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ABSTRACT
Social epigenomics is an emerging field in which social scientist collaborate with computational 
biologists, especially epigeneticists, to address the underlying pathway for biological embedding 
of life experiences. This social epigenomics study included long-term childhood cancer survivors 
enrolled in the St. Jude Lifetime Cohort. DNA methylation (DNAm) data were generated using the 
Illumina EPIC BeadChip, and three social determinants of health (SDOH) factors were assessed: 
self-reported educational attainment, personal income, and an area deprivation index based on 
census track data. An epigenome-wide association study (EWAS) was performed to evaluate the 
relation between DNAm at each 5’-cytosine-phosphate-guanine-3’ (CpG) site and each SDOH 
factor based on multivariable linear regression models stratified by ancestry (European ancestry, 
n = 1,618; African ancestry, n = 258). EWAS among survivors of European ancestry identified 130 
epigenome-wide significant SDOH–CpG associations (P < 9 × 10−8), 25 of which were validated in 
survivors of African ancestry (P < 0.05). Thirteen CpGs were associated with all three SDOH factors 
and resided at pleiotropic loci in cigarette smoking–related genes (e.g., CLDND1 and CPOX). After 
accounting for smoking and body mass index, these associations remained significant with 
attenuated effect sizes. Seven of 13 CpGs were associated with gene expression level based on 
57 subsamples with blood RNA sequencing data available. In conclusion, DNAm signatures, many 
resembling the effect of tobacco use, were associated with SDOH factors among survivors of 
childhood cancer, thereby suggesting that biologically distal SDOH factors influence health 
behaviours or related factors, the epigenome, and subsequently survivors’ health.
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Introduction
Social and behavioural epigenomics is an emerging 
transdisciplinary field that investigates how social 
determinants of health (SDOH) and health beha
viours modulate the human epigenome and thus 
influence health and wellness [1,2]. Among var
ious epigenetic modifications, DNA methylation 
(DNAm) has been the most widely studied; multi
ple groups have reported significant associations 
between DNAm and socio-economic status (SES) 

[1,3–7], educational attainment [8,9], and health 
behaviours [10]. These findings support the 
hypothesis that DNAm is a potential underlying 
mechanism for biological embedding of life 
experiences, including physiologically distal 
SDOH factors and more directly relevant health 
behaviours. Previous studies have identified varia
tions of DNAm across the methylome related to 
SDOH factors that resemble variations seen 
among persons who engage in smoking, risky or 
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heavy alcohol consumption, or who are obese 
[5,8,9,11,12]. Moreover, findings demonstrate 
that associations between some of these DNAm 
variations and educational attainment remain sig
nificant after accounting for known risk factors 
such as smoking, thereby suggesting traces of 
other exposures for less-educated people [8,9]

Epigenetic signatures provide insight into the 
mechanistic underpinnings of the link between 
SES and chronic disease risk [6]. Heritability ana
lyses have shown an approximately 18% variance 
of DNAm between monozygotic and dizygotic 
twins, but this difference decreased as the twins 
aged, implying that non-genetic factors, including 
SES, might influence DNAm [13,14]. A recent 
study showed persistent epigenetic ageing and dif
ferentially methylated loci among adolescent/ 
young adult Hodgkin lymphoma survivors com
pared to their unaffected twins [15].

A recent epigenetic analysis of peripheral blood 
samples from long-term survivors of childhood can
cer participating in the St. Jude Lifetime Cohort Study 
(SJLIFE) found that specific cancer treatments are 
associated with variations in DNAm decades after 
exposure [16,17]. Moreover, a subset of treatment- 
associated DNAm 5’-cytosine-phosphate-guanine-3’ 
(CpG) sites was also significantly associated with car
diometabolic risk, and hence potentially mediated 
treatment-related toxicities leading to chronic health 
conditions [16]. Although intensive treatment expo
sures would be expected to leave persistent epigenetic 
signatures within a survivor’s methylome, socio- 
economic and behavioural factors during the person’s 
life-course may also have an enduring impact on his/ 
her DNAm.

To our knowledge, no social epigenomic studies 
investigated the links between SDOH factors and 
potential epigenetic modifications in survivors of 
childhood cancer. To fill this gap, we employed 
a comprehensive epigenome-wide approach to 
identify DNAm CpGs associated with three 
SDOH factors (i.e., educational attainment, perso
nal income, and area SES deprivation). These fac
tors may influence the health disparity of 
childhood cancer survivors who have different 
racial backgrounds [18] and were taken into con
sideration based on the data availability in the 
SJLIFE survey and missingness of available vari
ables. In addition, we annotated these CpGs with 

associated traits (exposures or outcomes) catalo
gued in the EWAS Atlas [19].

Methods

Study population

SJLIFE is a retrospective hospital-based cohort 
study of 5-year survivors of childhood cancer 
with prospective clinical follow-up [20]. During 
periodic follow-up visits, survivors reported 
social/demographic information based on stan
dard questionnaires and underwent comprehen
sive, systematic clinical assessments. Among the 
SJLIFE participants, epigenome-wide DNAm pro
filing data were available for 2,052 survivors of 
European ancestry and 370 survivors of African 
ancestry. For the current report, we excluded sur
vivors younger than 25 years of age (n = 533) who 
may have not yet completed their education (e.g., 
college or post-graduate degree). In addition, we 
excluded outliers from principal components ana
lysis (PCA) of genotypes (n = 13) to ensure a rela
tively homogenous population substructure in the 
analytic data set. The remaining 1,876 survivors 
(1,618 of European ancestry and 258 of African 
ancestry) were included in the final analysis. All 
survivors were deemed free of childhood cancer 
(survival ≥10 years from cancer diagnosis) and 
fewer than 0.5% of SJLIFE survivors experienced 
subsequent haematologic malignancies, as of the 
most last follow-up [21].

Social determinants of health

The SDOH factors of cancer survivors at personal 
and neighbourhood levels were collected before or 
at the same time as the blood draw for DNAm 
analysis. The personal-level SDOH factors 
included educational attainment and personal 
annual income as reported in SJLIFE surveys. 
Personal educational attainment was categorized 
into five levels (below high school, high school or 
training after high school, some college, college 
graduate, and post-graduate), and personal annual 
incomes was categorized into five levels (none, < 
$20,000, $20,000 to $40,000, $40,000 to $60,000, 
and ≥$60,000 [U.S. dollars]). Neighbourhood 
social determinants included area SES deprivation 
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for each survivor by using the Area Deprivation 
Index (ADI), which consists of 17 neighbourhood- 
based SES measures, including income, employ
ment, education, and housing status, mainly col
lected from the American Community Survey 
[22,23]. Participants’ residential addresses were 
geocoded using geographic identifiers from the 
U.S. Census Bureau, which were then linked to 
the national ADI file. These measures present dis
advantaged SES and physical environment by cen
sus blocks in the U.S.A., and each census block 
receives a percentile ranking, with minimum dis
advantage in the first percentile and maximum 
disadvantage in the 100th percentile. For ADI, we 
considered >75th percentile, 40th to 75th percentile, 
and <40th percentile as high, moderate, and low 
SES deprivation area, respectively.

BMI and smoking

At each follow-up examination, the height and 
weight of the SJLIFE participant was measured. 
BMI of survivors was calculated as weight (kg) 
divided by height (m) squared (kg/m2). 
According to the standardized classification of 
the World Health Organization, BMI was categor
ized as <18.5, 18.5 to <25.0, 25.0 to <30.0 and 
≥30.0 kg/m2. BMI was considered a health beha
viour–related factor [24,25]. Smoking status was 
assessed based on self-reported questionnaires at 
each follow-up visit and categorized as non- 
smoker versus former or current smoker. BMI 
and smoking status at the same or closest date of 
blood draw for DNAm analysis were used in the 
current analysis.

DNA methylation profiling and analysis

DNAm data were generated using MethylationEPIC 
BeadChip and analysed as previously described 
[16,26]. In brief, methylation raw intensity data 
were analysed in R (version 3.6.1) using the minfi 
package [27]. M-values (logit transformation of β- 
value) were calculated and subsequently used as the 
dependent variable of regression analyses [28]. 
Houseman’s method was used to estimate leukocyte 
cell subtype proportions (monocyte, granulocyte, 
CD4 + T cells, CD8 + T cells, natural killer cells, 
and B cells) [29,30]. A PCA of DNAm data was 

performed to quantify latent structures or batch 
effects (Supplementary Figure 1). We used the 
array annotations (GRCh38 version) provided by 
Illumina (San Diego, CA) to map probes to their 
corresponding genes.

RNA-sequence profiling and data processing

All RNA-sequencing libraries underwent 151-cycle 
paired-end sequencing on the Illumina NovaSeq 
6000 System. Sequencing reads were mapped to 
the GRCh38 build using STAR [31]. Read counts 
by gene were generated using HTSeq [32], and 
genes with read counts fewer than 10 were 
excluded. Transcript per million (TPM) reads 
were further calculated, and log2(TPM+0.01) 
values were quantile-normalized using Limma 
[33]. The processed gene-by-sample data matrices 
were used to quantify the gene expression level in 
further statistical analyses.

Statistical analyses

To illustrate the rationale underlying our model
ling approaches, we have provided a conceptual 
framework for the social epigenomics study in 
survivors of childhood cancer (Supplementary 
Figure 2). We hypothesized poor SDOH as 
‘upstream exposures’ and risky health behaviours 
or related factors as ‘downstream exposures’ that 
influence epigenetic mechanisms (e.g., DNAm) 
and regulate gene expression, which ultimately 
affects health outcomes. Survivors of European 
ancestry (n = 1,618) and those of African ancestry 
(n = 258) were analysed separately, with the for
mer designated as the primary dataset and the 
latter as the exploratory dataset due to its limited 
sample size. The EWAS analysis for the association 
between methylation level at each CpG site 
(dependent variable) and each SDOH factor (inde
pendent variable) was conducted using multiple 
linear regressions with covariate adjustments 
including sex, attained age, specific cancer treat
ment exposures (chemotherapy agents and radia
tion therapy sites), leukocyte-subtype proportions, 
significant genetic principal components based on 
genotypes derived from existing whole-genome 
sequencing [34] and methylation principal compo
nents (model 1). Health behaviours and related 
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factors (smoking and BMI) were also adjusted to 
evaluate the contribution of each SDOH factor on 
the DNAm level independent of health behaviours 
and related factors (model 2). However, because 
health behaviours and related factors are poten
tially intermediate variables and on the causal path 
from SDOH factors to DNAm, to avoid over 
adjustment [35], we started with epigenome-wide 
significant results from model 1 as the primary 
results but retained only those CpGs satisfying 
P < 0.05 after Bonferroni correction in model 2. 
We further conducted a meta-analysis of SDOH 
EWAS among survivors of African ancestry and 
those of European ancestry to provide overall evi
dence of epigenetic association with SDOH factors 
and evaluations for potential heterogeneity in epi
genetic association with SDOH factors between the 
two ancestral groups by using I2 and P-value (Phet) 
calculated from the Cochran’s Q statistic [36]. All 
analyses were repeated considering an alternative 
modelling scheme for SDOH factors in which each 
factor was classified as one of two groups (i.e., 
a binary variable): high school and above vs. others 
for educational attainment; none vs. others for 
personal income; and >75% vs. others for ADI. 
We used R package CpGassoc [37] for the linear- 
regression analysis and P < 9 × 10−8 as the epigen
ome-wide significance threshold [38]. EWAS 
results were visualized using circos plots (Circos 
v.0.69) [39]. Using the EWAS Atlas, we annotated 
the significant CpGs in our current EWAS [19]. 
A linear-regression model was fit for the associa
tion between the expression level of each gene and 
the DNAm level of a CpG site while adjusting for 
age and sex. The Spearman correlations across 
each paired SDOH factors were illustrated by 
a heatmap plot. Differentially methylated region 
(DMR) analysis was performed using the ipDMR 
method [40]. Potential gene-environment interac
tions between single-nucleotide polymorphisms 
(SNPs) (within 1-Mb window) and SDOH factors 
for DNAm of CpGs were examined using multiple 
linear regression (DNAm = β0 + β1 × SNP + β2 
× SDOH + β3 × SNP × SDOH + other covariates) 
with multiple testing correction by the Benjamini- 
Hochberg method. All statistical analyses were 
performed using R.3.6.3 [41] or SAS 9.4 (SAS 
Institute Inc., Cary, NC) and all statistical tests 
were two-sided.

Results

Characteristics of the study population

General characteristics, SDOH factors, and clinical 
features, including primary cancer diagnoses and 
treatment information, for the study population 
are provided in Table 1. Study participants included 
childhood cancer survivors of African ancestry 
(n = 258; median time between cancer diagnosis to 
blood draw for DNAm = 25.2 years, interquartile 
range [IQR] = 19.9–32.1 years) and European ances
try (n = 1,618; median time between cancer diag
nosis to blood draw for DNAm = 27.3 years, 
IQR = 21.1–33.7 years). For participants of African 
ancestry, the median age at primary cancer diagno
sis was 9.6 (IQR = 4.2–14.4) years and that at blood 
draw for DNAm was 33.9 (IQR = 29.4–39.6) years; 
for participants of European ancestry, the ages were 
9.0 (IQR = 3.8–14.4) years and 35.3 (IQR = 30.3– 
42.1) years. The proportion of participants who 
were female was 53.1% or 40.4% in those of 
African or European ancestry, respectively. More 
than 60% of participants were overweight (BMI 
25.0 to <30 kg/m2, 29.5% in African ancestry and 
29.2% in European ancestry) or obese (BMI ≥30 kg/ 
m2, 32.2% in African ancestry and 32.6% in 
European ancestry). A higher proportion of partici
pants of European ancestry was smokers compared 
to that of participants of African ancestry (41.8% 
versus 29.8%, P < 0.0001). The three SDOH factors 
were significantly different between survivors of 
African ancestry and those of European ancestry, 
with those of African ancestry having lower educa
tional attainment (P < 0.0001), lower personal 
annual income (P < 0.0001), and residing in neigh
bourhoods with more disadvantaged socio- 
economic and physical environment, as measured 
by ADI (P < 0.0001). Furthermore, SDOH factors 
showed weak correlations with each other (| 
Spearman’s correlation| <0.4, Supplementary 
Figure 3).

Association of smoking and BMI with SDOH 
factors among survivors of European ancestry

Smoking behaviour was associated with educa
tional attainment with a significant trend across 
five categories (P < 2.2 × 10−16). Most (67.9%) 
survivors with less than a high school education 

1392 N. SONG ET AL.



were current of former smokers, as compared to 
28.9% of college graduates and 14.5% of post- 
graduates (Table 2). Smoking behaviour was also 
associated with personal income with ever 

smokers ranging between 39.3% and 51.7% and 
a significant trend across five categories 
(P = 8.5 × 10−5). Smoking was associated with 
ADI, and the ever smokers were 29.0%, 39.1%, 

Table 1. Characteristics of study participants.
African-ancestry European-ancestry

Pa

(N = 258) (N = 1,618)

n (%) n (%)

General characteristics
Sex 0.05
Female 137 (53.1%) 654 (40.4%)
Male 121 (46.9%) 761 (47.0%)
Body mass index (BMI), kg/m2 0.84
<18.5 9 (3.5%) 47 (2.9%)
18.5-<25.0 67 (26.0%) 469 (29.0%)
25.0-<30.0 76 (29.5%) 472 (29.2%)
≥30.0 83 (32.2%) 527 (32.6%)
Unknown 23 (8.9%) 103 (6.4%)
Median BMI (IQR) 27.8 (23.3–33.0) 27.2 (23.5–32.3) 0.27
Smoking <0.0001
Non-smokers 181 (70.2%) 941 (58.2%)
Past smokers 19 (7.4%) 278 (17.2%)
Current smokers 45 (17.4%) 355 (21.9%)
Unknown 13 (5.0%) 44 (2.7%)
Age at primary diagnosis, years
Median (IQR) 9.6 (4.2–14.4) 9.0 (3.8–14.4) 0.85
Age at blood draw, years
Median (IQR) 33.9 (29.4–39.6) 35.3 (30.3–42.1) 0.03
Time from diagnosis to blood draw, years
Median (IQR) 25.2 (19.9–32.1) 27.3 (21.1–33.7) 0.03
Social determinants of health
Educational attainment <0.0001
Below high school 39 (15.1%) 137 (8.5%)
High school or training after high school 50 (19.4%) 277 (17.1%)
College 84 (32.6%) 401 (24.8%)
College graduate 49 (19.0%) 478 (29.5%)
Post-graduate 12 (4.7%) 179 (11.1%)
Unknown 24 (9.3%) 146 (9.0%)
Personal annual income, US dollars <0.0001
None 38 (14.7%) 143 (8.8%)
<$20,000 113 (43.8%) 502 (31.0%)
$20,000-<40,000 53 (20.5%) 442 (27.3%)
$40,000-<60,000 19 (7.4%) 256 (15.8%)
≥$60,000 35 (13.6%) 275 (17.0%)
Area deprivation index, national rankb

Median (IQR) 80.0 (56.0–91.5) 56.0 (36.0–76.0) <0.0001
Clinical characteristics
Primary cancer diagnosis <0.0001
Leukaemia 50 (19.4%) 548 (33.9%)
Lymphoma 57 (22.1%) 639 (39.5%)
Central nervous system tumour 27 (10.5%) 136 (8.4%)
Other 124 (48.1%) 295 (18.2%)
Chemotherapy
Alkylating agents 146 (56.6%) 973 (60.1%) 0.28
Anthracyclines 122 (47.3%) 931 (57.5%) 0.002
Corticosteroids 85 (32.9%) 791 (48.9%) <0.0001
Epipodophyllotoxins 63 (24.4%) 501 (31.0%) 0.03
Platinum 38 (14.7%) 151 (9.3%) 0.008
Vincristine 158 (61.2%) 1,159 (71.6%) 0.0007
Radiation therapy site
Brain 72 (27.9%) 525 (32.4%) 0.15
Chest 81 (31.4%) 513 (31.7%) 0.92
Abdomen/pelvis 76 (29.5%) 391 (24.2%) 0.07
Abbreviations: IQR (interquartile range)

aChi-square test for categorical variables, Student’s t-test for continuous variables, and Wilcoxon rank sum test for ranked variables. 
bNational rank in percentiles 
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and 50.3% for survivors with low, intermediate, or 
high SES deprivation, respectively. Similarly, BMI 
was associated with educational attainment and 
ADI but not with personal income (Table 2).

Association of DNAm sites with SDOH factors 
among survivors of European ancestry

The association p-values are shown in the circos plot 
for three series of EWAS analyses among survivors of 
European ancestry (Figure 1). Quantile-Quantile plots 
for the distribution of observed and expected p-values 
for EWAS between DNAm CpG sites and SDOH 
factors showed moderately low genomic inflation fac
tors between 1.20 and 1.35 with adjustments for 
genetic and methylation principal components, as 
compared to much higher genomic inflation factors 
(1.71–3.87) without such adjustments 
(Supplementary Figure 1). We identified 130 

epigenome-wide significant SDOH–CpG associations 
(Supplementary Table 1), including educational 
attainment (n = 88), personal income (n = 23), and 
ADI (n = 19). Thirteen significant DNAm CpGs 
(cg01731783, cg08840017, cg00385142, cg18754985, 
cg08064403, cg05659611, cg19859270, cg04180924, 
cg00010201, cg02978227, cg02657160, cg05575921, 
cg26768182) were associated with all three SDOH 
factors and mapped to five genomic regions on chro
mosomes 2, 3, 5, 9, and 14 harbouring genes, including 
GPR55, CLDND1, CPOX, GPR15, AHRR, PRRC2B, 
and ELMSAN1, which previously have been reported 
as associated with smoking exposures (Table 3). After 
we adjusted for BMI and smoking, all 13 CpGs 
remained statistically significant (P < 0.05) but with 
attenuated effect sizes for educational attainment 
(mean effect sizes remaining = 36.8% of the effect 
sizes unadjusted for BMI and smoking, range = 30.8%- 
48.8%), personal income (mean = 48.3%, 

Table 2. Association of smoking and BMI with SDOH factors among survivors of European ancestry.

SDOH

Smoking

Total N Smokers N (%) Non-smokers N (%) P for trenda

Educational attainment <2.2E-16
Below high school 137 93 (67.9) 44 (32.1)
High school or training after high school 277 136 (49.1) 141 (50.9)
College 401 200 (49.9) 201 (50.1)
College graduate 478 138 (28.9) 340 (71.1)
Post-graduate 179 26 (14.5) 153 (85.5)
Personal annual income, US dollars 8.50E-05
None 143 74 (51.7) 69 (48.3)
<$20,000 502 234 (46.6) 268 (53.4)
$20,000-<40,000 442 183 (41.4) 259 (58.6)
$40,000-<60,000 256 78 (30.5) 178 (69.5)
≥$60,000 275 108 (39.3) 167 (60.7)
Area deprivation index, national rank in percentiles 4.70E-09
<40 393 114 (29.0) 279 (71.0)
40–75 611 239 (39.1) 372 (60.9)
>75 332 167 (50.3) 165 (49.7)
SDOH BMI

Total N BMI≥25 N (%) BMI<25 N (%) P for trenda

Educational attainment 3.90E-05
Below high school 130 88 (67.7) 42 (32.3)
High school or training after high school 262 190 (72.5) 72 (27.5)
College 379 265 (69.9) 114 (30.1)
College graduate 463 290 (62.6) 173 (37.4)
Post-graduate 175 91 (52.0) 84 (48.0)
Personal annual income, US dollars 1.40E-01
None 135 77 (57.0) 58 (43.0)
<$20,000 470 317 (67.4) 153 (32.6)
$20,000-<40,000 431 275 (63.8) 156 (36.2)
$40,000-<60,000 251 177 (70.5) 74 (29.5)
≥$60,000 229 153 (66.8) 76 (33.2)
Area deprivation index, national rank in percentiles 3.80E-06
<40 386 223 (57.8) 163 (42.2)
40–75 585 394 (67.4) 191 (32.6)
>75 321 238 (74.1) 83 (25.9)
Abbreviations: BMI (body mass index), SDOH (social determinant of health)

aChi-square test for trend 
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range = 38.5%-58.8%), and ADI (mean, 43.3%, 
range = 35.1%-61.5%). In the model for each SDOH 
factor adjusted for BMI and smoking, there were 
epigenome-wide significant associations between edu
cational attainment and cg04180924 (chr3, CPOX, 
P = 2.0 × 10−8), cg04885881 (chr1, intergenic, 
P = 1.3 × 10−9), cg06359375 (chr22, HPS4, 
P = 2.0 × 10−8) and a significant association between 
personal income and cg04180924 (chr3, CPOX, 
P = 5.4 × 10−9). No single CpG reached an epigenome- 
wide significant level for ADI.

Functional implication of SODH-associated CpG 
sites

Based on the RNA sequencing data available for 57 
samples, we calculated the expression quantitative 
methylation (eQTM) for each pair of the 13 CpGs 
and mapped genes (Table 3 and Supplementary 
Table 2). Three pairs, including cg00385142 
(CLDND1), cg18754985 (CLDND1), and 
cg05575921 (EXOC3), were significant in survivors 
and were previously known cis-eQTMs (https:// 
genenetwork.nl/biosqtlbrowser/). However, the 

Figure 1. Circos plot for epigenome-wide association studies of SDOH factors among survivors of European ancestry.
Outer circle (red): EWAS for educational attainment; middle circle (green): EWAS for personal annual income; inner circle (blue): 
EWAS for area deprivation index. Each dot depicts -log10 p-value for each DNAm CpG site mapped to a chromosome location along 
the genome. The black lines indicate the epigenome-wide significance level (P = 9 × 10−8).Abbreviations: Epigenome-wide 
association studies (EWAS), social determinants of health (SDOH) 
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following four known cis-eQTMs were not statis
tically significant in our study: cg19859270 
(CPOX), cg19859270 (CLDND1), cg02657160 
(CLDND1), and cg02657160 (CPOX). Another 
four pairs [cg08064403 (CLDND1), cg05659611 
(CLDND1), cg19859270 (GPR15), and 
cg00010201 (CPOX)] were significant in survivors 

but have not been catalogued in the aforemen
tioned biosqtl database.

Regional association with the peak and neigh
bouring CpGs was illustrated with coMET plot 
for all five genomic regions (Figure 2 and 
Supplementary Figure 4). Nine CpGs mapped 
to the chr3 region (Table 3) and were moderately 

Figure 2. Regional association plots for DNAm CpG sites at chromosome 3 associated with SDOH factors.
Significant epigenome-wide CpGs (n = 9) are labelled in red text.Abbreviation: 5’-cytosine-phosphate-guanine-3’ (CpG), Social 
determinants of health (SDOH) 
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correlated with pairwise Pearson correlation 
coefficients ranging between 0.48 and 0.73. 
Figure 2 highlights four CpGs (cg00385142, 
cg18754985, cg05659611, and cg08064403) that 
were eQTMs for CLDND1, one CpG 
(cg19859270) was an eQTM for GPR15, and 
another (cg02657160) was an eQTM for CPOX. 
We also performed PANTHER pathway analysis 
but did not find any significant biological path
way with the overrepresentation test based on the 
group of genes to which all significant CpGs 
were mapped.

Comparison to previously established findings in 
the EWAS catalogue

To determine whether the SDOH-associated CpGs 
identified in the current study have been pre
viously associated with diseases or traits 
(Supplementary Table 3), we cross-referenced 
the EWAS Atlas. In the EWAS Atlas, a total of 
101 associations between blood-based DNAm at 
47 CpGs and 24 traits were reported at epigen
ome-wide significance level (P < 9 × 10−8). Across 
traits, smoking had the highest number of asso
ciated CpGs (n = 35), followed by ageing (n = 8) 
and educational attainment (n = 7). Among the 
CpGs associated with SDOH factors in our analy
sis, cg05575921 was associated with the highest 
number of different traits (n = 12), followed by 
cg21566642 (n = 10) and cg01940273 (n = 9). 
Among the 88 CpGs associated with educational 
attainment in the current study, 15 overlapped 
with findings from two previous EWAS studies 
of educational attainment: detailed association 
results for 37 CpGs identified in one study and 
58 CpGs identified in the other study were pro
vided in the current study (Supplementary 
Table 4).

Association of DNAm sites with SDOH factors 
among survivors of African ancestry

EWAS analyses were performed in survivors of 
African ancestry, and no DNAm CpGs reached 
epigenome-wide significance level (P < 9 × 10−8) 
due to the limited sample size. However, we 
assessed the 130 SDOH–CpG associations of gen
ome-wide significance found in survivors of 

European ancestry in survivors of African ancestry 
for comparison (Supplementary Table 5). Among 
the 130 SDOH–CpG associations, 26 were vali
dated in survivors of African ancestry (P < 0.05), 
which included 15 for educational attainments, 
eight for personal income, and three for ADI.

Secondary analyses including Meta-EWAS, 
dichotomous SDOH classifications, differentially 
methylated regions, and gene-SDOH interactions

Meta-analysis of SDOH EWAS among survivors of 
African ancestry and those of European ancestry 
showed a total of 448 epigenome-wide significant 
SDOH–CpG associations (Supplementary 
Table 6); 118 reached the epigenome-wide signifi
cance level among survivors of European ancestry 
alone and were included as one of the 130 SDOH– 
CpG associations listed in Supplementary 
Table 1. Notably, 88 (19.6%) associations demon
strated at least moderate heterogeneity with 
I2 > 50% between two-ancestral groups. We also 
considered an alternative modelling scheme for 
SDOH factors by classifying each factor into two 
groups (i.e., a binary variable). Meta-EWAS results 
based on the dichotomous SDOH classifications 
showed fewer epigenome-wide significant 
SDOH–CpG associations (n = 65) 
(Supplementary Table 7). DMR analysis identi
fied 330, 27, and 32 novel associations with educa
tional attainment, personal income, and ADI, 
respectively (Supplementary Table 8). We exam
ined potential gene-SDOH interactions for DNAm 
of CpGs within 130 epigenome-wide significant 
SDOH–CpG associations and identified three sta
tistically significant (FDR <0.05) interactions 
between 3 SNPs (rs77289732, rs2470852, and 
rs2470835) and personal income for DNAm level 
of cg08064403 and between five SNPs 
(rs142403317, rs149398072, rs112330421, 
rs12242855, and rs12255625) and educational 
attainment for cg22543377, after correction for 
multiple testing by the Benjamini-Hochberg 
method (Supplementary Table 9).

Discussion

This first social epigenomic study conducted 
among survivors of childhood cancer examined 
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the associations between SDOH factors and 
DNAm. We demonstrated 130 SDOH–CpG asso
ciations for educational attainment, personal 
income, or ADI at epigenome-wide significance. 
However, we found far fewer CpGs than those 
previously associated with cancer treatment expo
sures (n = 935) [16,17], and no sites overlapped. 
The absolute values of effect size for associations 
between CpGs and SDOH factors (mean = 0.027, 
SD = 0.023) was significantly smaller than those 
for associations between CpGs and intensive can
cer treatment modalities (mean = 0.11, 
SD = 0.059). Of the three SDOH factors we exam
ined, educational attainment was the most infor
mative with 88 significant CpG associations.

Most of the SDOH-associated CpGs mapped 
to genes known to have DNAm associated with 
smoking exposure, suggesting that social and 
behavioural exposures to lower educational 
attainment, lower income, and a higher SES- 
disadvantaged neighbourhood resemble the effect 
of tobacco use. Specifically, smoking influences 
the expression or DNAm of GPR15 [42], CPOX 
[43], and CLDND1 [44], suggesting that these 
gene-environment interactions are implicated 
along the mechanistic pathway of SDOH factors 
and health outcomes. This evidence supports our 
hypothesized framework in which social adver
sity is more of a distal exposure factor, whereas 
smoking or any other health behaviour is more 
of a proximal factor related to health outcomes. 
Notably, these CpGs remained significant after 
adjusting for smoking and BMI, though the aver
age effect sizes were smaller than the unadjusted 
effect sizes for educational attainment, personal 
income, and ADI, respectively. Moreover, most 
effect sizes were very small (<5%) with a few up 
to as high as 13%.

The study’s overall findings are consistent with 
our hypothesis, and the consensus in the field that 
health behaviours or health behaviour–related fac
tors are the key mediating mechanism between 
distal social milieu of health and health outcomes 
[45–47]. Furthermore, some of our robust findings 
were not related to smoking exposures. For exam
ple, cg06359375 was uniquely associated with edu
cational attainment (but no personal income or 
ADI) at the epigenome-wide significant level, 
with no attenuation for the effect size after 

adjusting for BMI and smoking. This CpG is 
mapped to the HPS4 gene, which was previously 
associated with cognitive function [48].

DNAm associations with educational attain
ment do not necessarily imply anything about 
cognitive function but can be proxies for SES, as 
well as all the associated stressors and comorbid
ities that accompany lower SES. The effects on 
cognitive function cannot be disentangled from 
other social status confounders, such as stress 
and health behaviours, that are also linked with 
lower educational attainment.

In non-cancer populations, two large EWAS for 
SDOH factors have been conducted that specifi
cally addressed educational attainment [8,9]. One 
large meta-analysis including 27 cohort studies 
and 10,767 individuals of European ancestry iden
tified 37 CpGs associated with educational attain
ment in the basic model with nine CpGs 
remaining in the model adjusted for BMI and 
smoking status (P < 9 × 10−8). The other meta- 
analysis with four cohorts and 4,152 individuals 
from the Netherlands identified 58 CpGs that were 
associated with educational attainment, and nine 
CpGs remained significant (P < 9 × 10−8) after 
adjusting for smoking.

The current study identified 130 CpGs asso
ciated with SDOH factors including 88 educational 
attainment related CpGs, of which only 15 were 
previously identified as CpGs for educational 
attainment (Supplementary Table 10), suggesting 
that substantial differences exist in the methylome 
and its relations with educational attainment 
between a cancer survivor population and the gen
eral population. This was further supported by 
previously established eQTMs in the general popu
lation that were not significant in survivors. To the 
contrary, we observed strong eQTMs that were not 
in the biosqtl database.

The observed differences in DNAm associations 
with educational attainment between cancer survi
vors and individuals in the general population may 
have arisen from survivors’ experience of cancer 
and its treatment in childhood. For instance, we 
speculate that cancer survivors are more resilient 
to disadvantages associated with lower educational 
attainment due to having overcome extreme diffi
culties associated with childhood cancer. Financial 
hardship associated with childhood cancer may 
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impede survivors from attaining higher education, 
and those who achieve higher education under 
financial hardship may be exceptionally resource
ful/successful.

We did not find any significant biological path
ways in PANTHER pathways, with the overrepre
sentation test based on the group of genes to 
which all significant CpGs were mapped. 
Biological pathways underpinning the SES influ
ences that increase survivors’ vulnerability to 
adverse health outcomes have not been deter
mined and epidemiological research has thus far 
yielded only weak and inconsistent evidence on 
the epigenetics of early-life stress [49]. However, 
according to a biological embedding of childhood 
adversity model, childhood stress can be pro
grammed into macrophages through epigenetic 
markings, post-translational modifications, and 
tissue remodelling [50]. This could stimulate 
immune cells to mount an excessive inflammatory 
response to microbial challenges associated with 
insensitivity to inhibitory hormonal signals, result
ing in a chronic inflammatory state in the body 
[50]. Moreover, several studies have supported 
that SES is biologically embedded by showing 
that low SES across the life course is associated 
with a blunted pattern of diurnal cortisol produc
tion [51], higher level of allostatic load [51], 
increased inflammatory activity [52–54], and 
higher pathogen burden [55,56].

Our study has four central limitations. First, the 
sample size of the survivors of African ancestry 
was too small to identify ancestry-specific epige
netic associations with SDOH factors, but 20% 
(26/130) of the epigenome-wide significant CpGs 
among survivors of European ancestry were vali
dated in the survivors of African ancestry. It is 
important to note that the observed difference of 
SDOH-associated CpGs across ancestral groups 
may be explained by different sociocultural/envir
onmental experiences in addition to genetics. We 
performed the ancestry-stratified analysis, instead 
of a pooled analysis, because we found that the 
DNAm levels for many CpG sites significantly 
differed between survivors of African ancestry 
and those of European ancestry. Specifically, 
54,125 CpGs were significantly associated with 
ancestry at the epigenome-wide significance level 
(P < 9 × 10−8) with a substantial genomic inflation 

factor (λ = 5.32). To supplement our ancestry- 
stratified analysis, we further conducted a meta- 
analysis to combine the summary statistics from 
two stratified results, by following the same analy
tic strategy used in a recently published multi 
ethnic EWAS [57].

Second, our analysis was based on a cross- 
sectional study design, which does not allow 
assessment of a temporal sequence to establish 
the causality. Furthermore, we did not have 
data on the survivors’ childhood SDOH factors, 
such as their parents’ educational attainment 
and income and childhood home addresses to 
calculate the ADI, all of which potentially affect 
DNAm throughout their childhood and influ
ence their current (adult) SES. Ideally, DNAm 
measured at two time points several years apart 
for the same set of survivors would enable 
a more rigorous assessment of the effect of 
baseline SDOH factors (or change of SDOH) 
on the changes of DNAm between the two 
time points.

Third, we found fewer CpGs that were significantly 
associated with income or ADI than were associated 
with educational attainment. This probably reflects 
the fact that educational attainment is a relatively 
stable SDOH factor, compared to income and ADI, 
which most likely change over the course of survivor
ship. Therefore, it may be difficult to capture their 
associations with DNAm in this cross-sectional ana
lysis. In addition, we had significant missingness for 
the variables of household income and household size 
in our data set, so we chose personal income as the 
variable for SDOH modelling. It is important to note 
that personal income does not always reflect the 
poverty of the survivor (e.g., a survivor having high 
household income may have zero or low personal 
income because he/she does not work for financial, 
health, or other reasons), and hence the total number 
of significant epigenetic associations with personal 
income in our study appeared to be low and should 
be interpreted with caution.

Fourth, our evaluation of the functional impli
cation of SDOH-associated CpGs was based on 
a small set of samples that included RNA- 
sequencing data. We tried to circumvent this lim
itation by identifying and comparing the eQTMs 
in the public database. Future expanded analysis is 
needed to confirm or refute the eQTM findings.
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In summary, DNAm signatures, many resem
bling the effect of tobacco use, were associated 
with SDOH factors among survivors of childhood 
cancer, suggesting that biologically distal SDOH 
factors influence heath behaviours and modulate 
the human epigenome. Although disentangling 
mechanistic pathways remains challenging, future 
longitudinal studies with SDOH factors and 
DNAm measured at multiple time points may 
facilitate the causal inference.
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