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Background: Thyroid cancer is prone to early lymph node metastasis (LNM), and patients with large 
volume LNM (LVLNM) tend to have a poorer prognosis. The aim of this study was to predict LVLNM in 
before surgery based on radiomics and deep learning (DL).
Methods: A multicenter retrospective study was performed, including 854 papillary thyroid carcinoma 
(PTC) patients from three centers. Radiomics features were extracted. Logistic regression (LR), support 
vector machine (SVM), K-nearest neighbors (KNN), multi-layer perceptron (MLP), random forest (RF), 
ExtraTrees, extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) 
algorithms were used to construct radiomics models. AlexNet, DenseNet121, inception_v3, ResNet50, and 
transformer algorithms were used to construct DL models. The receiver operating characteristic (ROC) 
curve was employed to select the better-performing model. A combined model was then created by merging 
radiomics features and DL features. The least absolute shrinkage and selection operator (LASSO) method 
was utilized to identify metabolites and radiomics features with non-zero coefficients. The performance of 
the models was evaluated using area under the curve (AUC), accuracy (ACC), sensitivity (SEN), specificity 
(SPE), positive predictive value (PPV), negative predictive value (NPV), and F1-score.
Results: A total of 1,357 radiomics features were extracted. Among the radiomics models, the ExtraTrees 
model demonstrated the optimal diagnostic capabilities with an AUC of 0.787 [95% confidence interval (CI): 
0.715–0.858], and DenseNet121 DL model demonstrated the optimal diagnostic capabilities with an AUC 
of 0.766 (95% CI: 0.683–0.848). Furthermore, the combined model, named the Thy-DL-Radiomics model, 
exhibited an AUC of 0.839 (95% CI: 0.758–0.920) in the internal validation set and 0.789 (95% CI: 0.718–
0.859) in the external validation set.
Conclusions: A radiomics-DL features integrated model can predict LVLNM in PTC patients and 
provide guidance for personalized treatment.
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Introduction

Thyroid cancer is the fastest-growing endocrine malignancy 
globally,  with papillary thyroid carcinoma (PTC) 
accounting for over 90% of cases (1). Upon diagnosis, 25–
80% of PTC patients already exhibit lymph node metastasis 
(LNM) in the neck, even when tumor diameters are ≤1 cm,  
with a metastatic rate of 12–64% (2-4). Although PTC 
generally has a favorable prognosis, with a 10-year survival 
rate exceeding 88%, cervical LNM significantly increases 
the risk of recurrence and mortality (5). Specifically, if 
more than five lymph nodes are involved, the postoperative 
recurrence rate exceeds 30% (6). The American Thyroid 
Association (ATA) guidelines stratify the risk of recurrence 
and suggest that PTC patients with more than five 
metastatic lymph nodes are at moderate or high recurrence 
risk, indicating a preoperative inclination towards proactive 
preventative lymph node dissection (7). Previous research 
has reported that when the number of metastatic lymph 

nodes exceeds five, it is typically defined as large volume 
LNM (LVLNM) (8). Currently, lymph node dissection 
is indisputably required for patients with moderate- or 
high-risk of recurrence, but the necessity of prophylactic 
dissection for patients with a low-risk of recurrence 
remains controversial. Recent opinions suggest that active 
surveillance (AS) could replace surgical treatment for low-
risk PTC to avoid unnecessary harm from overtreatment (9).  
Therefore, accurate preoperative assessment of LNM is 
crucial.

Ultrasound is commonly used preoperatively to assess 
the presence of LNM in PTC (10). However, due to the 
deep location and obstruction by the surrounding tissue in 
the central neck region, the sensitivity (SEN) of ultrasound 
to detect central LNM is low, ranging from only 31% to 
35% (11). Computed tomography (CT), with its higher 
spatial resolution, can clearly display suspicious metastatic 
lymph nodes and their relationship with surrounding 
structures, with a SEN of 47–63% and specificity (SPE) of 
90–95% (12). However, the evaluation of cervical LNM 
by radiologists is time-consuming and subjective, often 
depending on the radiologist’s experience and imaging 
equipment. In recent years, radiomics has garnered 
significant attention in precise diagnosis. Li et al. proposed 
a radiomics-based approach predicting LNM in PTC 
patients by converting ultrasound image features such as 
intensity, boundary, texture, and wavelet into extractable 
data (13). Concurrently, deep learning (DL), a new scientific 
technology, has been used in medical imaging research 
to overcome limitations in manual image analysis and 
information retrieval.

This study aims to develop a combined DL-Radiomics 
model to enhance the preoperative prediction of LVLNM 
in patients with PTC, striving to provide more precise 
individualized diagnostic and therapeutic plans. By 
integrating the strengths of radiomics and DL, we expect 
this model to improve the accuracy (ACC) of LNM 
quantification, thus aiding in better risk stratification 
and treatment decisions for PTC patients. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://gs.amegroups.com/article/
view/10.21037/gs-24-308/rc).

Highlight box

Key findings
•	 The Thy-deep learning (DL)-Radiomics model was developed 

to predict large volume lymph node metastasis (LVLNM) in 
patients with papillary thyroid carcinoma (PTC), demonstrating 
an area under the curve of 0.839 in internal validation and 0.789 in 
external validation. By integrating radiomics and DL features, this 
model provides personalized diagnostic and therapeutic insights 
for PTC patients.

What is known and what is new?
•	 Current knowledge encompasses the use of ultrasound imaging and 

clinical features to predict lymph node metastasis (LNM), though 
the accuracy (ACC) of these methods requires enhancement.

•	 The innovative Thy-DL-Radiomics model signifies a significant 
advancement by integrating radiomics and DL techniques to 
improve the risk assessment of LNM in patients with PTC.

What is the implication, and what should change now?
•	 The implications of the Thy-DL-Radiomics model include the 

enhanced identification of high-risk LVLNM patients, which could 
potentially inform personalized treatment strategies and improve 
patient outcomes. It is recommended that clinicians incorporate 
advanced imaging and machine learning models into clinical 
practice to enhance the ACC of preoperative assessments in PTC.
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Methods

Patients

This study collected data from patients with PTC who 
underwent surgery at Hangzhou Hospital of Traditional 
Chinese Medicine, Cancer Hospital of the University of 
Chinese Academy of Sciences, Affiliated Yantai Yuhuangding 
Hospital, Qingdao University from January 2023 to 
December 2023. The data were divided into a training 
set, an internal validation set, and an external validation 
set. The inclusion criteria were as follows: (I) pathological 
confirmation of PTC; (II) patients who underwent primary 
surgery accompanied by cervical lymph node dissection; 
(III) postoperative pathological reports including detailed 
information on the number of lymph nodes dissected and 
the number of metastatic lymph nodes; and (IV) availability 
of comprehensive preoperative thyroid ultrasound images 
for analysis. The exclusion criteria were as follows: (I) 
postoperative pathological diagnosis indicating sub-types of 
PTC; (II) history of neck trauma, previous tumor surgery, 
or adjuvant chemoradiotherapy; and (III) fewer than 
three lymph nodes dissected during surgery. The surgical 
procedures were listed in Appendix 1. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Ethics 
Committee of Hangzhou Hospital of Traditional Chinese 
Medicine (No. 2022KY153-CX1). All participating hospitals 
were informed and agreed with this study. Individual consent 
for this retrospective analysis was waived.

Imaging acquisition and thyroid nodules segmentation

A color Doppler ultrasound machine equipped with a real-
time, high-frequency (5–12 MHz) linear-array probe was 
used in this study. The ultrasound image data was collected 
by two ultrasound radiologists with 5 years of thyroid 
ultrasound experience. The images of the thyroid nodules 
were stored in JPG format. The regions of interest (ROIs) 
of the PTCs were manually delineated using ITK-SNAP 
(version 3.6.0). A radiologist with 10 years of experience 
outlined the ROI borders for the thyroid nodules.

Radiomics feature extraction and selection

The data extracted included first-order features, intensity 
histogram statistics, shape and size statistics, and (filtered) 
texture features. All handcrafted features were extracted 
using an in-house feature analysis program implemented 

in Pyradiomics (http://pyradiomics.readthedocs.io). The 
explanation was listed in Appendix 2. The least absolute 
shrinkage and selection operator (LASSO) regression 
model was applied to the training dataset for signature 
construction. LASSO shrinks all regression coefficients 
towards zero and sets the coefficients of many irrelevant 
features to zero depending on the regulation weight λ. To 
find the optimal λ, a 5-fold cross-validation with minimum 
criteria was employed, wherein the final value of λ yielded 
the minimum cross-validation error. The retained features 
with nonzero coefficients were used for fitting the regression 
model and were combined into a radiomics feature.

The construction of a DL model and DL feature extraction

In  thyroid  u l trasound images ,  each image has  a 
corresponding mask image containing the cancerous region, 
where the pixels of the cancerous area are set to 255, and 
other non-cancerous areas are set to 0. We extracted the 
ROI of the nodule area based on the image mask, defining 
the minimum bounding rectangle. We utilized two-
dimensional (2D) ultrasound grayscale images as input. 
The model output was the probability of LVLNM in PTC. 
The training parameters are presented in Appendix 3. 
To enhance the network’s generalization ability, random 
data transformations were applied during training batches 
based on different task characteristics. This allowed the 
network to learn geometric invariance, such as size changes, 
rotations, affine transformations, contrast variations, noise 
interference, to reduce variations arising from the diverse 
physical properties of different ultrasound devices. We 
derived a set of DL features from the previously described 
pre-trained DL model. Initially, each image in the dataset 
underwent processing through the model, and the output 
activations of the second-to-last fully-connected neural 
network (FCNN) layer were retained and utilized as the 
DL features of the images. Principal component analysis 
(PCA) was conducted to further reduce the dimensionality 
of DL features to 128. We utilized the Gradient-weighted 
Class Activation Map (Grad-CAM) algorithm to visualize 
heatmaps that highlight the image regions contributing 
most to the model prediction. Specifically, we applied 
Grad-CAM to the final convolutional layer in our model to 
generate heatmaps with appropriate spatial resolution (14).

Combined radiomics and DL features

To construct the integrated DL-Radiomics model, DL 
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features were merged with the radiomics features to create a 
combined set of DL-radiomics features for each image. For 
classifier selection, the development dataset was split into 
training dataset and internal validation dataset portions for 
the examination and evaluation of seven different classifiers: 
logistic regression (LR), support vector machine (SVM), 
K-nearest neighbors (KNN), multi-layer perceptron 
(MLP), random forest (RF), ExtraTrees, extreme gradient 
boosting (XGBoost), and light gradient boosting machine 
(LightGBM). The machine learning (ML) classifier 
demonstrated the highest area under the curve (AUC) in 
the highest average and lowest standard deviation (SD) 
across 5-fold cross-validations, leading to its adoption for 
the optimal model development.

Statistical analysis

By employing descriptive statistics, mean values and 
SDs characterized the ages and sizes of the nodules. The 
classification outcomes from each method were detailed 
through both absolute quantities and percentages relative 
to the gold standard. The statistical evaluation each model 
regarding the gold standard included metrics such as 

AUC, ACC, SEN, SPE, positive predictive value (PPV), 
negative predictive value (NPV), and F1-score to assess 
result consistency. Statistical tests for the κ coefficient across 
different groups were performed, and group comparisons 
utilized the χ2 test, alongside the analysis of receiver 
operating characteristic (ROC) curves. DeLong tests were 
conducted to compare the AUCs. For statistical significance, 
a P value <0.05 was considered. R software version 4.0.2 (R 
Foundation for Statistical Computing, Vienna, Austria) was 
utilized for all statistical analyses. The statistical analyses 
were executed using R software (version 4.3.1).

Results

Patient cohort

This study enrolled 854 patients diagnosed with PTC, 
comprising 212 males and 642 females, with an age 
distribution of 45.89±12.19 years, ranging from 18 to  
85 years. Of the 854 PTC patients, there were 414 patients 
without LNM, 340 patients with LNM but less than 5, and 
120 patients with LVLNM. These patients were segregated 
into three cohorts: a training set (n=350), internal validation 
set (n=150), and external validation set (n=374). Figures 1,2 

Figure 1 Flow chart of patient recruitment. NLVLNM, non-large volume lymph node metastasis; LVLNM, large volume lymph node 
metastasis.

Training cohort

NLVLNM (n=443) 
LVLNM (n=57)
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LVLNM (n=63)
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NLVLNM (n=128) 
LVLNM (n=22)
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Figure 2 Development of three LVLNM prediction models: Thy-Radiomics, Thy-DL, and combined Thy-DL-Radiomics. LVLNM, large 
volume lymph node metastasis; DL, deep learning.

illustrate the study’s flow diagram. Clinical data are detailed 
in Table 1.

Radiomics features selection and radiomics model building

A total of seven categories and 1,357 radiomics features 
were extracted, including 374 first-order, 14 shape, and 969 
texture features. We included 1–3 representative ultrasound 
images for each patient without limitation of transverse 
and longitudinal cuts, and satisfactory reproducibility of 
radiomics feature extraction was achieved. LASSO was 
employed in the training cohort to determine the optimal 
regulation weight, and 9 RFs were chosen for predicting 
LVLNM (Figure 3A). The Thy-Radiomics model was 
obtained by ExtraTrees algorithm compared with eight 
classical ML model classifiers (Table 2). Figure 3B shows 
the AUC of each ML model on the internal validation set 
cohort of the Thy-Radiomics model. The Thy-Radiomics 
model achieved the best value of AUC reaching 0.787 [95% 
confidence interval (CI): 0.715–0.858] for predicting the 

LVLNM by ExtraTrees. The ACC, SEN, SPE, PPV, NPV, 
and F1-score of the ExtraTrees model were 0.718, 0.738, 
0.714, 0.33, 0.935, and 0.456 respectively (Figure 3C). Then, 
we conducted a five random cross-validation of the internal 
dataset (Table S1).

DL model building and DL features selection

We further tried five DL models to assess the risk of LVLNM 
in PTC, including AlexNet, DenseNet121, inception_v3, 
ResNet50, and transformer algorithm to select the optimal 
DL model. Table 2 shows the AUC of performance of DL 
model. The Thy-DL model by DenseNet121 showed the 
best result with an AUC of 0.766 (95% CI: 0.683–0.848). 
The ACC, SEN, SPE, PPV, NPV, and F1-score of the 
DenseNet121 model were 0.721, 0.714, 0.723, 0.33, 0.714, 
and 0.451, respectively, in predicting LVLNM (Table 2). We 
further extracted the DenseNet121 model of DL features, in 
which 1,568 DL features were extracted. The dimensionality 
of DL features was reduced to 128 features by PCA.

https://cdn.amegroups.cn/static/public/GS-24-308-Supplementary.pdf
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Table 1 The baseline characteristics of the PTC patients

Characteristics
Training set (n=350) Internal validation set (n=150) External verification set (n=374)

NLVLNM LVLNM NLVLNM LVLNM NLVLNM LVLNM

Sex

Female 246 21 96 16 222 41

Male 69 14 32 6 69 22

Age (years) 42.11±15.34 47.32±9.27 41.61±14.54 39.45±9.35 46.31±12.51 42.11±13.21

Size (mm) 7.36±3.26 12.63±5.38 9.38±4.25 12.35±3.51 8.96±5.13 13.43±4.67

Multifocality

No 200 17 50 15 227 45

Yes 115 18 78 7 64 18

Capsular invasion

No 263 5 84 4 141 9

Yes 52 30 44 18 150 54

Data are presented as number or mean ± SD. PTC, papillary thyroid carcinoma; NLVLNM, non-large volume lymph node metastasis; 
LVLNM, large volume lymph node metastasis; SD, standard deviation.

0.00	 0.05	 0.10	 0.15	 0.20	 0.25
Importance

ExtraTreesClassifier

Model name ACC AUC (95% CI) SEN SPE PPV NPV F1

LR 0.603 0.745 (0.666–0.823) 0.81 0.564 0.262 0.939 0.395

SVM 0.824 0.548 (0.432–0.665) 0.31 0.923 0.433 0.875 0.361

KNN 0.836 0.634 (0.542–0.727) 0.095 0.977 0.444 0.85 0.157

RF 0.634 0.724 (0.635–0.812) 0.81 0.6 0.279 0.943 0.415

ExtraTrees 0.718 0.787 (0.715–0.858) 0.738 0.714 0.33 0.935 0.456

XGBoost 0.752 0.702 (0.608–0.796) 0.595 0.782 0.342 0.91 0.435

LightGBM 0.748 0.702 (0.610–0.793) 0.571 0.782 0.333 0.905 0.421

MLP 0.687 0.752 (0.672–0.832) 0.762 0.673 0.308 0.937 0.438

	0.0	 0.2	 0.4	 0.6	 0.8	 1.0
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Figure 3 The performance of Thy-Radiomics models. (A) The nine radiomics features were selected to build radiomics models. (B) The 
ROC of different ML models. (C) The performance of different ML models. 3D, three-dimensional; AUC, area under the curve; LR, 
logistic regression; CI, confidence interval; SVM, support vector machine; KNN, K-nearest neighbors; RF, random forest; XGBoost, 
extreme gradient boost; LightGBM, light gradient boosting machine; MLP, multi-layer perceptron; ACC, accuracy; SEN, sensitivity; 
SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; F1, F1-score; ROC, receiver operating characteristic; ML, 
machine learning.
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Table 2 The results of DL models

Model name ACC AUC (95% CI) SEN SPE PPV NPV F1

AlexNet 0.641 0.735 (0.652–0.818) 0.738 0.623 0.272 0.738 0.397

DenseNet121 0.721 0.766 (0.683–0.848) 0.714 0.723 0.33 0.714 0.451

Inception_v3 0.34 0.492 (0.411–0.572) 0.857 0.241 0.177 0.857 0.294

ResNet50 0.676 0.686 (0.600–0.772) 0.619 0.686 0.274 0.619 0.38

ViT 0.794 0.614 (0.528–0.700) 0.19 0.909 0.286 0.19 0.229

DL, deep learning; ACC, accuracy; AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; PPV, positive 
predictive value; NPV, negative predictive value; F1, F1-score; ViT, vision transformer.

Combined model and performance evaluation

We further integrated the aforementioned RFs and DL 
features. After a screening process, we selected seven 
traditional radiomics features and three DL features to 

predict LVLNM (Figure 4). We constructed a combined 

model, named the Thy-DL-Radiomics model, for which 

the internal validation set results showed an AUC of 0.839 

(95% CI: 0.758–0.920), and the ACC, SEN, SPE, PPV, 

	 −0.01	 0.00	 0.01	 0.02	 0.03	 0.04	 0.05

Model name ACC AUC (95% CI) SEN SPE PPV NPV F1
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SVM 0.693 0.648 (0.486–0.810) 0.6 0.704 0.184 0.941 0.281

KNN 0.833 0.588 (0.458–0.717) 0 0.926 0 0.893 NaN

RF 0.573 0.720 (0.578–0.862) 0.8 0.548 0.164 0.961 0.273

ExtraTrees 0.82 0.773 (0.658–0.889) 0.6 0.844 0.3 0.95 0.4

XGBoost 0.707 0.721 (0.571–0.872) 0.667 0.711 0.204 0.95 0.312

LightGBM 0.733 0.696 (0.554–0.837) 0.667 0.741 0.222 0.952 0.333
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Figure 4 The performance of Thy-DL-Radiomics. (A) The seven radiomics features and three DL features were selected to build radiomics 
models. (B) The ROC of different RFs and DL features combined models. (C) The performance of different combined models in the 
internal validation set. 3D, three-dimensional; DL, deep learning; AUC, area under the curve; LR, logistic regression; CI, confidence 
interval; SVM, support vector machine; KNN, K-nearest neighbors; RF, random forest; XGBoost, extreme gradient boost; LightGBM, light 
gradient boosting machine; MLP, multi-layer perceptron; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; 
NPV, negative predictive value; F1, F1-score; ROC, receiver operating characteristic.
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NPV, and F1-score of MLP were 0.727, 0.8, 0.719, 0.24, 
0.97, and 0.369, respectively. To assess the performance of 
the Thy-DL-Radiomics model on an external test set, we 
included PTC patients as an external validation set, which 
yielded an AUC of 0.789 (95% CI: 0.718–0.859). The 
ACC, SEN, SPE, PPV, NPV, and F1-score of the Thy-DL-
Radiomics model were 0.658, 0.833, 0.624, 0.297, 0.952, 
and 0.437, respectively, in predicting LVLNM. Additionally, 
the DeLong test results indicated that the Thy-DL-
Radiomics model in the internal validation set showed better 
performance in predicting LVLNM (P<0.05, Figure 5).

Model interpretability

We extracted visual inspection information of images 
processed in the final convolutional layer of the DL 
algorithm, showcasing the capability to handle ultrasound 
imaging data in diverse ways. Simultaneously,  we 
characterized the distinct features of diverse imaging 
radiomics, as shown in Figure 6.

Discussion

This study developed a new preoperative method for 

assessing LVLNM based on PTC ultrasound. By analyzing 
ultrasound radiomics features and DL algorithms, we 
successfully constructed a model combining radiomics 
features and DL features to predict LVLNM. Our results 
demonstrate the feasibility of predicting LNM in PTC 
through the fusion of convolutional neural network (CNN) 
algorithms and radiomics features.

The literature reports that qualitative ultrasound 
features extracted from PTC primary lesions in ultrasound 
images (such as tumor size, location, and echogenicity) 
achieved an ACC of 71.2% (15). Wu et al. used ultrasound 
images to evaluate LNM in PTC patients, and concluded 
that tumor size, blood flow, and Hashimoto’s thyroiditis 
were independent factors for LNM (16). Nie et al. found 
that tumor size, tumor invasiveness, and tumor location 
were significantly associated with LNM in the univariate 
analysis (17). This confirmed the value of using ultrasound 
image features of primary lesions to predict LNM. In this 
study, radiomics features, imperceptible to the naked eye, 
were extracted, revealing clinical information that might 
evade detection by clinicians. Various ML algorithms 
were further employed to reduce feature complexity and 
select the optimal feature combinations (18). Unlike 
traditional methods, DL as a data-driven end-to-end 
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Figure 6 Heatmaps for PTC by Grad-CAM displaying the importance of different image regions to the network decision of identifying 
LVLNM and heatmaps for PTC by sub-region analysis displaying the importance of radiomics different sub-region. NLVLNM, non-
large volume lymph node metastasis; LVLNM, large volume lymph node metastasis; PTC, papillary thyroid cancer; Grad-CAM, Gradient-
weighted Class Activation Map.
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learning approach typically does not require preprocessing. 
Its training process inherently involves feature extraction 
and optimal selection, eliminating the need for classifier 
selection. With the advancement of hardware-like graphic 
processors, DL excels in handling big data, enabling 
rapid processing and computation. Additionally, DL can 
automatically extract high-dimensional, high-level features, 
superior to traditionally designed features, and does not 
require subsequent selection (19). This study utilized 1,568 
DL features to evaluate the risk of LVLNM metastasis, 
offering a more accurate and objective approach to image 
feature extraction as compared to human observation, 
reducing inter-observer variability and saving substantial 
manpower.

The Thyroid Imaging Reporting and Data System 
(TI-RADS) scoring system based on different ultrasound 
characteristics such as calcification, echo patterns, and 
margins, was developed to assess the malignancy of thyroid 
nodules (20). However, radiomics features, as high-
dimensional features, lack interpretability (21). This study 
identified nine radiomics features closely associated with 
LVLNM using ML algorithms. Therefore, we introduced 
a new habitat analysis technique. By characterizing the 
differential features between the LVLNM group and the 

non-LVLNM (NLVLNM) group, the optimal category 
was identified through cluster analysis (22). Visual analysis 
of the results indicated that calcification in hypoechoic 
regions was correlated with LVLNM, consistent with 
previous research (23). DL, being a black-box model, also 
faces challenges with interpretability. Grad-CAM weights 
and integrates gradients of the neural network’s output to 
visualize the model’s focus on specific regions and crucial 
predictive information, aiding in the understanding and 
interpretation of the model’s operational principles (24). 
Jia et al. found that the GAFM-HAIbrid model may help 
identify novel diagnosis-relevant second-order features 
beyond ultrasonography to assess the malignancy of thyroid 
nodules (25). Further selection of DL features related to 
LVLNM using DL algorithms requires future research.

This study also has certain limitations. Firstly, to meet 
the demands of large sample sizes required for DL, it is 
necessary to further incorporate samples from multiple 
centers to increase the sample size, assess the model’s 
external generalization ability, and further enhance the 
model’s robustness. This study included 1–3 ultrasound 
images from different planes to evaluate LVLNM. In future 
research, it is essential to investigate the impact of the 
quantity of ultrasound images and planes on the results. 
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The LNM of PTC is complex; this study was limited to the 
presence of LVLNM in lymph nodes. Further exploration 
is needed regarding the location, region, and quantity of 
LNM to meet precise clinical requirements.

Conclusions

A combined Thy-DL-Radiomics model utilizing thyroid 
ultrasound images surpasses the performance of standalone 
DL or radiomics models in predicting LVLNM in PTC 
patients, serving as an effective screening tool potentially 
informing decisions about surgery administration. These 
AI models hold promise for providing noninvasive and 
convenient preoperative guidance. However, despite their 
potential, the clinical utility of such screening models is 
currently limited, necessitating further research to enhance 
their ACC and generalizability.
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