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Abstract: As one of the most promising technologies for next-generation mobile platforms, Aug-
mented Reality (AR) has the potential to radically change the way users interact with real envi-
ronments enriched with various digital information. To achieve this potential, it is of fundamental
importance to track and maintain accurate registration between real and computer-generated objects.
Thus, it is crucially important to assess tracking capabilities. In this paper, we present a benchmark
evaluation of the tracking performances of some of the most popular AR handheld devices, which
can be regarded as a representative set of devices for sale in the global market. In particular, eight
different next-gen devices including smartphones and tablets were considered. Experiments were
conducted in a laboratory by adopting an external tracking system. The experimental methodology
consisted of three main stages: calibration, data acquisition, and data evaluation. The results of the
experimentation showed that the selected devices, in combination with the AR SDKs, have different
tracking performances depending on the covered trajectory.

Keywords: mobile augmented reality; simultaneous localization and mapping (SLAM); tracking
accuracy; benchmarking; Apple ARKit; Google ARCore

1. Introduction

In recent years, several improvements in computer technology have opened up a wide
range of new possibilities in the field of immersive technologies, which can be applied to
a plethora of different contexts. Immersive systems, which include Augmented Reality
(AR), Virtual Reality (VR), and Mixed Reality (MR), have led to new ways of perceiving the
real-world environment by creating exciting experiences for many people around the world.

Among them, AR is a key technology that enriches the real world with contextualized
virtual computer-generated information by offering users real-time interaction possibil-
ities [1,2]. Thanks to these capabilities, AR technologies have been adopted in many
application areas such as gaming, entertainment, medicine, marketing, the military, and in
particular, in the industrial field where AR has been demonstrated to be a valuable tool for
improving and accelerating product and process development [3–13].

In general, an augmented scenario needs to achieve high accuracy in regard to the
positioning of the virtual content in the real-world environment to create the illusion
of seamless integration. To this end, AR solutions require an accurate built-in tracking
system to track the position and orientation of the user with respect to the physical world;
this is one of the most important AR tasks [14]. Essentially, tracking techniques can be
classified according to two main approaches: sensor-based and visual-based [15–17]. The
first approach uses data provided by active sensors mounted on the device itself, such as
GPS, accelerometers, gyroscopes and magnetometers to track the user’s pose. Conversely,
the visual-based approach exploits computer vision methods by means of images captured
by the device camera that are analyzed at run-time. In particular, this approach can be
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roughly divided into marker-based and marker-less techniques [18]. A more modern and
promising solution is hybrid tracking, which combines sensor- and visual-based approaches
to increase the quality of the pose estimation by reducing tracking errors [19,20]. Recently,
high-end mobile devices have been equipped with Laser Imaging Detection and Ranging
(LIDAR) sensors since their cost has decreased rapidly and significantly. This has permitted
the development of more accurate and robust localization tracking algorithms [21].

At the same time, the rapid development of mobile technologies, e.g., smartphones
and tablets, with increasingly powerful performances at a lower cost and application
programming interfaces have enabled the development and operation of AR applications
on these devices. This is also due to their versatility and ease of use. Among the best-known
frameworks for rapid prototyping of AR solutions, ARKit® and ARCoreTM represent the
most constantly evolving ones for iOS® and AndroidTM devices, respectively [22,23]. They
use a process called simultaneous localization and mapping (SLAM) to localize the device
in real-world coordinates. In the literature, several AR applications, which are based on
these libraries, have been proposed for different use cases [24–28]. Nevertheless, there
are no studies that address the estimation of tracking accuracy of different mobile devices
while considering AR libraries and price ranges at the same time.

On the basis of these considerations, this paper contributes to this area of research
by presenting an experimental evaluation of the tracking capabilities of some popular
mobile devices, which should be a representative set of those currently on sale in the global
market. In particular, the price range, platform, i.e., iOS® and AndroidTM, and hardware
specifications were taken into account during the selection process. In line with similar
works, an external tracking system was adopted to obtain the ground truth in order to
perform the comparison with the estimated tracking data [29–31]. More specifically, the
OptiTrackTM motion capture system was used since it uses multiple fixed IR cameras to
localize and track retro-reflective markers with high accuracy [32]. Experiments were
conducted in a laboratory room and considered multiple paths to assess the tracking
accuracy for both open and closed trajectories. The analysis of the tracking data was
performed by considering standard metrics and descriptive statistics. It is important to
note that this work has been presented in support of previous research conducted in the
industrial field where mobile AR technology has been adopted to support operators during
industrial activities [33–35].

The rest of this paper is organized as follows: Section 2 describes in detail the method-
ology adopted for the evaluation of tracking accuracy. In Section 3, the results and a
discussion are presented and the conclusions are provided in Section 4.

2. Related Works

Various research studies have included evaluations of tracking performances for differ-
ent devices and AR applications. Feigl et al. [36] studied the applicability of AR solutions,
such as ARKit, ARCore, and Microsoft HoloLens, by measuring their tracking accuracy
in an industrial scenario. They considered both small- and long-scale measurements with
different paths by acquiring the ground truth by means of an external optical system.
Hasler et al. [37] conducted a performance evaluation of an indoor mapping application by
adopting ARCore and ARKit frameworks. In [38], the authors tested the tracking accuracy
of the Microsoft HoloLens, which is a head-worn mobile AR device. Cortès et al. [39]
compared the tracking data captured by some handheld devices including iPhone, Google
Pixel, and Google Tango. As can be observed, tracking accuracy is a research topic trend in
the literature because it represents a key aspect of AR technologies that ensures they can be
used effectively. However, to the best of our knowledge, there are no specific studies that
deal with the evaluation of the tracking performance of AR mobile systems, which combine
proprietary AR frameworks, i.e., ARKit® and ARCoreTM, with different handheld devices.
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3. Materials and Methods

In this section, the methodology developed for estimating the tracking accuracy of
some popular mobile devices that are equipped with a built-in tracking system is presented.
First, a description of the mobile devices selected for the experimentation is provided.
Then, the experimental setup is presented. Next, the mathematical model implemented for
the calibration and the comparison between the estimated and ground-truth trajectories
is described. Finally, the data analysis procedure as well as the metrics adopted for the
assessment of tracking accuracy are defined.

3.1. Description of Selected Devices

For the selection of the mobile devices employed in the experiments, several aspects
were considered such as their compatibility with AR frameworks, the release date, price
range, platform, and other specific parameters related to the hardware components. First,
the choice was made by considering devices compatible with the ARKit® and ARCoreTM

frameworks, which are some of the most common AR libraries, and in turn, they are most
used in many research works [40]. In general, devices with iOS® operating system can run
AR applications developed with ARKit®, whereas apps based on ARCoreTM can be used
with AndroidTM devices. Secondly, popular mid- to high-end smartphones and tablets in
terms of prices and hardware performances, released in the first semester of 2021, were
considered since experiments were conducted in the fall of the same year. This choice was
also supported by the need to assess whether various built-in tracking systems, consisting
of inertial and optical sensors, affected the tracking accuracy. In other words, the selected
devices should be representative of the mobile global market. The following table (Table 1)
provides an overview of the main relevant specifications for each device.

Table 1. Selected mobile devices and their main specifications.

Manufacturer Device Type Price
Range Platform CPU

(GHz)
RAM
(GB)

Main
Cameras

Camera
Resolution

Release
Date

Apple iPad Pro 11 Tablet High iOS Octa-core
(4 × 2.5 + 4 × 1.6) 8 3 12 MP, 10 MP May

2021

Apple iPhone 11 Smartphone High iOS Hexa-core
(2 × 2.65 + 4 × 1.8) 4 2 12 MP May

2021

Samsung Tab S6 Tablet Medium Android Octa-core
(1 × 2.84 + 3 × 2.42+ 4 × 1.78) 4 2 13 MP, 5 MP July

2019

Samsung S20 Smartphone High Android Octa-core
(2 × 2.73 + 2 × 2.50+ 4 × 2.0) 8 3 12 MP, 64 MP March

2020

Samsung S10 Smartphone Medium Android Octa-core
(2 × 2.73 + 2 × 2.31+ 4 × 1.95) 8 3 12 MP, 16 MP March

2019

Oppo Find X3 Lite Smartphone Low Android Octa-core
(1 × 2.4 + 1 × 2.2+ 6 × 1.8) 8 4 64 MP, 8MP, 2 MP March

2021

Xiaomi MI 11 Lite Smartphone Low Android Octa-core
(2 × 2.3 + 6 × 1.8) 6 3 64 MP, 8 MP,

4 MP
March
2021

Xiaomi Redmi
Note 10 Smartphone Low Android Octa-core

(2 × 2.2 + 6 × 1.7) 4 4 48 MP, 8 MP,
2 MP

March
2021

As for price ranges, devices were categorized into three different groups: low (up to
350 euros), medium (from 350 euros to 450 euros), and high (from 450 euros to 600 euros).
Furthermore, the number and resolution of the main cameras shown in Table 1 refers to the
rear-facing ones in the mobile device.

3.2. Experimental Setup

In order to track the movements, in terms of translation and rotation, of the selected
devices while moving within the laboratory room, a specific experimental setup was
prepared as shown in Figure 1.
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Figure 1. The experimental setup used during the experimentation phase.

The experimental setup consisted of several components including the mobile de-
vice, an external tracking system connected to a desktop PC, wooden support, a vice
system, and a tripod with wheels. Since the accuracy of the built-in tracking system of
the selected devices is expected to be of the order of centimeters [36], an optical track-
ing system was adopted to capture the movements of the mobile devices and obtain the
ground truth for data comparison and analysis. To this end, the OptiTrackTM motion
capture system was used because it features high-quality tracking with sub-millimeter
accuracy [41,42]. It consisted of eight Flex13 InfraRed cameras located in the laboratory
room, which was about 25 square meters, and connected to a desktop PC with USB cables.
The PC runs the OptiTrackTM software that captures and processes the tracking data. The
cameras were placed 3 m from the floor, covering an effective capture volume of about
2.5 m × 2.5 m × 2 m to prevent object occlusions during the acquisition stage. The experi-
mental setup also comprised a wooden support, specifically designed and prototyped for
each device, and instrumented with eleven retro-reflective markers. The wooden supports
were designed in order to meet the following requirements. First, the reflecting markers
should be asymmetrical to avoid recognition issues during the tracking process performed
by the OptiTrackTM motion capture system as suggested by the producer. Secondly, eleven
different markers were considered to ensure high-stability tracking. A vice system was
used to connect the device to the support. Finally, the device and the support were mounted
on a tripod with three wheels at the bottom.

3.3. Evaluation Method

This section describes the evaluation method that have been used to assess the tracking
accuracy. In this regard, the tracking data gathered from the selected devices is compared
with the ground truth provided by the external tracking system, which is capable of esti-
mating the pose of a target with higher-order accuracy. Figure 2 depicts the mathematical
model adopted to transform the device tracking data from a local to a world reference
system, and as a consequence, allowing the comparison with the ground truth.

In particular, three main reference systems can be identified in Figure 2, i.e., {W}, {S},
{L]. The reference frame {W} represents a fixed-world coordinate system defined by the
OptiTrackTM motion capture system, and it is usually located on the floor of the room.
The reference frames {S} and {L} correspond to local coordinate systems identified by the
support and the device, respectively. Specifically, {S} and {L} are placed in correspondence
to the center of gravity of retro-reflective markers and the center of the camera, respectively.
The external tracking system is able to track the support while moving in the real world.
The homogeneous matrix W

S T(t), which is time-dependent, contains its pose in terms of
positions and orientations with respect to the {W} reference frame. On the other hand, the
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device can track its pose in the 3D space by means of the built-in tracking system, which
combines data provided by inertial and optical sensors. In this case, the device pose LP(t)
is estimated with respect to {L}, which is set when the AR application is started. During
the experimentation, the mobile device is joined to its support so that they move together.
The homogeneous matrix S

LT represents the spatial offset between the reference systems of
the support and the device. In order to compare the estimated tracking data of the device
with the ground truth gathered by capturing the motion of the support, it is necessary to
express the poses of the device LP(t) with respect to the global reference system {W} by
means of the transformation matrix W

L T(t). To this end, W P(t) can be computed through
the following formulation (Equation (1)):

W P (t) = W
S T(t) • S

LT • LP (t) (1)

A schematic overview of the evaluation framework is illustrated in Figure 3.

Figure 2. Mathematical model representation for comparing tracking data.

In particular, it consists of three main stages: calibration, data acquisition, and data
analysis, which enables the comparison of the tracking data from the device with the
ground truth.

The first stage, i.e., the calibration, aims to estimate the spatial offset that exists between
the reference frame of the support and the device when they are integral to each other.
More specifically, this is represented by the constant transformation S

LT , which has to be
computed before starting the testing phase.

The second stage, i.e., the data acquisition, consists of recording the trajectories for
both the device and the support. The first is captured by a mobile app based on AR SDK
that runs on the device itself, whereas the ground truth is recorded by means of a desktop
application connected to the OptiTrackTM software, namely, Motive.

In the third stage, the device tracking data are transformed and time-synchronized in
order to be processed and evaluated. Then, a comparison of the tracking of the device and
the external tracking system is performed by means of a script implemented in MATLAB®.
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Figure 3. A schematic overview of the evaluation framework adopted for the acquisition and
comparison of the tracking data.

3.3.1. Calibration

The spatial offset S
LT between the local reference system identified by the rigid body

markers attached to the support {S} and that relative to the device {L} has to be experimen-
tally determined by following a calibration procedure. Figure 4 shows the mathematical
model that was used to measure it.

Figure 4. Mathematical model used to estimate the spatial offset S
LT .
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On the basis of the previous schema (Figure 4), the pose of the device W P expressed in
the global reference system {W} can be calculated by means of two different equations as
follows (Equations (2) and (3)):

W P = W
S T • S

LT • LP (2)

W P = W
R T • R

MT • M
L T • LP (3)

By considering Equations (2) and (3), it follows (Equation (4)):

W
S T • S

LT • LP = W
R T • R

MT • M
D T • LP (4)

Then finally, the unknown rigid transformation matrix S
LT is obtained as follows

(Equation (5)):
S
LT = (W

S T )
−1 •W

R T • R
MT • M

L T (5)

The pose M
L T of the device relative to the AR marker can be determined by means

of the AR SDK whereas the R
MT transformation matrix consists of a combination of ele-

mentary rotation matrices to align the correspondent reference systems. In addition, this
transformation matrix can be expressed through the following equation (Equation (6)):

R
MT = Rz (180◦) ∗ Rx (90◦) (6)

Figure 5 shows the setup prepared for the calibration stage.

Figure 5. Calibration setup.

A calibration board was fixed on a tripod placed in the laboratory room. It consisted
of a marker detectable by the AR device with four retro-reflective markers placed at its
outer corners in correspondence to predefined locations. The device equipped with the
support trackable by the external tracking systems was placed in a static setting in front of
the calibration board. In addition, the pose relative to the calibration board was acquired
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ten times for each device and averaged to provide more representative data and achieve
more reliability.

3.3.2. Data Acquisition

The second stage consisted of the data acquisition process. To record the trajectories of the
device and support, two applications were programmed in Unity, which is a cross-platform
game engine for the rapid prototyping of software solutions [43]. Regarding the desktop
application, this was able to connect to the OptiTrackTM motion capture system Motive (the
optical motion capture software by OptiTrackTM) through the OptiTrackTM Unity plugin. In
the case of the mobile application, tracking data was acquired by using the specific AR SDK
of each device platform, and exported into a CSV file for offline data analysis.

Experiments were performed on multiple paths with different shapes to assess their
influence on tracking accuracy (Table 2) for both open and closed trajectories. Each test was
repeated ten times in a laboratory room by using all the selected devices.

Table 2. The three paths considered during the experimentation field.

Path
(#) Shape Length

(m) Mean Duration (S)

1 13 160

2 8 230

3 6 30

3.3.3. Preliminary Tests

With regard to the paths characterized by a closed trajectory, it is necessary to define
the number of laps that should be performed for each test, to obtain valuable results from
the experimentation. Generally, this is not known a priori, and without any solid criteria it
can lead to long-lasting experiments, especially in the case of more devices. At the same
time, it is reasonable to suppose that this quantity can be obtained in correspondence
with a stabilized tracking process. As mentioned above, AR technology adopts visual-
inertial SLAM in order to achieve a more precise local trajectory estimation through an
iterative optimization procedure. In particular, a map of the environment is produced
simultaneously with the tracking, which is used to reduce drift error accumulated during
the device movement [44,45]. This is possible thanks to the estimation of the position of
previously initialized visual features and performing a loop-closure process [46,47].

On the basis of these considerations, a series of experiments were conducted by using
a mid-end device and capturing its pose while moving along a closed trajectory over a
square-shaped path. The test consisted of 20 repetitions of 20 laps. Then, the resultant
values were averaged, and the Euclidian distance between the estimated trajectory and
ground truth was computed. Figure 6 shows the trend in the error over time, where the
error bars represent a 95% confidence interval.

The results showed that the averaged error levelled off after lap 5, and then it remains
almost constant with a mean value of 0.187 m and a standard deviation of 0.005 m. Accord-
ing to these results, it is possible to conclude that 5 laps, for each test, should be enough to
achieve high tracking stability. Therefore, a total of 10 laps were taken into consideration
for more test reliability.
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Figure 6. Translational error estimated during the preliminary experimentation for a total of 20 laps.

3.3.4. Data Analysis

The analysis of the tracking data was executed offline using a script implemented
in MATLAB®, which performs two main operations: tracking data transformation, and
time synchronization. Both operations are mandatory for performing a tracking data
comparison since they usually refer to different reference frames and are acquired from
different systems, with specific timestamps. In particular, the tracking data transformation
operation consists of a coordinate transformation process that transforms tracking data
from the device in the global reference frame {W} according to Equation (1).

Furthermore, it is important to note that the comparison between the tracking data
should be achieved by labelling the corresponding poses with a common timestamp. Thus,
the time synchronization is mandatory because the rates of sampling were different. In
this case, the OptiTrackTM captured tracking data at 4 Hz, whereas the device collected
poses at 10 Hz. To perform this temporal alignment, a specific script called FilterData has
been developed in MATLAB® to best-fit the tracking data gathered from both systems. In
particular, the synchronization methodology consists of selecting poses recorded by the
device that are the nearest to OptiTrackTM ones in terms of timestamp. This is performed
by calculating the percent error for each combination and selecting that with the minimum
error value according to the following equation (Equation (7)):

PE =

∣∣W
S T(t)−W P(t)

∣∣
W P(t)

· 100 (7)

Once the tracking data refer to the same reference frame and time-synchronized, it
is possible to perform a quantitative comparison in order to assess the tracking accuracy
for each device. As evaluation metrics, the Absolute Trajectory Error (ATE) and Relative
Pose Error (RPE), as well as descriptive statistics, were adopted since they are the most
commonly used metrics to compare trajectories with ground truth data, especially in the
case of SLAM tracking algorithms [48–50].

In particular, the ATE standard metric evaluates the global consistency of tracking
trajectories by comparing the absolute distance between the estimated tracking data, gath-
ered from the built-in tracking system of the device, and the ground truth data provided
by the external motion capture system. Once both trajectories are registered in the same
coordinate system, the ATE is calculated as the root mean square error over all time indices of
the translational components Fi as shown in the following equations (Equations (8) and (9)):

Fi =
GTT i

−1∗ DeviceTi (8)



Sensors 2022, 22, 5382 10 of 17

and as a consequence:

ATE =

√
1
n

n

∑
1
||trans(Fi)||2 (9)

Similarly, the RPE standard metric estimates the local accuracy of tracking in terms
of relative drift error between an estimated trajectory and its ground truth over a fixed
time interval. RPE is calculated as the root mean square error of translational or rotational
components as shown in the following equation (Equation (10)):

RPE =

√
1
m

m

∑
1
||trans(Ei)||2 (10)

where Ei is determined as follows (Equation (11)):

Ei =
(

GTT i
−1GTT i+∆

)−1
∗
(

DeviceT i
−1DeviceT i+∆

)
(11)

In this experiment, only the translational components were considered as suggested by
Sturm et al. [46] since rotational errors show up as translational errors during the movement
of the device.

4. Results and Discussion

In this section, the results of the experimentation and are provided and discussed. In
particular, the outcomes of the error metrics ATE and RPE are reported for each device.
Descriptive statistics as well as one-way ANOVA analysis were used to assess the effects
of different paths on the devices’ tracking accuracy. In addition, an estimation of the
reference points detected during the experiment was conducted for each path and device.
All analyses were conducted by using the statistical package Microsoft Excel and IBM®

SPSS. The statistical significance level was set at p < 0.05.
The following figure shows an example of trajectories covered by the iPad Pro considering

a single lap over the eight-shaped (Figure 7a) and square-shaped (Figure 7b) paths.
Figures 8 and 9 show the averaged ATE and RPE values of each device for the three

different paths. The vertical error bars represent the 95% confidence interval.
The results show different trends among the devices, and some of them showed

different behavior when the path was changed. It is evident from both graphs that the Find
X3 Lite device shows the highest errors for both metrics and for all the paths investigated. A
one-way ANOVA analysis was carried out in order to investigate if each individual device
behaved differently when the path was varied. The results, summarized in the following
table (Table 3), confirmed that there are statistically significant differences, and thus some
devices perform differently as the path changes.

Regarding the ATE metric, the analysis of variances revealed that six out of eight
devices showed statistically significant differences among paths, and in particular, as
confirmed by post hoc tests, between the eight-shaped trajectory and the other two paths,
i.e., square- and U-shaped. A similar result was also obtained for the RPE metric for which
it was found that there are four statistically significant differences between the performance
obtained from the eight-shaped path and the other two ones. Furthermore, with regard to
the square- and U-shaped paths, the results of the ANOVA post hoc tests show that there
are no statistically significant differences in eight out of eight cases for the ATE metric, and
in six out of eight cases for the RPE metric.

As a consequence, it is possible to assert that, on the whole, the mobile devices behave
in the same way on the square- and U-shaped paths, and in addition, that overall, for both
metrics, the majority of devices perform differently on the eight-shaped path compared
to the other two ones. In particular, the results of a one-way ANOVA analysis carried out
among the mobile devices given the same path, show that the path for which there are more
statistically significant differences, and which therefore better highlights the differences
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between devices, is the eight-shaped one. From these analyses, it emerged that only one
device, i.e., iPad Pro, does not show statistically significant differences and it performs in
the same manner on the different pathways.

Based on these considerations, the data analyses therefore focused on the eight-shaped
path as it is the one that best highlights and compares the performance of the different
mobile devices.

The following figure (Figure 10) shows the ATE values computed for the mobile
devices in the case of the eight-shaped path.

Figure 7. Examples of eight-shaped (a) and square-shaped (b) paths tracked by the motion capture
system (blue line) and the corresponding aligned paths tracked by the selected device (red line).

Figure 8. Averaged ATE for the selected devices over the three paths (eight-, square-, and
U-shaped trajectories).
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Figure 9. Averaged RPE for the selected devices over the three paths (eight-, square-, and
U-shaped trajectories).

Table 3. Analysis of variances for ATE and RPE metrics over all paths for each device.

Device
ATE RPE

F-Value p-Value F-Value p-Value

iPad Pro 0.810 0.456 0.111 0.896
iPhone 11 14.288 <0.001 21.126 <0.001

Tab S6 110.819 <0.001 304.782 <0.001
S20 13.880 <0.001 7.322 0.007
S10 9.672 0.002 180.569 <0.001

Find X3 Lite 35.436 <0.001 117.87 <0.001
Mi 11 Lite 0.425 0.658 16.328 <0.001

Redmi Note 10 27.101 <0.001 0.809 0.456

Figure 10. Absolute Trajectory Error (ATE) evaluation results related to the eight-shaped path.

The graph shows that the smallest ATE value was obtained by the iPad Pro with an
average error of M = 0.121 m and SD of 0.027 m. This difference is statistically significant as
confirmed by the one-way ANOVA test (F(7) = 815.38) with respect to the other devices.
However, the homogeneity test of variances was highly significant with a significance value
of less than 0.05, and as a consequence, the null hypothesis was rejected. For this reason,
the Welch version of the F-ratio was adopted, and it returned a value of F (7,30.62) = 2476.94
and p < 0.001. Following this, the group of devices that performed best in terms of the ATE
metric, and showed no statistically significant differences between them were identified as
the Xiaomi Mi 11 Lite and Samsung S20 with M = 0.162 m (SD = 0.019 m) and M = 0.182 m
(SD = 0.020 m), respectively. Then, the third group was composed of the iPhone 11, S6, S10
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and Note 10. Finally, as abovementioned, the OPPO Find X3 Lite showed the highest ATE
error with M = 1.451 m and SD = 0.027 m.

Figure 11 shows the results obtained for the RPE metric related to the eight-shaped path.

Figure 11. Relative Pose Error (RPE) evaluation results related to the eight-shaped path.

In this case, the Mi 11 Lite shows the lowest value of RPE with M = 0.048 m and
SD = 0.004 m. In addition, a one-way ANOVA analysis indicated that there is a statistically
significant difference with the RPE obtained from the other devices (p < 0.001). Additionally,
the mobile devices that performed better in terms of the RPE metric, without any statistically
significant difference among them, were the iPad Pro, iPhone 11 and S20 with mean values
of M = 0.069 m (SD = 0.013 m), M = 0.072 m (SD = 0.007 m), and M = 0.085 m (SD = 0.008 m),
respectively. The Tab S6 and S10 showed similar performances, without any statistically
significant difference between them. In this case, the Find X3 Lite also provided the highest
RPE error value with M = 0.414 m and SD = 0.012 m.

The following table (Table 4) depicts the mean, standard deviation, maximum, and
minimum values for both ATE and RPE.

Table 4. Mean, standard deviation (SD), maximum (Max), and minimum (Min) of ATE and RPE
values in the case of the eight-shaped path for all devices.

Device
ATE (m) RPE (m)

Mean SD Max Min Mean SD Max Min

iPad Pro 0.121 0.027 0.175 0.089 0.069 0.013 0.097 0.052
iPhone 11 0.369 0.105 0.514 0.221 0.072 0.007 0.085 0.064

Tab S6 0.491 0.026 0.547 0.453 0.244 0.018 0.266 0.208
S20 0.182 0.020 0.225 0.160 0.085 0.008 0.095 0.073
S10 0.437 0.059 0.562 0.376 0.241 0.022 0.272 0.204

Find X3 Lite 1.451 0.027 1.494 1.411 0.414 0.012 0.438 0.391
Mi 11 Lite 0.162 0.0196 0.202 0.138 0.048 0.004 0.053 0.041

Redmi Note 10 0.271 0.029 0.331 0.234 0.096 0.005 0.102 0.087

Other interesting outcomes that emerged from the experimentation are related to the
feature points detected by the selected devices for the pose estimation. In fact, as stated
in the introduction, SLAM algorithms combine inertial and visual-based tracking data in
order to ensure the tracking is more robust and then they achieve high accuracy in pose
estimation. In particular, in addition to the inertial data, visual natural feature points in
the environment are recognized and extracted from the captured images, and then used to
estimate the position and orientation of a device in the real world [51]. As a consequence,
the device’s ability to recognize and acquire the natural features of the environment is a key
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aspect that can affect its tracking performance [52]. Therefore, the following table (Table 5)
shows the average number of feature points detected by the selected devices on the three
paths; specifically, the number of reference points detected while covering the same path
ten times, in the same experimental environment and under the same lighting conditions.

Table 5. Averaged number of feature points detected by the selected devices in relation to the
three paths.

Device

Detected Reference Points (#)

iPad Pro 11 33.233 31.061 2.069
iPhone 11 31.697 29.913 2.798

Tab S6 25.363 29.315 2.188
S20 31.865 31.043 3.559
S10 31.132 29.639 2.935

Find X3 Lite 29.662 26.812 3.865
MI 11 Lite 31.231 30.254 3.869

Redmi Note 10 31.671 30.672 3.740

The results show that the selected devices that run the AR application based on the
two AR libraries, i.e., ARKit and ARCore, perform in a similar way. In fact, the reference
points detected and extracted from the environment were comparable in relation to the
path for the different devices. This means that the AR libraries perform in a similar way
and no differences could be observed during their functioning.

In summary, some interesting outcomes emerged from the analysis of the results
shown above. With regard to the examined paths, which were both open and closed paths,
the eight-shaped path was the one that better emphasized the differences in terms of the
tracking performance of the mobile devices. This outcome made it possible to focus the
analysis of the results on this specific pathway. This also provides guidelines on the choice
of pathways to be used in experiments for tracking performance evaluation. The only
device that performed the same, regardless of the path, was the iPad Pro. This could be
due to the fact that it is equipped with a LIDAR sensor that improves the tracking accuracy.
In this regard, it is also important to consider its price, which is in the high-cost range.

With regard to square-shaped and U-shaped paths, the selected mobile devices showed
similar results on the whole. This was also confirmed by analysis of variances, which did
not reveal any statistically relevant difference. Thus, this suggests that it might be sufficient
to conduct tests using short U-shaped paths to evaluate device pose tracking quality
without wasting time covering a long square-shaped path.

In general, considering both the ATE and RPE metrics, the iPad Pro and Xiaomi Mi 11
Lite performed the best. They were immediately followed by the S20 while the Find X3
Lite device showed the highest errors for both metrics and for all the paths investigated.

When the SDKs were taken into consideration, both ARKit and ARCore seem to per-
form in a similar way since the tracking data provided by different devices that implement
these frameworks did not show significant relevant differences.

While from a merely economic point of view, both mid- and high-cost devices such
as the iPhone 11 and the S20, show similar performances it may not be necessary to use
expensive devices for applications that have tracking capabilities.

It is important to note that the presented outcomes are limited to the systems and
pathways examined, and relate to tests undertaken in a laboratory. Therefore, future
developments will involve testing such mobile devices on different paths, both in the
laboratory and in open air, and they will also involve users to simulate different conditions
of use.
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5. Conclusions

In this work, a benchmark evaluation of the tracking performance of mid- to high-end
popular devices has been presented. Eight different smartphones and tablets were selected
from the market with the aim of ensuring a representative set of mobile devices. For this
reason, both iOS® and AndroidTM devices were taken into account by considering several
aspects such as the release date, price range, platform, and other specific parameters related
to the hardware components. A methodology was developed for the estimation of their
tracking capabilities; this consisted of three main stages: calibration, data acquisition, and
data analysis, which allowed a comparison of the estimated tracking data from the device
with the ground truth. An external motion capture system was adopted to capture the
movements of mobile devices and to obtain the ground truth for data comparison and
analysis. A series of experiments were conducted in a laboratory by investigating the mobile
devices’ performances on open and closed paths. These performances were evaluated in
terms of two standard error metrics, and specifically, ATE and RPE metrics. The results
demonstrated that the devices performed in different ways over the three different paths,
except for the iPad Pro, which showed similar results for all trajectories. In fact, the selected
devices, in combination with the AR SDKs, showed different tracking performances, which
does not allow for a definitive classification in terms of tracking performance, but still
provide suggestions and guidelines for conducting similar experiments in the future.
Furthermore, future work will investigate more paths in different environmental conditions
in order to assess how external parameters can affect the tracking accuracy of mobile
devices. In particular, a series of experiments will be carried out with different illumination
settings to assess how the lighting of the scene can affect the tracking accuracy of the
selected devices.
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Nomenclature

AR Augmented Reality
SDK Software Development Kit
SLAM Simultaneous localization and mapping
LIDAR Laser Imaging Detection and Ranging
ATE Absolute Trajectory Error
RPE Relative Pose Error
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