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Abstract

Recessive dystrophic epidermolysis bullosa (RDEB) is a debilitating and ultimately lethal 

blistering disease caused by mutations to the Col7a1−/− gene. Development of novel cell therapies 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence to: Jakub Tolar, Pediatric BMT, 420 Delaware St SE, MMC 366, Minneapolis, MN 55455; 612-626-6723; 
tolar003@umn.edu. 

DISCLOSURE/CONFLICT OF INTEREST
The authors have no additional financial interests.

HHS Public Access
Author manuscript
Lab Invest. Author manuscript; available in PMC 2018 March 11.

Published in final edited form as:
Lab Invest. 2017 October ; 97(10): 1218–1224. doi:10.1038/labinvest.2017.85.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the treatment of RDEB would be fostered by having immunodeficient mouse models able to 

accept human cell grafts; however, immunodeficient models of many genodermatoses such as 

RDEB are lacking. To overcome this limitation, we combined the clustered regularly interspaced 

short palindromic repeats and associated nuclease (CRISPR/Cas9) system with microinjection into 

NOD/SCID IL2rγcnull (NSG) embryos to rapidly develop an immunodeficient Col7a1−/− mouse 

model of RDEB. Through dose optimization, we achieve F0 biallelic knockout efficiencies 

exceeding 80%, allowing us to quickly generate large numbers of RDEB NSG mice for 

experimental use. Using this strategy, we clearly demonstrate important strain-specific differences 

in RDEB pathology that could underlie discordant results observed between independent studies 

and establish the utility of this system in proof-of-concept human cellular transplantation 

experiments. Importantly, we uncover the ability of a recently identified skin resident 

immunomodulatory dermal mesenchymal stem cell marked by ABCB5 to reduce RDEB 

pathology and dramatically extend the lifespan of RDEB NSG mice via reduced skin infiltration of 

inflammatory myeloid derivatives.

RDEB is caused by mutations to the Col7a1−/− gene, resulting in dermal-epidermal 

separation, extensive blistering, and scar formation. Current treatment for RDEB patients is 

limited to laborious bandaging regimens and management of pain, itching, and bacterial and 

fungal infections. In addition, individuals with severe RDEB develop pseudosyndactyly, 

joint contractures, esophageal strictures, and corneal abrasions, as well as being predisposed 

to aggressive squamous cell carcinomas in young adulthood.1, 2 This disorder is currently 

incurable.3, 4 The widespread mucocutaneous wounds in individuals with RDEB trigger 

systemic inflammatory and immune responses that perpetuate and amplify the 

symptomatology of RDEB.5, 6

Through experiments originating in RDEB mice,7, 8 our group has shown that allogeneic 

hematopoietic cell transplantation can ameliorate the symptoms of RDEB.9, 10 However, the 

therapeutic effects are incomplete, and adjunct cellular therapies may allow for more 

beneficial outcomes. Although genome modification has been performed in immune-

competent mice11–13 as part of a platform for novel cellular therapy development, we sought 

herein to use CRISPR/Cas9 to generate an RDEB model on the NSG background in order to 

explore the role of the immune system in RDEB. The NSG mouse lacks T, B, and NK 

immune cells and is therefore permissive to human xenotransplantation.14 Previously, 

generating knockout NSG mice involved time-consuming and labor-intensive backcrossing 

or gene editing of recently derived, but not yet widely distributed, NSG embryonic stem 

cells.15 The CRISPR/Cas9 platform has been used to genetically manipulate NOD-Rag1null 

IL2rγcnull (NRG) mice using pro-nuclear injection, but in these initial studies the embryos 

were obtained via labor-intensive in vitro fertilization and yielded low numbers of viable 

offspring.16 Recently, CRISPR/Cas9 has been used to produce knockout NSG mice by 

standard embryo injection; however, no dose optimization was reported and average gene 

disruption rates were only ~40% across 20 F0 animals.17 Therefore, we sought to optimize 

CRISPR/Cas9-based knockout of Col7a1 in NSG embryos to establish a robust platform for 

generating an immunodeficient mouse model of RDEB.
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MATERIALS AND METHODS

CRISPR reagents

Guide RNAs targeting the first coding exon of the murine Col7a1 gene were designed using 

the MIT CRISPR design tool (http://crispr.mit.edu/). For validation, gRNAs were cloned 

into a U6 expression vector and co-delivered with a Cas9-expressing plasmid into 3T3 cells 

followed by determination of nuclease activity by Surveyor assay (Integrated DNA 

Technologies, Coralville, IA). In vitro transcribed gRNAs for microinjection were produced 

using the MEGAshortscript T7 Transcription kit (Thermo-Fisher Scientific, Waltham, MA) 

according to manufacturer protocols. Cas9 mRNA for microinjection was obtained from 

TriLink Biotechnologies (San Diego, CA).

Mice

NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ; Stock No. 005557) or C57BL/6 (C57BL/6J; Stock 

No. 000664) mice were ordered from The Jackson Laboratory (www.jax.org). CD-1 

(Crl:CD1(ICR); Strain No. 022) females were obtained from Charles River 

(www.criver.com). Animals were housed within the University of Minnesota Mouse 

Genetics lab facilities in non-SPF conditions. All animal studies were approved by the 

University of Minnesota Institutional Animal Care and Use Committee.

Embryo injections

Mouse manipulations were performed as previously described,18 with the modification that 

the CRISPR/Cas9 RNA was injected into the cytoplasm rather than the pro-nucleus. Briefly, 

4- to 5-week-old NSG females were super ovulated using standard methods and housed 

overnight with >8-week-old NSG males. Plugged females were sacrificed for embryo 

harvest. Following microinjection, embryos were implanted into pseudo-pregnant CD-1 

females.

Survival experiments

Within 24 h of birth, neonatal mice were visually inspected for characteristic blistering on 

paws. Non-blistered animals were separated from blistered littermates and retained for 

genotyping and use as potential founders for establishing a breeding colony. Blistered 

animals were observed daily over the course of the experiment, and deaths were recorded as 

they occurred. Animal health was monitored closely and with consultation with veterinary 

staff. Moribund animals that did not respond to treatment with gentamicin were euthanized 

and counted as a death. Survival experiments were conducted independently at least twice.

ABCB5+ cell isolation

Human ABCB5+ dermal cells were obtained as described previously.19 Briefly, full 

thickness human skin was obtained from skin biopsies of healthy donors with informed 

consent. Single-cell suspensions were generated as described previously, and ABCB5+ cells 

were isolated by positive selection using anti-ABCB5 mAb (clone 3C2-1D12),20 labelling, 

and magnetic bead cell sorting according to GMP standards (Ticeba, Heidelberg, Germany) 

as described previously.19 These cells are plastic adherent and reveal the characteristic 
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surface marker expression profile of MSCs.19 ABCB5+ cells fulfil the requirements of the 

International Society for Cellular Therapy regarding the definition of minimal criteria of 

MSCs,19 and represent a European Medicines Agency-classified advanced therapy 

medicinal product currently already undergoing clinical evaluation in a phase I/II human 

clinical trial in an unrelated disease indication, chronic venous stasis skin ulcer 

(ClinicalTrials.gov Identifier: NCT02742844).

ABCB5+ cell transplantation

Blistered mice were randomly separated into experimental and control groups. ABCB5+ 

cells were re-suspended in phosphate-buffered saline (PBS) and 5×105 cells were injected in 

10 µl volume directly into the facial vein.

Immunohistochemistry and microscopy

Skin from a control mouse and Col7a1−/− NSG mouse was frozen at optimal cutting 

temperature (OCT, Sakura Finetek USA, Torrance, CA) and cut at 6 microns on a cryostat. 

Sections were fixed for 5 min in room temperature acetone followed by blocking with 10% 

normal donkey serum for 1 h (Jackson ImmunoResearch Labs Cat# 017-000-121 Lot# 

RRID:AB_2337258). Primary antibody collagen VII (1:2000 a kind gift from Drs. David 

Woodley and Mei Chen) was applied for one h, washed, and then secondary antibody 

donkey anti-rabbit cy3 1:500, (Jackson ImmunoResearch Labs Cat# 711-165-152 Lot# 

RRID:AB_2307443) was added for 1 h. Slides were washed with 1 × PBS and coverslipped 

with hard-set DAPI (4,6-diamidino- 2-phenylindole, Vector Laboratories Cat# H-1500 Lot# 

RRID:AB_2336788). Slides were examined by confocal fluorescence microscopy (Fluoview 

1000, Olympus BX61, Olympus Optical, Tokyo, Japan). For quantification of CD68+ 

macrophages, blinded counts were performed on equivalent areas spanning to 200 µm below 

the epidermis on duplicate tissue sections on at least two animals.

Statistics

Statistical differences in survival were determined by Log-rank test using GraphPad Prism 

software (Graphpad Prism, RRID:SCR_002798). All other statistical analyses were 

performed using the Student’s t-test with P values less than 0.5 being considered significant.

RESULTS

We pursued standard superovulation followed by mating and subsequent embryo collection, 

embryo injection, and implantation into pseudo-pregnant female surrogates (Figure 1a). To 

generate RDEB NSG mice, we employed a gene knockout strategy using two guide RNAs 

(gRNA) targeting exon 1 of Col7a1. Both gRNAs were delivered simultaneously to 

maximize the probability of generating a null allele (Figure 1b).21 We designed two high-

scoring gRNAs that we subsequently validated in vitro prior to the injection experiments. 

Both gRNAs had high on-target activity as determined by surveyor nuclease assay (Figure 

1c). In vitro transcribed gRNAs were co-delivered with Cas9 mRNA into single cell NSG 

embryos, which were subsequently transferred into pseudo-pregnant surrogates. Our initial 

dose of CRISPR/Cas9 (50 ng/µl Cas9 and 25 ng/µl each gRNA), resulted in a high level 

(69%) of biallelic null animals as evidenced by severe blistering and death shortly after birth 
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(Figure 2a, Table 1). Blistered pups showed a complete loss of C7 protein at the dermal-

epidermal junction in skin and the mucosal epithelium of the esophagus (Figure 2b). 

Targeted insertions and deletions (indels) within the first exon of Col7a1 were confirmed by 

sequencing (Figure 2c). Furthermore, we observed several mice containing biallelic 

mutations that did not result in frameshift, so the actual frequency of mutation is probably 

slightly higher than is represented by blistered pups. As our initial goal was to generate 

animals harboring mono-allelic frameshift mutations that would survive for subsequent 

breeding, we decided to lower the dose of CRISPR/Cas9 (25 ng/µl Cas9 and 12.5 ng/µl of 

each gRNA) in subsequent injections. This resulted in a decreased frequency of biallelic 

knockout animals (34%) and thus a higher number of surviving animals suitable for 

genotyping and subsequent breeding (Table 1). In our previous experiences using high-

quality gRNA such as employed here, off-target activity is extremely low.22 However, in 

situations where high fidelity gRNAs are not available, the lower dose strategy described 

here, or a strategy employing a dual nickase system could be employed to minimize off-

target mutations.23 Flow cytometric analysis of peripheral blood showed the lack of B, T, 

and NK lymphoid cells and confirmed that CRISPR/Cas9-modified animals retained the 

NSG phenotype (see Supplementary Figure S1).

Interestingly, we observed that Col7a1-null NSG mice appeared to live longer than the 

previously reported Col7a1 knockout models in our hands, suggesting that the CRISPR/

Cas9-mediated gene disruption may result in reduced disease severity via an unknown 

mechanism. To rigorously test this, we performed side-by-side CRISPR/Cas9-mediated 

knockout of Col7a1 in both NSG and C57Bl/6 mice using a high dose (100 ng/µl Cas9 and 

50 ng/µl of each gRNA) strategy aimed at maximizing the production of biallelic knockout 

animals. In this setting, we achieved biallelic knockout frequencies of 83% (N = 79) and 

75% (N = 36) for NSG and C57Bl/6 mice, respectively, with no substantial differences in 

embryo viability (number of viable pups born/number injected embryos implanted) (Table 

1). However, in the resulting knockout animals we observed a statistically significant 

(P<0.001) increase in survival in NSG compared to C57Bl/6 mice (Figure 3a), suggesting 

that strain-specific or immune system-related differences in pathology were the cause of the 

discrepancy in survival rather than the method for gene disruption.

Importantly, we found that the high efficiency and robustness of the CRISPR/Cas9 system 

coupled with the scalability of embryo injection allowed for us to routinely obtain large 

numbers (>30) of Col7a1−/− animals. Coupled with the relatively precise timing of birth 

afforded by direct embryo implantation, we found this system to be highly conducive to 

cellular transplantation experiments. This capability allowed us to conduct proof-of-concept 

studies in neonatal Col7a1-null NSG mice transplanted with human-dermis-derived cells 

expressing the ATP-binding cassette sub-family B member 5 (ABCB5) glycoprotein.19, 24 

We chose ABCB5+ cells because they share many similarities with mesenchymal stromal/

stem cells (MSCs), including the expression of C7 (Western blots available online, 

Supplementary Figure S2), previously demonstrated potent immunosuppressive and anti-

inflammatory capabilities,19 and the ability to preferentially home to the skin.25, 26 In 

blistered mice receiving ABCB5+ cells, we observed a dramatic improvement in survival 

compared to non-transplanted controls, with 7/17 mice surviving over 50 days and 4 mice 

surviving to day 67, at which point the animals were harvested for tissue analysis (Figure 
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3b). We confirmed Col7a1 disruption in surviving mice by sequencing (data shown in 

Supplementary Figure S3). Importantly, none of the long-term surviving mice were positive 

for C7 protein, suggesting the therapeutic effect and enhanced survival was mediated by a 

mechanism other than restoration of the missing C7 protein (Figure 3c). While all the long-

term surviving mice were generally in good health, their coats had a scruffier appearance 

compared to wild-type littermates, and there was evidence of pseudosyndactyly (for images 

of these mice, see Supplementary Figure S4). Thus, although the therapeutic effect was 

substantial, it was not complete. Relevant to this, infused ABCB5+ cells were not detected in 

the tissue of long-term survivors, either by immunofluorescence microscopy or by 

quantitative PCR for human-specific DNA sequences (data not shown). We hypothesized 

that the transplanted ABCB5+ cells may be exerting their therapeutic effect via an alternate, 

inflammation-based mechanism due to their well-documented immunosuppressive capacity.

To explore this possibility, we used immunofluorescence microscopy to assess infiltration of 

CD68+ macrophages (which are intact in the NSG mice) into the dermis of mice treated 

with ABCB5+ cells and observed a significant reduction as soon as 48 h after transplant 

when compared to untreated neonates (Figure 3d, e). The fact that there was significant 

decrease as early as 48 h after transplantation suggests that early suppression of 

inflammatory cell infiltration is sufficient to prevent the severe phenotype associated with 

RDEB. Our observation that engrafted ABCB5+ cells may exist only transiently in skin 

offers further insight into RDEB pathology and provides evidence that there appears to be an 

early therapeutic window for intervention, during which the suppression of monocyte-

mediated inflammation allows the mice to survive past a “crisis phase,” after which they can 

survive for an extended period even in the absence of C7 protein.

DISCUSSION

The pathogenesis of RDEB in humans is complex. The COL7A1 gene is transcribed in 

fibroblast and keratinocyte nuclei whereby 118 exons encode a polypeptide that gives rise to 

the C7 protein that forms anchoring fibrils that attach the lamina densa to underlying 

papillary dermal collagen fibrils. Hundreds of mutations in COL7A1 have been reported, 

and a wide variety of clinical manifestations may result from structurally and functionally 

altered or absent C7. Because even monozygotic twins with RDEB may show striking 

differences in disease severity,27 factors additional to C7 deficiency appear to define clinical 

phenotype. These include variability in production of pro-fibrotic and pro-inflammatory 

cytokines, as well as in pathways that may provide inhibitory signals.27 However, models 

have not until now existed to evaluate such co-factors and to test therapeutic interventions 

that would target and ameliorate such exacerbating influences that affect blister formation, 

lesion healing, and fibrotic sequellae.

In this report we have generated high efficiency and robust Col7a1 knockout mice using the 

CRISPR/Cas9 system coupled with the scalability of embryo injection, thus permitting 

generation of large numbers (>30) of Col7a1−/− animals. The less severe phenotype of 

RDEB lesions in the NSG mouse, as compared to those with more intact immune status, is 

consistent with a role for local inflammatory pathways in lesion generation and persistence. 

The NSG model is also permissive to the administration of human cells with properties that 
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may further suppress inflammatory and immune activation, as well as potentially restore 

deficient C7. To this end, we administered ABCB5+ dermal mesenchymal stem cells to 

RDEB/NSG mice we had generated. Although this maneuver had a significant effect in 

ameliorating disease severity, the mechanism did not appear to involve replenishment of C7 

function. Rather, suppression of innate immune responses in NSG mice mediated by 

macrophages appeared to potentially play a role in ameliorating disease activity.

ABCB5+ dermal mesenchymal stem cells are known to have the following 

immunosuppressive properties:24 i) expression of PD-1; ii) ability to suppress T cell 

proliferation; iii) capacity to evade immune rejection; iv) capability to induce regulatory T 

cells; and v) homing potential to localize to skin after systemic administration. Although T 

cell immunosuppressive capacity is not germane to the NSG model, evidence indicates that 

PD-1 engagement with PD-L1 displayed by macrophages (and present in NSG animals) 

induces a regulatory profile characterized by activation of TLR4 downstream MAPK 

signaling pathways and resulting in a decrease in inflammatory mediators and production of 

anti-inflammatory cytokines.28 Moreover, fibroblasts in RDEB have long been known to be 

abnormally sensitive to macrophage-derived factors with regard to collagenase production 

involved in lesion evolution and severity29 While these pathogenic observations and related 

speculation are preliminary, and require confirmation and mechanistic validation, they 

provide proof-of-principle for further studies deploying human immunomodulatory cells in 

this novel NSG RDEB model system. In particular, although murine ABCB5+ cells have 

been demonstrated to home to skin,24 we were unable to document the presence of human 

ABCB5+ cells at the timepoints examined in this study. This is consistent with the transient 

nature of transplanted MSCs, and follow-on mechanistic studies examining human ABCB5+ 

cell homing and localization post-delivery will be necessary to maximize therapeutic 

outcome. Furthermore, it will be of interest to explore the therapeutic capacity of ABCB5+ 

cells in an immunocompetent setting. The ability of ABCB5+ cells to evade immune 

rejection and suppress T-cell based inflammation suggests a strong potential for therapeutic 

benefit, not only in an immunocompetent setting but also potentially in allogeneic settings as 

an off-the-shelf cellular intervention.

In sum, we have shown that the CRISPR/Cas9 system is a highly efficient method for 

generating disease model mice on the immunodeficient NSG background conducive to 

experiments using human cell xenotransplantation. We show that, in the case of Col7a1, a 

lower dose of CRISPR/Cas9 is preferable to obtain viable animals harboring mono-allelic 

frameshift mutations for subsequent breeding, while the increased frequency of pups 

presenting with RDEB at higher doses allows for reproducible, temporally-controlled 

production of large numbers of biallelic knockout animals suitable for transplantation 

experiments. Importantly, we show the utility of CRISPR/Cas9-mediated knockout in 

studying strain-specific differences in disease pathology. This is particularly relevant in 

RDEB and may explain discrepancies in the results obtained across independent studies in 

different research labs. Finally, the capability to rapidly produce large numbers of knockout 

animals allowed us to identify a novel therapeutic modality based on the immunomodulatory 

ABCB5+ cell population, where transient modulation of the underlying inflammatory 

response, with particular reference to macrophage inhibition, could be a complementary 

approach to reducing RDEB pathology. Considering the ease with which the CRISPR/Cas9 
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system can be programmed to disrupt discrete genomic loci, we envision that this strategy 

can be rapidly deployed to produce virtually any disease model on the NSG background.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CRISPR/Cas9-based disruption of type VII collagen by embryo injection
(a) Strategy using the CRISPR/Cas9 nuclease system to produce Col7a1−/− NSG mice. 

CRISPR guide RNA and Cas9 mRNA are injected into cytoplasm of single-cell NSG 

embryos, which are then transferred to CD-1 pseudo-pregnant female surrogates. Upon 

birth, visibly blistered animals were used for transplantation and/or survival experiments 

while the non-blistered animals were kept for genotyping and subsequent breeding colony 

establishment. (b) First coding exon of murine Col7a1. To maximize the frequency of 

frameshift mutations, two gRNAs (green text) were designed to cut near each other within 

first coding exon. Start codon in red, PAM sequences in orange. Cut site indicated by red 

triangle. (c) Surveyor assay from transient transfection used to validate the nuclease assay of 

each gRNA. Red triangles indicate the Surveyor cleavage products.
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Figure 2. Phenotypic manifestations of RDEB in CRISPR/Cas9 knockout NSG mice
(a) Phenotypic manifestations of RDEB in Col7a1−/− NSG mice. Neonatal mice exhibit 

blistered paws shortly after birth, followed by formation of the more severe blisters and open 

wounds characteristic of skin fragility. (b) Immunofluorescence staining of type VII 

collagen expression in Col7a1−/− NSG mice. Cross-sections of skin and esophagus in wild-

type and knockout neonates showing the absence of type VII (red) in the esophageal 

membrane and at the dermal-epidermal junction in skin. (c) Representative patterns of 

Col7a1 mutations produced by CRISPR/Cas9 nuclease activity after embryo injection. 

Indels are observed at both gRNA target sites independently and simultaneously. gRNA-

spanning deletions are also observed.
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Figure 3. Immunomodulation alleviates RDEB pathology
(a) Survival of Col7a1−/− NSG (n=15) and immune-competent C57BL/6 (n=10) mice, 

created by CRISPR/Cas9 embryo injection (P<0.0001). (b) Survival of Col7a1−/− NSG mice 

infused with ABCB5+ cells (n=17) versus control (n=8, P=0.01). (c) Immunofluorescence 

staining for type VII collagen (red) in the mice living past 60 days (long-term survivor, 

LTS). (d) Immunofluorescence staining of murine CD68+ macrophages within the dermis of 

Col7a1−/− control (top row), wild-type (middle row), and Col7a1−/− treated with ABCB5+ 

cells (bottom row). Left column are sections stained for mouse CD45 (green), middle for 

mouse CD68 (red), and right column are images merged with DAPI nuclear stain. (e) 

Quantification of intradermal CD68+ macrophages by immunofluorescence staining in 

neonatal NSG mice (*P<0.05).

Webber et al. Page 12

Lab Invest. Author manuscript; available in PMC 2018 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Webber et al. Page 13

Ta
b

le
 1

N
SG

 e
m

br
yo

 in
je

ct
io

n 
da

ta
 b

y 
C

R
IS

PR
/C

as
9 

do
se

.

D
os

e
In

je
ct

ed
Im

pl
an

te
d

P
up

s
%

V
ia

bi
lit

y
B

lis
te

re
d

N
on

-
bl

is
te

re
d

%
K

O

L
ow

18
8

14
4

35
24

%
12

23
34

%

M
ed

30
3

23
1

39
16

%
27

12
69

%

H
ig

h
50

5
34

8
79

22
%

66
13

83
%

H
ig

h 
(B

6)
21

5
13

0
36

27
%

27
9

75
%

Lab Invest. Author manuscript; available in PMC 2018 March 11.


	Abstract
	MATERIALS AND METHODS
	CRISPR reagents
	Mice
	Embryo injections
	Survival experiments
	ABCB5+ cell isolation
	ABCB5+ cell transplantation
	Immunohistochemistry and microscopy
	Statistics

	RESULTS
	DISCUSSION
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1

