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Abstract

The transcription elongation factor TFIIS is encoded by a three member gene family in verte-

brates. Here we show that one member of this family, TCEA3, is upregulated during skeletal

muscle differentiation and acts to promote gene activation by the myogenic regulatory family

of transcription factors, which includes MyoD and myogenin. We show that myogenin is a

direct regulator of Tcea3. Myogenin binds to the Tcea3 promoter and is required to recruit

RNA polymerase II. TCEA3 can bind to both myogenin and MyoD and is co-recruited with

the MRFs to promoters dependent on the MRFs. Depletion of myogenin inhibits the recruit-

ment of TCEA3, suggesting that the interaction of TCEA3 with the MRFs serves to aid in

recruitment to target promoters. Like TFIIS, we show that TCEA3 interacts with RNA poly-

merase II. TCEA3 travels with the elongating RNA polymerase II in the coding region of

genes and depletions of TCEA3 inhibit the recruitment of RNA polymerase II to promoters.

In proliferating cells, TCEA3 expressed at low levels and is present in both the nucleus and

cytoplasm. However, upon differentiation, TCEA3 is upregulated and transported exclu-

sively to the nucleus. Thus, our data show that TCEA3 is a required co-factor for MRF driven

gene expression during myogenesis.

Introduction

TFIIS is a transcription elongation factor conserved through the eukaryotic linage. In verte-

brates; including frog, mouse and human, TFIIS is represented by a gene family which

includes TCEA1, TCEA2 and TCEA3 [1]. TCEA1 is the gene most closely related to the sole

TFIIS present in non-vertebrates and best characterized in the yeast, S. cerevisiae [2]. TCEA1 is

ubiquitously expressed and has been shown to regulate the proliferation and differentiation of

myeloid cells [3]. Recent work suggest that TCEA1 can also promote proliferation in hepatic

carcinoma cells [4]. However, the functions of the other TFIIS isoforms in normal cells or can-

cer cells are poorly defined. TCEA3 expression is tissue restricted and is known to be expressed

in intestine, heart, testis, kidney and skeletal muscle [1]. TCEA3 is also expressed in mouse
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embryonic stem cells and functions in lineage determination though regulation of the Nodal

pathway [5]. TCEA3 has also been shown to regulate the pluripotent differentiation potential

of mouse embryonic stem cells [6]. TCEA3 has also been shown to function as a tumor sup-

pressor in ovarian cancer cells [7] and promotes apoptosis in gastric cancer cells [8]. TCEA3

has recently been shown to promote the differentiation of bovine skeletal muscle cells [9].

The regulation of skeletal muscle precursor cell proliferation and subsequent fusion to form

myotubes is controlled by a group of highly related transcription factors known as the Myo-

genic Regulatory Factors (MRFs) [10]. The MRFs, which include Myf5 (Myf5), MyoD

(Myod1), Mrf4 (Myf6) and myogenin (Myog), are basic helix-loop-helix (bHLH) transcription

factors that are required for myogenesis [11].

In this study, we found that Tcea3 is directly regulated by MYOG. The upregulation of

TCEA3 upon differentiation is also correlated with a cytoplasmic to nuclear translocation of

TCEA3. TCEA3 binds to both MYOG and MYOD1 and promotes the activities of the MRFs

to activate MRF driven gene expression. TCEA3 binds to RNAPII and travels with elongating

RNAPII to promote the transcription elongation of muscle specific genes.

Material and methods

Cell culture

Proliferating C2C12 myoblasts (ATCC) were grown in Dulbecco’s modified Eagle medium

(DMEM) (Hyclone, Thermo Scientific, Waltham MA) supplemented with 10% fetal bovine

serum (Hyclone). To induce differentiation into myotubes, C2C12 cells were grown to 70%

confluence and then transferred to differentiation medium (DMEM supplemented with 2%

horse serum) (Hyclone, Thermo Scientific, Walthman MA), 10T1/2 cells (ATCC) and

HEK293 (ATCC) cells were grown in DMEM supplemented with 10% fetal bovine serum.

Cloning

TCEA3 was PCR amplified from cDNA reverse transcribed from RNA isolated from C2C12

cells differentiated for four days. The PCR amplified fragments were cloned into the pEF6/V5

His TOPO TA expression vector and clones were confirmed by sequencing.

Quantitative real time PCR

RNA extraction from cells was done using Trizol (Life Technologies, Carlsbad, CA) and

extracted RNA was treated with DNase I (Promega, Madison, WI). 2 μg of total RNA was

reverse transcribed with MultiScribe TM MuLV reverse transcriptase (LifeTechnologies,

Carlsbad, CA). 40 ng cDNA was used for quantitative polymerase chain reaction (PCR) ampli-

fication (Life Technologies, Carlsbad, CA) with 2X SYBR green PCR master mix (Life Tech-

nologies, Carlsbad, CA). Negative controls were included in samples where no reverse

transcriptase was added for each RNA sample. The relative gene expression levels were nor-

malized according to those of Hprt1 and/or 18S rRNA. Relative fold expressions were calcu-

lated using the comparative Ct method (Life Technologies, Carlsbad, CA). Standard deviations

were calculated from the mean of the ΔCt values calculated from at least three independent

RNA samples. Primers used are listed in S1 Table.

shRNA

Cells were transfected with scrambled control or Tcea3 mRNA specific shRNA constructs

designed by the RNAi Consortium (TRC) in the pLKO.1 puro vector (Open Biosystems).

Five constructs targeting Tcea3 mRNA (shTcea3) were transfected using the TurboFect
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transfection reagent (Thermo Scientific) according to manufacturer’s protocol. Protein and

RNA were harvested 48 hours post shRNA transfection or selected for stable cell lines with

puromycin (2 μg/ml). Selected colonies were grown and validated for depletion.

Western blot

Phosphate-buffered saline (PBS) was used to wash cells prior to lysing in RIPA buffer supple-

mented with protease inhibitors (Complete, Roche Diagnostics, Indianapolis, IN) and centri-

fugation was used to obtain clear lysates. Bradford’s assay (Bio-Rad, Hercules, CA) was used to

determine protein concentration. 50 μg protein was loaded for each well of sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Resolved proteins were then trans-

ferred onto a PVDF membrane using a tank blotter (Bio-Rad, Hercules, CA). Membranes

were blocked using 5% milk in 1X Tris-buffered saline plus Tween 20 (TBST) and followed by

incubation with primary antibody for overnight at 4˚C. Later, TBST (1X) was used for washing

membranes, then these membranes were incubated with the corresponding secondary anti-

body. After the incubation period, the blots were washed with 1X TBST and incubated with

chemiluminescent substrate according to the manufacture’s protocol (SuperSignal, Pierce,

Rockford, IL) and visualized by autoradiography. The antibodies used include anti-TCEA3

(T.160.5, Thermofisher Scientific), anti-MYOG (F5D, Developmental Studies Hybridoma

Bank (DSHB)), anti-GAPDH (Millipore), anti-TUBULIN (E7, DSHB), anti-MYOD1 (5.8A,

Santa Cruz Biotechnology (SCBT)), anti-RBP1 (A-10, SCBT) and anti-Myosin heavy chain

(MF-20, DSHB). GAPDH / TUBULIN blots were used as loading controls except for fraction-

ation assays where ACTIN was used as a loading control for both nuclear and cytoplasmic

fractions.

Cell transfections

Calcium phosphate transfections were performed according to standard protocols. TurboFect

Transfection Reagent (Thermo Scientific) was used according to manufacturer’s protocol. For

both, cells were allowed to grow 24 or 48 hours before harvesting RNA or protein for analysis

or selected for stable cell lines.

Chromatin immunoprecipitation (ChIP)

ChIP assays were performed and quantified as described previously [12] with the following

modifications: 1x107 cells were used for each immunoprecipitation and protein A agarose

beads (Life Technologies, Carlsbad, CA) were used to immunoprecipitate the antibody:antigen

complexes. Primers are described in S1 Table. The antibodies used for ChIP assays were anti-

TCEA3 (T.160.5) (Thermofisher Scientific), anti-MYOD1 (5.8A, SCBT), anti-MYOG (F5D,

DSHB) and anti-RPB1 (A-10, SCBT). Negative control immunoprecipitations utilized normal

anti-mouse or anti-rabbit IgG (SCBT). The real time PCR was performed in triplicate. The

results are represented as percentage of IP over input signal (% Input). All ChIP assays shown

are representative of four independent experiments. Standard deviations (S.D.) was calculated

and plotted as error bar.

Co-immunoprecipitation (Co-IP)

Whole cell extracts were made in radioimmunoprecipitation assay (RIPA) buffer. 150–300 μg

of extract was used for each immunoprecipitation. Extracts were incubated overnight with

1 μg of antibody at 4˚ C and antibody:antigen complexes were pulled down with protein A

beads (Invitrogen). Antibodies used for immunoprecipitation included anti MYOG (F5D,
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DSHB), MYOD (5.8A, SCBT) and RNAPII (A10, Santa Cruz Biotechnologies). Western blot

assays were used to check for the candidate interacting protein in each complex and the recip-

rocal factor was used to confirm the interaction. All immunoprecipitations were performed at

least three times.

Immunofluorescence

Cells were grown on cover slips, fixed with paraformaldehyde, blocked with 10% goat serum,

1.0% NP-40 in phosphate buffered saline (PBS) for one hour and washed with PBS. Primary

antibodies against myosin heavy chain (MF20, DSHB) were incubated overnight at 4˚C,

washed with PBS and detected by Alexa Fluor-488 goat anti-mouse antibody (Life Technolo-

gies). Cell nuclei were stained by incubating with 1 μM DAPI (Life Technologies) for 5 min.

Proliferation assay

4X104 cells per well were seeded in 6-well plates and harvested on the indicated day for count-

ing by hemocytometer. Cell viability was determined by using trypan blue staining. Cell count-

ing was performed in duplicate and experiments were repeated twice.

Luciferase assays

The Dual-Luciferase Reporter Assay System (Promega, Madison, WI) was used to assay for

luciferase activity. 10T1/2 cells were seeded at a density of 5X103 cells per well in 96-well plates

and transfected with 0.4 μg of DNA. Transfections were normalized to Renilla luciferase.

Transfections were performed in triplicate and all data sets were repeated at least three times.

Statistics

Data are presented as means ± standard deviation (SD). Statistical comparisons were per-

formed using unpaired two-tailed Student’s t tests, with a probability value of (p) < 0.05 taken

to indicate significance.

Results and discussion

TCEA3 is regulated by myogenin

In a microarray analysis on E14.5 murine tongue tissue from myogenin+/+ (WT) and myo-
genin-/- (Myog-/-) embryos performed to identify the genetic program controlled by MYOG,

Tcea3 was identified as downregulated in Myog-/- embryos [13]. Of the 140 genes found to be

down regulated in Myog-/- tongue tissue, Tcea3 was the 58th most down regulated gene in the

array analysis [13]. This down regulation could be a direct or indirect effect of MYOG, but the

result implied that Tcea3 was regulated by MYOG and would be up regulated during differen-

tiation. We confirmed the down regulation of Tcea3 mRNA by qRT PCR in WT and Myog-/-

tongue tissue and found that Tcea3 mRNA was down regulated in the absence of myogenin
(Fig 1A). As Tcea3 has been shown to be expressed in both heart and skeletal muscle [1], we

sought to compare the relative expression in these tissues. Robust expression of Tcea3 mRNA

was found in the heart and hind limb skeletal muscle, with skeletal muscle expressing levels

even higher than the heart (Fig 1B). We next confirmed the expression of Tcea3 in C2C12

cells, an immortal murine cell line commonly used as a model for myogenesis. We found that

Tcea3 mRNA was expressed in C2C12 cells and, as anticipated, that Tcea3 was upregulated

upon differentiation at the level of mRNA (Fig 1C) and protein (Fig 1D).

TCEA3 promotes myogenesis
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Fig 1. TCEA3 is regulated by myogenin. A Tcea3 mRNA expression in E14.5 tongue tissue was quantified by qRT-PCR. B.

Tcea3 mRNA expression was quantified in 6W heart and hindlimb tissues by qRT-PCR. Data were normalized to the expression

of Hprt1. C. TCEA3 expression increases upon differentiation. Time course analysis of Tcea3 mRNA expression in C2C12 cells

subjected to differentiation for the specified number of days (D) by qRT PCR. UD represents undifferentiated. D. Cells as in C.

were assayed by western blot with indicated antibodies. E. C2C12 cell lines were transfected with shRNA constructs against

TCEA3 promotes myogenesis
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Myogenin directly regulates TCEA3

Tcea3 was identified as downregulated upon the loss of myogenin in vivo. To confirm these

results in C2C12 cells, we transiently depleted myogenin mRNA (shMyog) from C2C12 cells

using shRNA constructs [12]. The depletion of MYOG confirmed at the protein level (Fig 1E).

We found that with the depletion of MYOG, TCEA3 was also severely deregulated (Fig 1E).

This result confirmed that MYOG directly or indirectly regulates TCEA3. To determine if

MYOG directly activates Tcea3, we examined the Tcea3 promoter for potential MRF binding

sites. The MRFs bind to E-boxes with the consensus sequence of CANNTG and can also bind

noncanonical binding sites [14, 15]. We found a noncanonical E-box immediately upstream of

the Tcea3 transcription start site that was identified by rVISTA as a MYOD1 binding site. In

the first intron of Tcea3, rVISTA identified a consensus E-box (Fig 1F). To determine if

MYOG bound to either of these potential binding sites, we performed ChIP assays for MYOG

using primers to detect the potential binding elements in either in the promoter or the first

intron. We found that MYOG binds to the Tcea3 promoter and the first intron of Tcea3, show-

ing that MYOG directly binds the Tcea3 promoter (Fig 1G) and first-intron (Fig 1H). To con-

firm that myogenin was required for Tcea3 mRNA expression, we performed ChIP assays for

RNAPII in C2C12 cells depleted for myogenin (shMyog). We found that RNAPII recruitment

to the Tcea3 promoter and first intron were reduced when myogenin was depleted (Fig 1I

and 1J).

Depletion of TCEA3 downregulated muscle specific genes and impaired

differentiation in C2C12 cells

To understand the role of TCEA3 in skeletal muscle, we depleted Tcea3 in C2C12 cells using

shRNA constructs (shTcea3). C2C12 cells were transfected with plasmids containing shTcea3,

and stable clones were selected and screened to identify clones that were depleted for TCEA3.

To first confirm that TCEA3 was depleted, we examined gene expression in independent

clones of C2C12 cells transfected with shTcea3 and found that Tcea3 mRNA was down regu-

lated (Fig 2A). Next, we assayed for TCEA3 protein expression and found that TCEA3 protein

was depleted as well (Fig 2B). As TCEA3 had been implicated in cell growth and differentiation

in cancer cells, we asked if the depletion of TCEA3 affected proliferation. Cell growth analysis

was performed and the growth curve showed that loss of TCEA3 decreased the proliferation

rate of C2C12 cells (Fig 2C).

To determine how TCEA3 affected myogenic differentiation, the TCEA3 depletion lines

were induced to differentiate. The results from both lines were very similar and only the results

from one line are shown here. The depletion of TCEA3 was confirmed at the mRNA (Fig 2D)

and protein level (Fig 2E) throughout the differentiation time course. We found that the cells

did not appear to fuse and form myotubes normally by bright field microscopy (Fig 2F). To

confirm this result, immunofluorescence using antibodies against myosin heavy chain, a

marker for myogenic differentiation, was performed. No myotubes were observed in the

TCEA3 depleted cells and myosin heavy chain positive cells were greatly reduced when

Myog (shMyog) or the scrambled control (scr) and assayed by western blot analysis with indicated antibodies. F. Schematic of

the Tcea3 promoter. Transcription start site is labeled as +1. G—H. MYOG binds to the Tcea3 promoter. ChIP assays were

performed on C2C12 cells differentiated for 2 days with antibodies against myogenin and primers against E boxes present in the

Tcea3 promoter (-131 to -126) (G) and the first intron (+816 to +822) (H). I-J. Loss of MYOG inhibits RNAPII recruitment to

the Tcea3 promoter. ChIP assays were performed on cells as in E. with antibodies against RPB1, the largest subunit of RNAPII

and primers against E boxes present in the Tcea3 promoter (I) and first intron (J). All graphs represent three independent

experiments. S.D. represents the error bars, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0217680.g001
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Fig 2. Depletion of TCEA3 impairs both proliferation and differentiation in C2C12 cells. A. Independent C2C12 cell lines expressing

shRNA against Tcea3 (shTcea3) and scrambled control (scr) were selected and analyzed by qRT-PCR. Data were normalized to the expression

of Hprt1. B. Cells in A. were analyzed by western blot with the indicated antibodies. C. Tcea3 depleted cells were assayed for proliferation. D-E.

Tcea3 depleted cells were differentiated for the indicated number of days and analyzed by qRT-PCR (D) and western blot assays (E).F. Tcea3
depleted cells were differentiated for six days (D6). Images are bright field at 100X. G. Immunohistochemistry with antibodies against myosin

TCEA3 promotes myogenesis
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compared to myosin heavy chain positive cells in cells transfected with scr vector control (Fig

2G). We also examined the expression of myosin light chain, phosphorylatable, fast skeletal
muscle (Mylpf) mRNA and found that it was highly downregulated in the absence of TCEA3

(Fig 2H). To confirm that these effects were the result of the absence of TCEA3, we rescued the

expression of TCEA3 in the C2C12 cells depleted for TCEA3 using a TCEA3 expression con-

struct. We found that expression of TCEA3 restored TCEA3 expression and rescued the

expression of MyHC (Fig 2I). Skeletal muscle cells express both TCEA3 and TCEA1, and our

results indicate that TCEA1 cannot compensate for the loss of TCEA3. It was also possible that

loss of TCEA3 would repress Tcea1. To test this, we assayed for the expression of Tcea1
mRNA in TCEA3 depleted cells and found that Tcea1 mRNA was not downregulated in the

absence of TCEA3 (Fig 2J), suggesting that TCEA1 is present, but cannot compensate for the

loss of TCEA3. Together, these data indicate that TCEA3 is required for normal cell prolifera-

tion and skeletal muscle differentiation.

TCEA3 promotes muscle specific gene expression

We next asked if additional MRF dependent gene expression was dependent on TCEA3. Levels

of actin 1 (Acta1), leiomodin 2 (Lmod2) and troponin I, skeletal, fast 2 (Tnni2) mRNA were

examined by qRT-PCR in C2C12 cells depleted for TCEA3 and we found that all three genes

were highly down regulated (Fig 3A). 10T1/2 cells, a fibroblast cell line that can be induced to

express muscle specific genes upon expression of the MRFs[16] were used for this assay. The

expression of TCEA3 had not been examined in these cells, so we first sought to determine if

TCEA3 was expressed in these cells. mRNA expression for TCEA1 and TCEA3 was examined

in 10T1/2 cells and C2C12 cells, and we found that while C2C12 and 10T1/2 cells contained

roughly equivalent levels of TCEA1 mRNA, C2C12 cells, even in the undifferentiated state,

contained significantly higher levels of TCEA3 (Fig 3B). To understand how TCEA3 impacted

gene activation mediated by MYOG and MYOD1, a muscle specific luciferase reporter was

used. The promoter construct used had been previously characterized as highly dependent on

MYOG in vivo and contained a promoter element of murine leiomodin 2 (Lmod2; base pairs

−10 to −458) [13]. 10T1/2 cells were transfected with the Lmod2 luciferase reporter and expres-

sion constructs for MYOG, MYOD1 and TCEA3. We found that transfection with TCEA3

enhanced activation of the Lmod2 luciferase reporter and TCEA3 also acted as an inducer of

activation by MYOG and MYOD1 (Fig 3C).

To determine if TCEA3 could promote endogenous muscle specific gene expression, we

assayed for the effects of TCEA3 on muscle-specific genes in 10T1/2 cells, which do not nor-

mally express these genes. 10T1/2 cells were transfected with MYOG, MYOD1, and TCEA3

individually, and in combination. Genes chosen for analysis were Lmod2, Tnni2, Mylpf and

Acta1. Gene expression of each of these genes is dependent on the MRFs. It is noteworthy that

Tcea3 was upregulated itself upon transfection with MYOD1 or MYOG, confirming the regu-

lation of TCEA3 by the MRFs (Fig 3D). We found that transfection of TCEA3 modestly

induced muscle-specific gene activation and also acted as a co-activator for both MYOG or

MYOD1 (Fig 3D). The modest activation of muscle specific genes by TCEA3 in the absence of

the MRFs was intriguing, as it suggested that TCEA3 might have an MRF independent role in

heavy chain (MHC) was performed on cells as in F. DAPI was used to stain the nuclei. H. Gene expression of Mylpf mRNA in a time course of

differentiation for Tcea3 depleted cells and scr control. I. Restoration of TCEA3 restores differentiation in Tcea3 depleted cells. Tcea3 depleted

cells were transfected with an expression construct for TCEA3 (pTCEA3), differentiated for two days and used for western blot analysis with the

indicated antibodies. J. TCEA1 is not downregulated with the depletion of TCEA3. Cells in A. were analyzed by qRT-PCR for Tcea1 mRNA at

the indicated timepoints. S.D. represents the error bars, ���p<0.001.

https://doi.org/10.1371/journal.pone.0217680.g002
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Fig 3. TCEA3 induces MRF activity. A. Tcea3 depleted cells (shTcea3) and scr control were differentiated for four days and analyzed for

MRF dependent gene expression by qRT-PCR. B. TCEA3 is not highly expressed in 10T1/2 cells. mRNA expression of TCEA1 and TCEA3

were assayed by qRT-PCR in 10T1/12 cells and C2C12 cells (UD). C. TCEA3 induces the activity of MYOG and MYOD1 on muscle-specific

luciferase reporter constructs. 10T1/2 cells were transiently transfected with the indicated constructs. Values are represented with respect to a

luciferase vector with no promoter (pGL3 basic). pGL3(+) represents a luciferase vector with an SV40 promoter. Lmod2-luc is a MRF

TCEA3 promotes myogenesis
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gene activation. It was also possible that TCEA3 might promote MRF gene activation. To test

this, we examined the expression of MYOD1 in 10T1/2 cells transfected with expression con-

structs for TCEA3 or MYOD1. mRNA expression was compared to the mRNA expression

normally seen in undifferentiated C2C12 cells. We found that TCEA3 does modestly induce

MYOD1 expression, but not to the levels seen upon MYOD1 expression or normally seen in

C2C12 cells (Fig 3E). The modest activation of MYOD1 is consistent with the modest activa-

tion of muscle specific genes seen with the sole expression of TCEA3, suggesting that the acti-

vation is through the MRFs and that TCEA3 acts in a feed forward loop to promote expression

of the MRFs which regulate its own transcription. Taken together, these results support that

TCEA3 functions as a co-factor of MRF driven gene expression.

TCEA3 interacts with MYOG and MYOD1

Our results showed that TCEA3 acted as a co-activator for MYOD1 and MYOG. To under-

stand the basis for this effect, we asked if TCEA3 could interact with MYOD1 or MYOG using

co-immunoprecipitation assays (co-IP). We expressed both exogenous TCEA3 and MYOG in

HEK293 cells by transfection with expression constructs for both proteins. Whole cell lysates

were immunoprecipitated with antibodies against MYOG, the associated complex was isolated

and used for western blot assays with antibodies against TCEA3 to assay for the interaction.

We found that TCEA3 was immunoprecipitated with MYOG (Fig 4A). Antibodies against

TCEA3 were used to confirm the immunoprecipitation (Fig 4A). Because our results had

shown that TCEA3 promoted the activity of MYOD1 and MYOG, we also if TCEA3 interacted

with MYOD1. The co-IP was repeated with expression constructs for TCEA3 and MYOD1,

using antibodies against MYOD1 for the immunoprecipitation and we found that TCEA3 also

interacted with MYOD1, suggesting that TCEA3 interacts with both MRFs (Fig 4B). To con-

firm that the interaction could be observed with endogenous proteins, we repeated the co-

immunoprecipitation in differentiated C2C12 cells. Whole cell lysates were immunoprecipi-

tated with antibodies against MYOG and the associated complex was used for western blot

assays with antibodies against TCEA3. We found that endogenous TCEA3 was immunopre-

cipitated with MYOG in C2C12 cells (Fig 4C).

TCEA3 recruitment to promoters is dependent on myogenin

We had found that TCEA3 both interacted with the MRFs and promoted MRF dependent

gene activation. To understand the mechanism by which TCEA3 promoted MRF dependent

gene activity, we asked if TCEA3 bound to MRF dependent gene promoters. Myogenin
(Myog), which is regulated by MYOD1, was used as an MRF dependent promoter in this assay.

We also examined the enrichment of TCEA3 to the Lmod2 and Tnni2 promoters, as we had

shown that these genes were downregulated upon the depletion of TCEA3. ChIP assays were

used to assay for the binding of TCEA3 and we found that TCEA3 was bound to the promoters

of Myog, Lmod2 and Tnni2 (Fig 4D).

Our results showed that TCEA3 both interacted with MYOG and was recruited to MYOG

dependent genes. Thus, we asked if the recruitment of TCEA3 to muscle-specific genes was

dependent on MYOG. ChIP assays for TCEA3, MYOD1 and MYOG were performed on

dependent luciferase vector. D. TCEA3 enhances endogenous MRF target gene expression. 10T1/2 cells were transfected with expression

constructs for MYOG, MYOD and TCEA3 as indicated and gene expression was determined by qRT-PCR. Data were normalized to the

expression of Hprt1. E. TCEA3 modestly activates MYOD1. Cells in D. and undifferentiated C2C12 cells (UD) were assayed for MYOD1

mRNA by qRT-PCR. S.D. represents the error bars, ��p<0.01 ���p<0.001.

https://doi.org/10.1371/journal.pone.0217680.g003
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C2C12 cell lines depleted for MYOG. We found that, as anticipated, depletion of MYOG

reduced the binding of both MYOD1 and MYOG to the Tnni2 promoter (Fig 4E). We also

found that the promoter binding of TCEA3 was significantly decreased upon the depletion of

MYOG (Fig 4E). These data suggest that MYOG is required for TCEA3 binding to the pro-

moter of Tnni2.

To understand if this recruitment was reciprocal, we also asked if TCEA3 promoted the

recruitment of MYOD1 and MYOG to the Tnni2 promoter by ChIP assays. Reduced recruit-

ment of MYOD1 and MYOG on the Tnni2 promoter was observed in TCEA3 depleted cells

(Fig 4F). The results show that TCEA3 cooperates with the MRFs to regulate muscle specific

gene expression.

Fig 4. TCEA3 interacts with MYOG and MYOD1. A-B. Expression constructs for TCEA3 and MYOG or MYOD1 were co-transfected into HEK293 cells and

immunoprecipitated with antibodies against MYOG (A) or MYOD1 (B). Immunoprecipitation was detected with antibodies against TCEA3. Cell extract is labeled Ext.

C. Differentiated C2C12 cell extract (D4) was immunoprecipitated with antibodies against MYOG and detected with antibodies against TCEA3 and MYOG. D. TCEA3

binds to MRF dependent genes. ChIP assays were performed with antibodies against TCEA3 and primers to MRF dependent promoters as indicated. E. Myogenin

recruits TCEA3 to promoters. ChIP assays were performed on C2C12 cells depleted for Myog (shMyog) and scr control with antibodies against TCEA3, MYOG and

MYOD1. S.D. represents error bars and #p<0.05 (vs IgG) ��p<0.01, ���p<0.001 as indicated. F. TCEA3 depletion decreases the binding of myogenin on a muscle-

specific gene promoter. ChIP assays were performed in C2C12 cells depleted for Tcea3 (shTCEA3) and scr control with antibodies against TCEA3, MYOG and MYOD1.

S.D. represents error bars and #p<0.05 (vs IgG) ��p<0.01, ���p<0.001 as indicated.

https://doi.org/10.1371/journal.pone.0217680.g004
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TCEA3 binds to RNAPII and travels with RNAPII during transcript

elongation

As TCEA3 is a member of the TFIIS family, we asked if TCEA3 binds to RNAPII as does

TFIIS. TCEA3 has been shown to promote transcript cleavage by RNAPII [1], strongly sug-

gesting that TCEA3 does interact with RNAPII. However, TCEA3 is most divergent in the

linker region of TFIIS, which has been the region of TFIIS shown to be required for the inter-

action [17]. RNAPII was immunoprecipitated from C2C12 cells and we found that TCEA3

was immunoprecipitated as well (Fig 5A).

Next, we asked if TCEA3 travelled with RNAPII during elongation by ChIP assays. We

found that TCEA3 co-localized with RNAPII and could be found at the promoter and

throughout the coding region of Tnni2. This recruitment could be observed in proliferating

C2C12 cells, when Tnni2 was not highly expressed (Fig 5B). However, the recruitment of both

RNAPII and TCEA3 was greatly enhanced in C2C12 cells after six days of differentiation,

when Tnni2 is highly expressed (Fig 5C). Thus, the recruitment of TCEA3 positively correlated

with the enrichment of RNAPII and the transcription activity of the gene.

Finally, we asked if TCEA3 affected the recruitment of RNAPII to MRF dependent promot-

ers. ChIP assays were performed in C2C12 cells depleted for TCEA3. We found that the

recruitment of RNAPII was inhibited in the absence of TCEA3 (Fig 5D). As anticipated, the

recruitment of TCEA3 was also reduced upon TCEA3 depletion. Our data suggest that TCEA3

promotes RNAPII recruitment to the promoters of muscle specific genes and that TCEA3 trav-

els with the elongating RNAPII to promote productive elongation.

TCEA3 translocates to the nucleus upon differentiation

TCEA3 has recently been shown to promote differentiation and myotube fusion [9], consistent

with the results shown here. In this previous study, TCEA3 was shown to be localized primar-

ily in the cytoplasm [9]. This was surprising to us as our results strongly suggested a nuclear

function. To address this question, we examined the cellular localization of TCEA3 in both

proliferating C2C12 cells and in differentiated C2C12 cells by immunofluorescence. In prolif-

erating cells, we saw that TCEA3 was present at low levels in both the cytoplasm and nucleus

(Fig 6A). However, upon differentiation, TCEA3 underwent an upregulation in expression

and a dramatic cytoplasmic to nuclear translocation which left TCEA3 undetectable in the

cytoplasm (Fig 6A).

To confirm this result, we also fractionated cytoplasmic and nuclear extracts in C2C12 cells

before and after differentiation and probed the extracts for TCEA3 and markers to confirm

the fractionation. We observed a decrease in cytoplasmic TCEA3 and an increase of nuclear

TCEA3 upon differentiation (Fig 6B).

In summary, our results show that the level of TCEA3 expression increases during differen-

tiation and that TCEA3 translocates to the nucleus upon differentiation; further supporting its

role as a transcription elongation factor which induces muscle differentiation in normal skele-

tal muscle cells (Fig 6C).

In this work, we show that TCEA3 enhances skeletal muscle differentiation by promoting

MRF dependent gene expression. TCEA3 had previously been shown to promote myogenesis

in bovine satellite cells, but was shown to be localized to the cytoplasm [9]. This work has

recently been expanded to C2C12 cells showing that TCEA3 is localized to the cytoplasm and

promotes differentiation [18]. This localization was difficult to rectify with the identification of

TCEA3 as a member of the TFIIS transcription elongation factor family. Here, we show that

TCEA3 is localized to the cytoplasm and nucleus in proliferating cells, but translocates to the
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Fig 5. TCEA3 binds to RNAPII, promotes the recruitment of RNAPII and travels with elongating RNAPII. A.

TCEA3 binds to RNAPII. Cell extracts from C2C12 cells differentiated for 2 days (D2) were immunoprecipitated with

antibodies against RPB1, the largest subunit of RNAPII. The western blot was probed with antibodies against TCEA3

and RPB1. Cell extract is labelled Ext. B. ChIP assays were performed on proliferating C2C12 cells (UD) with

antibodies against TCEA3 and RNAPII and detected with primers corresponding to the promoter, intron-1 and
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nucleus upon differentiation. This finding reconciles our work with the previously reported

studies and supports a common function in vertebrates.

TCEA3 has been shown to interact with cytoplasmic annexin A1 [18], which is also known

to promote differentiation [19]. Annexin A1 regulates TGF-ß signaling [20] and TCEA3 was

shown to regulate the TGF-ß pathway through annexin A1 [18]. We show that TCEA3

depleted cells have a reduced proliferation rate, and the interaction with annexin A1 and the

TGF-ß pathway may underlie this defect. TCEA3 is present in the cytoplasm during prolifera-

tion and the interaction with annexin A1 and the proliferation defect strongly suggests that

TCEA3 functions in both the cytoplasm and nucleus to regulate both the proliferation and dif-

ferentiation of skeletal muscle cells.

Conclusions

We found that TCEA3 is directly regulated by myogenin, which upregulates TCEA3 upon dif-

ferentiation. TCEA3 is then recruited to MRF dependent genes through interactions with

MYOD1, MYOG and RNAPII and enhances RNAPII recruitment to promoters. TCEA3 then

travels with RNAPII along the coding region of the gene. Thus, TCEA3 is a previously unde-

scribed co-factor in MRF dependent gene activation. Our data shows that TCEA3 both

contributes to RNAPII recruitment to promoters as well as travels with RNAPII during elon-

gation, suggesting that TCEA3 contributes to enhancing elongation by RNAPII. Recombinant

Xenopus proteins representing the three TFIIS family members have been shown to cleave

RNA in a stalled RNAP II elongation complex [1], suggesting that all three family members

can function as transcription elongation factors. It is intriguing that skeletal muscle expresses

TCEA3, which is the most divergent from the other two TFIIS family members in the linker

region that was the region shown to interact with RNAPII [17]. Given this difference, we antic-

ipated that TCEA3 might not interact with RNAPII, but our data clearly show that TCEA3 can

interact with RNAPII. It is possible that the longer linker region in TCEA3 allows for addi-

tional interactions that promote its activity, such as the interactions with MYOG and MYOD1.

TCEA3 has also been shown to be a target of P53, where TCEA3 then contributes to activation

of selective P53 targets such Bax, but not Cdkn1a (p21) [21]. These interactions may also func-

tion in skeletal muscle, but it is intriguing that our results suggest a similar regulatory circuit,

with MYOG activating TCEA3 which then promotes MYOG activation of gene targets.

We also see that TCEA3 can modestly promote the activation of MYOD1, which activates

MYOG. Thus, TCEA3 reinforces its own expression through this feed forward loop. Our

results also suggest that maintaining productive elongation by RNAPII is a critical function in

myogenesis. While genome wide gene expression was not assayed, every MYOG dependent

gene examined in this study was severely down regulated in the absence of TCEA3, suggesting

that the ability to overcome transcriptional arrest sites is required for many muscle specific

gene coding units. Skeletal muscle cells also express the ubiquitous TCEA1, but clearly TCEA3

seems to have unique function as a MYOG dependent co-factor for the MRFs in promoting

skeletal muscle differentiation that cannot be compensated for by additional transcription

elongation factors such as TCEA1. The translocation of TCEA3 upon differentiation is

intron-5 of Tnni2. S.D. represents error bars and #p<0.05 (vs IgG). C. ChIP assays were performed as in B. on C2C12

cells following differentiation for 6 days (D6). D. TCEA3 promotes the recruitment of RNAPII. ChIP assays were on

C2C12 cells depleted for Tcea3 or scr control following 2 days of differentiation (D2) with antibodies against TCEA3

and RNAPII and primers against the Tnni2 promoter. S.D. represents error bars #p<0.05(vs IgG) ��p<0.01,
���p<0.001 as indicated.

https://doi.org/10.1371/journal.pone.0217680.g005
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Fig 6. TCEA3 translocates to the nucleus upon differentiation. A. TCEA3 localization in C2C12 cells during proliferation (UD) and after 4 days of differentiation (D4).

Immunofluorescence was performed with antibodies against TCEA3. Nuclei were stained with DAPI. Images were taken at 400x magnification. Scale bars represent

25 μm. B. Both nuclear (NE) and cytoplasmic (CE) fractions of proteins were extracted from proliferating (UD) and differentiated (D6) C2C12 cells and probed for

TCEA3, LAMIN A/C (loading control for nucleus), TUBULIN (loading control for cytoplasm) and ACTIN. C. Model for the function of TCEA3 in myogenesis. During

early differentiation, TCEA3 levels are low and TCEA3 is present in the nucleus and cytoplasm. Upon differentiation, MYOG levels increase and induce Tcea3, which

translocates to the nucleus and enhances MRF driven gene expression by promoting RNAPII recruitment and elongation.

https://doi.org/10.1371/journal.pone.0217680.g006
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intriguing and suggests that this an additional mechanism to prevent precocious activation of

the MRFs and assure precise control of myogenic differentiation.
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