38). Chr: chromosomal region (i.e., cytogenetic band); ProbePos: probe position; Gene: the gene or closest gene
corresponding to the probe; SNP: top methylation quantitative trait locus (mQTL); Pos: SNP position; A1/Freq: SNP’s effect allele and its frequency; PGWAS: p-value of the SNP in
genome-wide association meta-analysis; PmQTL: p-value of the SNP in mQTLs analysis; bSMR, SESMR, and PSMR: beta coefficient, its standard error, and p-value of the probe in summary
data-based Mendelian randomization (SMR) test; PHEIDI: p-value of the heterogeneity in dependent instruments (HEIDI) test; NHEIDI: number of single-nucleotide polymorphisms used
for HEIDI test; Current?: whether there is any AD-associated SNP within ±1 Mb of the probe in the current genome-wide meta-analysis (N: None, G: SNP with PGWAS < 5E-08, and S:
SNP with 5E-08 ≤ PGWAS < 5E-06); Previous?: whether there is any AD-associated SNP within ±1 Mb of the probe in previous GWAS (N: None, G: SNP with PGWAS < 5E-08, and S: SNP
with 5E-08 ≤ PGWAS < 5E-06); Region?: whether there is any AD-associated SNP within the chromosomal region (i.e., cytogenetic band) corresponding to the probe (N: None, G: SNP with
PGWAS < 5E-08, and S: SNP with 5E-08 ≤ PGWAS < 5E-06).
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3.7. Pathway Enrichment Analyses

Pathway-based analyses (Tables 4 and 5) revealed that AD-associated probes/genes from
blood-based MWA analyses were enriched in 16 pathways (i.e., 7, 4, 4, and 3 pathways under
plans 1, 2, 3, and 5, respectively). Of these, two pathways (i.e., GABA-B receptor activation (plans 1 and
3) and GABA receptor activation (plans 2 and 3)) were significant in more than one plan. We also found
that nine pathways (i.e., 1, 2, 2, 3, and 3 significant pathways in plans 1–5, respectively) were associated
with AD when brain-specific MWA results were enriched. Of these, two pathways (MHC class II
antigen presentation (plans 1 and 3) and type II diabetes mellitus (plans 2 and 4)) were significant in
more than one plan and were also enriched in both brain-specific and blood-based analyses.

Table 4. Pathway-enrichment of blood-based methylome-wide association results.

Pathway Pathway
Source GSEA ID Size Count Z-Score p-Value q-Value

Plan 1: All Subjects

Type II diabetes mellitus KEGG M19708 47 14 4.017 2.95E-05 7.35E-03
MHC class II antigen presentation REACTOME M705 91 16 3.557 1.87E-04 2.33E-02
Host Interactions of HIV factors REACTOME M5283 132 11 3.202 6.81E-04 5.65E-02

Lysosome KEGG M11266 121 11 3.111 9.31E-04 5.80E-02
GABA-B receptor activation REACTOME M954 38 10 3.008 1.31E-03 6.54E-02

L1CAM interactions REACTOME M872 86 17 2.987 1.41E-03 6.54E-02
Vascular smooth muscle contraction KEGG M9387 115 22 2.852 2.17E-03 7.73E-02

Plan 2: Only Males

Neurotransmitter receptors and
postsynaptic signal transmission REACTOME M752 137 25 3.369 3.77E-04 1.02E-01

Transmission across chemical synapses REACTOME M15514 186 34 3.287 5.06E-04 1.02E-01
GABA receptor activation REACTOME M976 52 11 3.041 1.18E-03 1.06E-01

Phospholipase C-mediated cascade REACTOME M856 54 12 2.754 2.94E-03 1.98E-01

Plan 3: Only Females

GABA-B receptor activation REACTOME M954 38 11 3.698 1.09E-04 2.66E-02
O-linked glycosylation of mucins REACTOME M546 59 10 3.418 3.15E-04 3.86E-02

GABA receptor activation REACTOME M976 52 13 3.364 3.84E-04 3.86E-02
extracellular matrix (ECM) regulators NABA M3468 238 41 3.361 3.88E-04 3.86E-02

Plan 5: Non-hypertensive Subjects

Retinoblastoma 1 pathway PID M279 65 10 3.71 1.04E-04 3.20E-02
Circadian clock REACTOME M938 53 12 3.508 2.26E-04 3.48E-02

Alzheimer’s disease KEGG M16024 169 24 3.011 1.30E-03 1.34E-01

GSEA: Gene Set Enrichment Analysis; Size: number of genes in the pathway; Count: number of enriched genes in the
pathway; KEGG: Kyoto Encyclopedia of Genes and Genomes; REACTOME: REACTOME pathway knowledgebase;
PID: Pathway Interaction Database; NABA: Matrisome Project. The false discovery rate thresholds were 0.1, 0.2,
0.05, and 0.15 for plans 1, 2, 3, and 5, respectively.

Table 5. Pathway-enrichment of brain-specific methylome-wide association results.

Pathway Pathway Source GSEA ID Size Count Z-Score p-Value q-Value

Plan 1: All Subjects

MHC class II antigen presentation REACTOME M705 91 14 3.3 4.84E-04 1.07E-01

Plan 2: Only Males

Ubiquitin mediated proteolysis KEGG M15247 138 14 3.198 6.91E-04 1.54E-01
Type II diabetes mellitus KEGG M19708 47 17 2.89 1.93E-03 2.15E-01

Plan 3: Only Females

MHC class II antigen presentation REACTOME M705 91 18 3.138 8.50E-04 1.56E-01
Transport of inorganic cations/anions and
amino acids/oligopeptides REACTOME M823 94 11 2.849 2.19E-03 2.02E-01

Plan 4: Hypertensive Subjects

DNA repair REACTOME M15434 112 10 3.87 5.44E-05 1.26E-02
Type II diabetes mellitus KEGG M19708 47 10 3.622 1.46E-04 1.69E-02
Extracellular matrix (ECM) affiliated
proteins NABA M5880 171 22 3.019 1.27E-03 9.77E-02
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Table 5. Cont.

Pathway Pathway Source GSEA ID Size Count Z-Score p-Value q-Value

Plan 5: Non-hypertensive Subjects

Respiratory electron transport, ATP
synthesis by chemiosmotic coupling, and
heat production by uncoupling proteins

REACTOME M1025 98 10 3.851 5.89E-05 1.66E-02

Hematopoietic cell lineage KEGG M6856 88 13 3.003 1.33E-03 1.88E-01
The citric acid (TCA) cycle and respiratory
electron transport REACTOME M516 141 14 2.933 1.68E-03 1.88E-01

GSEA: Gene Set Enrichment Analysis; Size: number of genes in the pathway; Count: number of enriched genes in the
pathway; KEGG: Kyoto Encyclopedia of Genes and Genomes; REACTOME: REACTOME pathway knowledgebase;
PID: Pathway Interaction Database; NABA: Matrisome Project. The false discovery rate thresholds were 0.2, 0.25,
0.25, 0.1, and 0.2 for plans 1–5, respectively.

4. Discussion

Despite the detection of many genetic variants and identification of several non-genetic factors
that may play roles in AD susceptibility, the definitive underlying mechanisms in most AD cases
is unclear. Thus, epigenetic mechanisms may be key contributors to the heterogeneous nature of
AD [9,10,13,23]. The epigenetic architecture of AD has been widely investigated in case-control studies
and cell/animal models [12]. The AD-associated epigenetic modifications found in these studies can be
environmentally induced or genetically driven (i.e., through cis acting variants).

We combined the results from our previous GWAS [27,28] with data from two publicly available
mQTLs studies of brain tissue [30] and blood samples [29] to identify genes that might be epigenetically
associated with AD. In contrast to studies using individual-level data, epigenetic associations detected
by summary data-based analyses are all genetically driven [26]. A major focus of our study was to
explore potential genetically driven epigenetic heterogeneity of AD based on its two main risk factors
(i.e., sex [31–37] and HTN [8,38,39]). Therefore, in order to investigate sex-specific and HTN-specific
epigenetic changes, our MWA analyses were performed under five alternative plans in which summary
results from GWAS on either all subjects, only males, only females [27], only subjects with a history of
HTN, or only subjects with no history of HTN [28] were included in analyses.

Our analyses demonstrated that 152 probes corresponding to 113 genes were epigenetically
associated with AD. The top mQTLs corresponding to these probes were mostly nominally significant
in our genome-wide meta-analyses. This might be in part due to suboptimal statistical power of our
analyses which can be improved by analyzing larger datasets or more importantly due to the genetic
heterogeneity of AD within and between the analyzed cohorts (i.e., LOADFS, CHS, FHS, and HRS).
The ±1 Mb flanking regions of ~18% and ~34% of detected probes had attained PGWAS < 5E-08 and
5E-08 ≤ PGWAS < 5E-06, respectively, in our genome-wide meta-analyses or other studies reported by
GWAS databases [4,5]. Comparing our findings with those detected in other SMR-based analyses of
AD [24,25] revealed that TOMM40, which had significant probes in brain-specific analyses under all
five plans of our study, was epigenetically associated with AD in a previous study [24].

Investigating group-specific epigenetic alterations, we found that probes corresponding to APOE
and TOMM40 genes (i.e., inside the chromosome 19q13.32 region) were significant in blood-based
and brain-specific analyses, respectively, of both males and females (i.e., plans 2 and 3) and both
hypertensive and non-hypertensive groups (i.e., plans 4 and 5). However, several probes (all outside
the chromosome 19q13.32 region, except cg05206559 corresponding to NANOS2 gene in males) were
group-specifically associated with AD, indicating potential genetically driven epigenetic heterogeneity
of AD based on the two studied risk factors. For instance, we found that among 38 and eight probes
that were detected in blood-based and brain-specific analyses, respectively, in either males or females,
22 probes had sex-specific effects when their bSMR were compared between the two sexes using a
Wald chi-square test (Additional File 1: Tables S3 and S4). Comparing results from hypertensive and
non-hypertensive groups, we found that there were 88 (blood-based analyses) and 29 (brain-specific
analyses) significant probes outside the APOE region which were not in common between these two
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groups. Of these, 79 probes had group-specific effects when their bSMR were compared between
hypertensive and non-hypertensive groups (Additional File 1: Tables S5 and S6). Addressing genetic
and epigenetic heterogeneities of AD is essential for understanding its pathogenesis and developing
more efficient and personalized medical interventions tailored to the genetic and epigenetic profiles
of individuals.

Our MWA analyses were performed using both brain-specific and blood-based mQTLs data which
provided the opportunity to assess the consistency of potential AD-associated epigenetic changes
detected in these analyses. Although the pattern of DNA methylation can be tissue- or cell-specific [6,60],
previous studies have demonstrated the utility of blood samples for investigating AD-associated
epigenetic modifications by reporting global or gene-specific methylation changes in AD subjects
compared with matched healthy controls [61–65]. This might be due to the systemic sequelae of AD,
as AD may extensively impact cellular and molecular processes in peripheral tissues and nonneural
cells including red blood cells, leukocytes, and platelets [66–71]. In addition, blood-based analyses may
provide more statistical power than brain-specific studies, which generally have smaller sample sizes
due to difficulties in obtaining brain samples from living subjects. Consistent with previous reports,
our findings supported the feasibility of using data from blood samples to investigate epigenetic
changes involved in AD. The direction of blood-based and brain-specific effects were the same for
~77% of probes and the effects of less than 1% of probes were significantly different between the two
analyses across the five analysis plans of interest. We also found that probes corresponding to 10 genes
were associated with AD in both blood-based and brain-speficic MWA analyses (Tables 1 and 2). Most
of these genes were previously implicated in AD at genome-wide or suggestive significance levels
by GWAS [4,5], except SLC6A7, PSTK, and KRTAP5-11. AD-associated SNPs at PGWAS < 5E-08 were
found within ±1 Mb of probes mapped to NANOS2, HLA-DQB2, and LECT1 in our meta-analyses
and/or previous GWAS. SNPs with 5E-08 ≤ PGWAS < 5E-06 were found within ±1 Mb flanking regions
of probes corresponding to FAM193B, BPGM, ZNF598, and C16orf80. Moreover, empirical evidence
links some of these genes to AD in humans and animal models (e.g., SLC6A7 [72] and BPGM [71]).

It should be stressed that the identified AD-associated genes in summary-based analyses do
not prove any definitive causal relationships. Instead, they suggest a list of prioritized genes whose
potential roles in AD pathogenesis need to be validated by further functional studies [26]. In a recent
study, Hannon et al. detected overlapping mQTL and eQTL signals with functional implications for
several complex diseases/traits, such as Crohn’s disease, ulcerative colitis, blood lipids, height, and
schizophrenia by comparing their SMR-based analyses [73]. Therefore, to further pinpoint potential
targets, we compared the list of epigenetically AD-associated genes identified from MWA analyses
with transcriptionally AD-associated genes identified from our previous TWA analyses [27,28].

Our comparisons identified a short list of four potentially AD-associated genes that had significant
probes in both MWA and TWA analyses (i.e., AIM2, DGUOK, ST14, and C16orf80 in non-hypertensive
subjects with PSMR between 4.62E-07 and 1.35E-10 in MWA analyses and between 2.18E-05 and
7.78E-07 in TWA analyses [28]). Probes corresponding to all genes but AIM2 had group-specific effects
when their bSMR were compared between hypertensive and non-hypertensive groups using a Wald
chi-square test (Additional File 1: Tables S5 and S6). AD-associated SNPs with PGWAS < 5E-08 were not
found within ±1 Mb flanking regions of these probes in our meta-analyses or other studies in GWAS
databases [4,5], although several SNPs with 5E-08 ≤ PGWAS < 5E-06 were previously reported within
±1 Mb of probes corresponding to AIM2 [74] and C16orf80 [75,76]. In addition, chromosomal regions
corresponding to ST14 [77] (i.e., 11q24.3 region) contained previously reported AD-associated SNPs at
P < 5E-08.

A review of the literature provided additional insights, strengthening the potential roles of these
four genes in AD. For instance, AIM2 encodes a protein involved in regulating cell proliferation
and innate immunity [78]. SNPs mapped to this gene were previously associated with white blood
cells count at PGWAS < 5E-08 [79]. AIM2, along with several other proteins, were suggested to
initiate inflammasome formation in response to stimuli such as viruses, bacteria, and damaged cells.
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Inflammasomes mediate the release of pro-inflammatory cytokines, such as IL-1β and IL-18, that are
believed to be involved in AD development [80–82]. IL-1βmay increase in the blood, cerebrospinal
fluid, and brain of AD patients and blood level of IL-18 may increase in early stages of AD. IL-1β
can activate astrocytes and microglia cells and stimulate the release of APP and amyloid-β (Aβ) from
neurons. Also, IL-18, which is overexpressed in astrocytes, microglia, and neurons around Aβ plaques,
may promote Aβ formation and mediate tau protein hyper-phosphorylation [82]. It was reported that
methylene blue (MB), an inhibitor of inflammasome proteins such as AIM2, NLRP3, and NLRC4 [80],
can decelerate the production of Aβ plaques and neurofibrillary tangles. Thus, MB-based medications
were suggested as potential treatments for AD [83]. Moreover, Wu et al. reported that AIM2 knock-out
mice exhibited behavioral changes and impaired auditory fear memory [84].

DGUOK encodes a mitochondrial enzyme involved in the purine metabolism pathway [78].
Mutations in this gene were linked to some mitochondrial disorders with Mendelian inheritance,
such as mitochondrial depletion syndrome [85]. Mitochondrial dysfunction has also been reported
as an important finding in neurons of AD patients [86,87]. Ansoleaga et al. showed that DGUOK
was downregulated in the precuneus and entorhinal cortex of patients in AD stages III-IV and V-VI
(Braak and Braak staging system [88]), respectively, compared with matched healthy controls [89].
In addition, SNPs mapped to DGUOK were associated with systemic lupus erythematosus at PGWAS <

5E-08 [90]. The risks of developing AD and vascular dementia slightly increases among patients with
autoimmune disorders, such as lupus erythematosus [91].

ST14 encodes a membrane serine protease with tumor suppressor activity [78] that was not
associated with AD or its risk factors at PGWAS < 5E-06 by previous GWAS [4,5]. However, Wirz et al.
found that the ortholog of ST14 is overexpressed (i.e., 5.39-fold change with p < 0.008) in the frontal
cortex of APPswe/PS1dE9 transgenic mice harboring mutant forms of APP and PSEN1 in response to
Aβ plaque development [92]. Yin et al. reported that the mouse ortholog of ST14 was upregulated in
Aβ plaque-associated microglia cells in 5XFAD transgenic mice harboring mutant forms of APP and
PSEN1 genes compared with aged-matched control mice [93].

C16orf80 (also known as BUG22 and CFAP20) encodes a highly conserved protein involved in
the post-translational modification of Tubulin subunits of microtubules. Such modifications might be
essential for microtubule function and stability in ciliated cells, such as sperm, and in neurons [94].
Microtubules are major component of neuronal transport machinery, in which defects can lead to
neurodegenerative diseases (e.g., the role of microtubule-associated proteins, such as tau protein, in
AD) [95,96]. In a previous study, Mendes Maia et al. reported that Drosophila melanogaster carrying
mutant copies of the ortholog of C16orf80 had a short lifespan and defects in body morphology,
climbing activity, and locomotion, which were mostly reversed when gene expression was restored in
the nervous system [94]. However, C16orf80 was not previously associated with AD or its risk factors
at PGWAS < 5E-06 [4,5].

Our pathway enrichment analyses of the brain-specific and blood-based MWA results revealed
that nine and 16 pathways were associated with AD, respectively. These pathways were mostly
involved in biological processes such as immune system responses (e.g., MHC class II antigen
presentation), mitochondrial function (e.g., TCA cycle and respiratory electron transport), neurogenesis,
synaptic function, and neurotransmitter signaling (e.g., L1CAM interactions, GABA receptor activation,
neurotransmitter receptors and postsynaptic signal transmission, and transmission across chemical
synapses pathways) that have been implicated in AD pathogenesis [87,97–103]. Two enriched pathways
(i.e., MHC class II antigen presentation and type II diabetes mellitus) were common between the
brain-speficic and blood-based MWA analyses, highlighting potential links between AD and immune
system responses [102,103] and type II diabetes mellitus as an important vascular risk factor for
AD [104].

Despite its rigor, we acknowledge that this study has limitations that could be addressed by future
research using different methodologies and data. Using summary results from GWAS with larger
sample sizes is likely to increase the statistical power of analyses. However, it should be noted that
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increasing sample sizes may not necessarily result in considerably increased power of GWAS due to
the genetic heterogeneity underlying complex diseases. As mentioned above, the summary-based
methylome-/transcriptome-wide approaches cannot draw definitive causal relationships between the
disease of interest and detected genes [26]. Such analyses can only help generate hypotheses regarding
the possible involvement of a short list of genes in the pathogenesis of the studied disorder, which
need to be validated empirically. Analyzing individual-level data which provide gene expressions and
epigenetic profiles for the same case and control subjects would help obtaining a more definitive view
of the underlying biological processes of AD and, in addition, may allow investigating the roles of
non-genetic factors (e.g., smoking, medications that interfere with DNA methylation, exposure to metals,
nutritional ingredients) in the observed transcriptome and epigenome changes. This is particularly
important because epigenetic alterations can be environmentally induced [6,9]. It would also be
interesting to investigate whether detected epigenome changes are associated with AD progression.
This requires data from different AD stages [88] with sufficient sample sizes. The CHS, FHS, HRS, and
LOADFS datasets analyzed in our study do not provide disease staging information for AD subjects.
Finally, investigating cell-specific (i.e., neurons and different glial cells) epigenetic alterations may
provide valuable additional insights into the epigenetic architecture of AD, although small sample
sizes and insufficient statistical power can be a major problem for such studies.

5. Conclusions

Our MWA analyses revealed associations between AD and probes corresponding to 113 genes.
Most of these genes were not associated with AD in previous GWAS and the ±1 Mb flanking regions
of ~45% of detected probes did not attain PGWAS < 5E-06 previously. The top mQTLs corresponding
to these probes were mostly nominally significant in our GWAS which might be due to suboptimal
sample sizes and statistical power of our analyses and/or the genetic heterogeneity of AD within and
between the analyzed cohorts. Performing MWA analyses under five plans provided the opportunity
to explore potential genetically driven epigenetic heterogeneity of AD in contrasting groups of subjects
based on their sex and history of HTN. Comparing the MWA results from plans 2 and 3 (i.e., males vs.
females) and from plans 4 and 5 (i.e., hypertensive vs. non-hypertensive subjects), we found that 22
and 79 probes were group-specifically associated with AD, respectively. Thus, this study suggests
a role for genetically driven epigenetic modifications as contributing factors to the heterogeneous
nature of AD, addressing of which may have translational impacts for implementing more efficient and
personalized medical interventions (e.g., developing sex-specific therapeutic targets). The potential
AD-genes associations detected here do not imply casualty and should only be used as a short list
to prioritize candidate genes for future studies. The comparison of MWA and TWA results together
with additional information from empirical studies strengthened the possible roles of four genes
(i.e., AIM2, C16orf80, DGUOK, and ST14) in AD pathogenesis and helped further prioritize the list of
potentially AD-associated genes for follow-up studies. Consistent with previous reports, our findings
demonstrated the applicability of blood-based mQTLs data for the study of epigenetics mechanisms of
AD as several genes and pathways were associated with AD in both brain-specific and blood-based
MWA analyses and the probe effects detected in these analyses did not show significant differences.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/5/1489/s1,
Additional File 1 containing Supporting Acknowledgment, Table S1: Blood-based methylome-wide association
results; Table S2: Brain-specific methylome-wide association results; Table S3: Wald chi-square test to compare
probes effects between males and females for probes that were significant in blood-based analyses of only one of
the two groups; Table S4: Wald chi-square test to compare probes effects between males and females for probes
that were significant in brain-specific analyses of only one of the two groups; Table S5: Wald chi-square test to
compare probes effects between hypertensive and non-hypertensive subjects for probes that were significant in
blood-based analyses of only one of the two groups; Table S6: Wald chi-square test to compare probes effects
between hypertensive and non-hypertensive subjects for probes that were significant in brain-specific analyses of
only one of the two groups.
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eQTL Expression Quantitative trait Locus
FAM193B Family with Sequence Similarity 193 Member B
FDR False Discovery Rate
FHS Framingham Heart Study
GABA Gamma-Aminobutyric Acid
GRASP Genome-Wide Repository of Associations Between SNPs and Phenotypes
GSA Gene Set Analysis
GSA-SNP2 Gene Set Analysis-Single-Nucleotide-Polymorphism-2
GSEA Gene Set Enrichment Analysis
GWAS Genome-Wide Association Study
HEIDI Heterogeneity in Dependent Instruments
HLA-DPB1 Human Leukocyte Antigen Class II, DP Beta 1
HLA-DQA2 Human Leukocyte Antigen Class II, DQ Alpha 2
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HLA-DQB2 Human Leukocyte Antigen Class II, DQ Beta 2
HLA-DRB1 Human Leukocyte Antigen Class II, DR Beta 1
HLA-DRB5 Human Leukocyte Antigen Class II, DR Beta 5
HRS Health and Retirement Study
HTN Hypertension
ICD-9 International Classification of Disease codes, Ninth revision
IGR Inter-Genic Region
IL-18 Interleukin 18
IL-1β Interleukin 1 Beta
IRB Institutional Review Board
ITIH2 Inter-Alpha-Trypsin Inhibitor Heavy Chain 2
KEGG Kyoto Encyclopedia of Genes and Genomes
KRTAP5-11 Keratin Associated Protein 5-11
L1CAM L1 Cell Adhesion Molecule
LECT1 Leukocyte Cell Derived Chemotaxin 1
LOADFS Late-Onset Alzheimer's Disease Family Study
LOC100288866 Uncharacterized LOC100288866
LOC154449 Uncharacterized LOC154449
MAPT Microtubule Associated Protein Tau
MB Methylene Blue
MHC Major Histocompatibility Complex
mQTL Methylation Quantitative trait Locus
MUM1 Melanoma Ubiquitous Mutated Protein 1
MWA Methylome-Wide Association
NABA Matrisome Project
NANOS2 Nanos C2HC-Type Zinc Finger 2
NDUFA4 NDUFA4 Mitochondrial Complex Associated
NGFR Nerve Growth Factor Receptor

NHGRI-EBI GWAS
National Human Genome Research Institute-European Bioinformatics Institute
Genome-Wide Association Studies Catalog

NINCDS-ADRDA
National Institute of Neurological and Communicative Disorders and Stroke of
the United States-the Alzheimer’s Disease and Related Disorders Association

NLRC4
Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Caspase
Recruitment Domain Containing 4

NLRP3
Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Pyrin
Domain Containing 3

PHLDA1 Pleckstrin Homology Like Domain Family A Member 1
PID Pathway Interaction Database

PPT2-EGFL8
Palmitoyl-Protein Thioesterase 2-Epidermal Growth Factor-Like Like Domain
Multiple 8 Readthrough

PSEN1 Presenilin 1
PSTK Phosphoseryl-TRNA Kinase
RHBDF2 Rhomboid 5 Homolog 2
RPL13 Ribosomal Protein L13
SIGLEC12 Sialic Acid Binding Immunoglobulin Like Lectin 12
SLC24A4 Solute Carrier Family 24 Member 4
SLC25A2 Solute Carrier Family 25 Member 2
SLC35C1 Solute Carrier Family 35 Member C1
SLC6A7 Solute Carrier Family 6 Member 7
SMR Summary Data-Based Mendelian Randomization
SNP Single-Nucleotide Polymorphism
SORBS3 Sorbin And SH3 Domain Containing 3
SORL1 Sortilin Related Receptor 1
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ST14 Suppression of Tumorigenicity 14
TCA Tricarboxylic Acid
TOMM40 Translocase of Outer Mitochondrial Membrane 40
TREM1 Triggering Receptor Expressed on Myeloid Cells 1
TWA Transcriptome-Wide Association
ZNF394 Zinc Finger Protein 394
ZNF598 Zinc Finger Protein 598
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