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Abstract

Background: Gene regulatory networks (GRNs) provide insight into the mechanisms of differential gene expression at a
system level. However, the methods for inference, functional analysis and visualization of gene regulatory modules and
GRNs require the user to collect heterogeneous data from many sources using numerous bioinformatics tools. This makes
the analysis expensive and time-consuming.

Results: In this work, the BiologicalNetworks application-the data integration and network based research environment-
was extended with tools for inference and analysis of gene regulatory modules and networks. The backend database of the
application integrates public data on gene expression, pathways, transcription factor binding sites, gene and protein
sequences, and functional annotations. Thus, all data essential for the gene regulation analysis can be mined publicly. In
addition, the user’s data can either be integrated in the database and become public, or kept private within the application.
The capabilities to analyze multiple gene expression experiments are also provided.

Conclusion: The generated modular networks, regulatory modules and binding sites can be visualized and further analyzed
within this same application. The developed tools were applied to the mouse model of asthma and the OCT4 regulatory
network in embryonic stem cells. Developed methods and data are available through the Java application from
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Introduction

One of the goals of systems biology is to infer gene regulatory
networks (GRNs) from experimental data. GRNs describe and
visualize dependencies between proteins, transcription factors
(TFs) and their target genes. GRNs has proven to be a useful tool
in describing complex transcriptional programs in development
[1], hematopoiesis [2], and global regulatory programs in S.
cerevisiae [3] and bacteria [4]. GRNs can be built from the modules
of co-expressed genes, assuming that TFs and other regulators are
co-expressed with the genes they regulate [3,4,5,6]. An assumption
that only regulated genes should be co-expressed can also be
applied [7,8]. Several methods have been developed to address the
problem both at the level of cis-regulatory modules and global
network (see [1] and references within). Some methods, such as the
Signature Method [9], Stochastic LeMoNe [10] and Inferelator
[11] use only expression data; while others, for example, GRAM
[5], SPARC [12], DISTILLER [13], GPS [14], and others [15]
use additional experimental data and thus fall into the category of
integrative methods. Integrative methods might take into account
known protein-protein interactions [16], data on TF affinity to
various DNA sequences [17], w wvitro-obtained DNA-binding
specificities [12], sequence data on experimentally determined
TF binding sites from genome-wide experiments [5,13] or de novo
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DNA motifs [3], even searching for them concurrently with the bi-
clustering genes and conditions of the expression data [18].
Integrative methods are the most attractive and promising for
inferring gene regulatory modules and global networks because
they take into account a wealth of biological data [4]. However,
these methods challenge the user to collect heterogeneous data
from many sources and to use numerous bioinformatics tools. The
necessity of using different tools for visualization and module
functional analysis further complicates the analysis, making it
expensive, irreproducible, and time consuming. For example, to
identify modules of co-regulated genes involved in response to
asthma [19], the authors had to extract data from fifteen different
databases, map the human genes to those in mouse, infer the
modules using Genomica [3], and finally visualize and analyze the
generated network and modules using the Ingenuity software.
The goal of this presented work was to develop a resource that
simplifies and streamlines the regulatory network inference and
analysis. The resource relies on the database IntegromeDB, which
integrates public data on gene expression, pathways, gene and
protein sequences from multiple species, and contains a compre-
hensive collection of public data on TF binding sites and gene
regulatory sequences [20]. This database is accessible within the
BiologicalNetworks application that has been developed by the
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authors to provide integrative analysis and visualization of
networks, microarrays, and sequences [21,22]. In this work,
BiologicalNetworks was extended with tools for inferring and
analysis of gene regulatory modules and networks. The imple-
mented module inference method is unsupervised and integrative.
The method is designed to be query-driven, which can be applied
for inferring global networks as well. Following the recent trend
[7,8], TFs and regulators are assumed to not necessarily be co-
expressed with the target genes. All data required for regulatory
modules discovery are automatically mined during the module
network inference. Additional data to mine can be integrated in
the database by the user at www.integromedb.org/integration.jsp
or used directly in the application.

BiologicalNetworks allows a researcher, starting with the list of
genes or TFs and gene expression experiments, to select
homologous TFs/genes, to select sources of data on known or/
and predicted TT binding sites from the integrated databases, to
build and visualize regulatory modules and network, and to
explore them synchronically with expression data, protein-protein
interactions, canonical pathways, and sequences of genes and
regulatory sites. Similar to other available software for inferring
regulatory modules and networks, this program allows users to
upload their own data on TF-gene pairs and protein-protein
interactions, as well as work with their own microarray exper-
iments. The usability of the presented tools is demonstrated in two
case studies.

Methods

The tools described in this work are implemented within the
BiologicalNetworks application. The modules, search, analysis and
visualization capabilities are described in detail in the authors’
earlier works [21,22,23].

IntegromeDB Database

The BiologicalNetworks application’s backend database 1is
IntegromeDB [20] that integrates public data on gene expression,
pathways, gene and protein sequences from multiple species and
contains a comprehensive collection of public data on TF binding
sites and gene regulatory sequences. Thus, all data required for
regulatory modules discovery are automatically mined during the
module network inference.

Genomic regulatory sequences, such as TF binding sites, are
integrated with meta-graph (e.g., molecular interactions) and
experimental data (e.g., microarray gene expression, etc.) in the
backend database so that the genomic sequence intervals,
represented as a Relational Interval (RI)-tree structures, are
assigned to meta-graph objects. (RI)-trees are used for navigation
through sequences (scroll upstream/downstream, GetNext gene/
operon/chromosome, etc.) and annotation of multiple overlapping
sequences. Internal enumerations in the integrated databases—for
example, TRANSFAC [24], which provides localization of
regulatory regions in respect to the transcription start site—are
recalculated to correspond to global genome positions. All
databases listed in the category Transcriptional regulator sites and
transcription_factors of the NAR Database depository [25] have been
integrated in IntegromeDB. Among them are databases collecting
only curated binding sites, e.g., TRANSFAC and ORegAnno
[26], as well as databases providing predicted binding sites, e.g.,
ECRbase [27] and GenomeTralFaC [28].

Workflow of Regulatory Modules Inference
The procedure of data mining and building modules in
BiologicalNetworks consists of eight steps that are described in
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this section. The provided implementation of a network inference
is query-driven; that is, to obtain the modules and a network, the
user has to specify the list of genes or TFs (Step 1 below). The
BiologicalNetworks’ Build Transcription Regulatory Network Wizard
guides the user through these steps. The screen shots of
BiologicalNetworks at each step are shown in files S1 and S3.

Step 1. Specify genes and TFs. To proceed with the
analysis, the user has to specify genes/TFs or any other IDs
because BiologicalNetworks recognizes virtually all publically
available IDs or aliases for genes and proteins. Alternatively,
genes/TFs can be obtained from the search and analysis of
pathways in KEGG [29], REACTOME [30], NCI-Nature [31],
and Human Cyc [32] or microarray experiments in GEO [33]
and ArrayExpress [34] compendiums, which are integrated in
IntegromeDB and available for search in BiologicalNetworks. To
perform a search, the user specifies genes/TFs that can be typed
directly in the search window of BiologicalNetworks, uploaded as a
text file, or obtained through keyword or other types of search
available in BiologicalNetworks. When the genes/TTs are selected,
the user launches Build Transcription Regulatory Network Wizard, or
simply the Wizard, which prompts the user to specify for each
selected gene/TFs whether it should be considered a gene
(transcription factors binding its regulatory regions will be
searched), TF (its target genes will be considered), or both.

Step 2 (optional). Homology search. In the previous step,
the user can either skip homology search or specify its stringency
by selecting the minimum Blast bit-score as provided by the COGs
database [35], from which the information about homologous was
mmported. Homologies across over 1100 organisms are supported.
The Wizard allows the user to select genes/TFs for which targets
and/or TF binding sites will be searched.

Step 3. Search target genes and binding sites. In this step,
the user is prompted to specify data sources that provide
information about TF binding sites and their target genes: either
curated only, computed only, or both; specific data sources can be
also selected/unselected. All databases listed in the category
Transcriptional regulator sites and transcription factors of the NAR
Database depository are available for selection. The region for
searching TF binding sites can also be specified. On this step the
user can also upload a data file(s) with TF-gene pairs obtained, for
example, using genome-wide studies or motif-search algorithms.
This data can be considered on its own, or together with data from
selected databases.

Step 4. Select target genes and binding sites to build
regulatory modules. When the search (Step 3 above) is
complete, the user is encouraged to examine found genes, TFs,
and binding sites and select only those that will be used to build a
regulatory network (see file S1). Information about selected
binding sites can also be saved in a file. As the integrated approach
implemented in the IntegromeDB is purely automatic, erroneous
sites and genes might be expected, meaning that BiologicalNet-
works provides just the tool to examine found entries and
manually narrow the search. In many cases, for the first
exploration of data, the user doesn’t need to spend time on
investigating each site and make a decision of whether to select it
or not, because, for example, if an inferred module contains genes
co-expressed with both the selected TFs and at least one of their
targets (see the method of module inference below), the probability
of obtaining such a module by chance is low. Further, the
experiment can be repeated with a thorough selection of the sites
and target genes. In this step, the user should select the species for
which the experiments will be searched and for which the network
will be built; by default, the species specified on Step 1 is chosen.
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All target genes and TFs in other species will be matched to
homologous TTFs/genes in the selected species.

With this tool, BiologicalNetworks provides unprecedented
opportunity to simultaneously access and extract information from
all databases listed in the category Transcriptional regulator sites and
transcription factors of the NAR Database depository. For example,
one can start with a list of transcription factors, using either their
names or IDs from any database integrated or linked to the
databases integrated in BiologicalNetworks (e.g., UniProt or PDB
IDs), and using the Wizard, search for the list of target genes and
binding sites. Note, however, that if the sequence of the site is
specified in the database, the tool checks if this sequence matches
to the sequence of the specified region of the gene. If there is no
match, the site is not reported.

Step 5. Specify parameters to build regulatory
modules. In this step, the user specifies the p-value (based on
t-distribution) that will be used as a threshold for the significance of
the Gene Ontology (GO) terms in selecting clusters of genes (the
clustering method is described in the section Building regulatory
modules and the network below). The user has also to specify whether
the file(s) with the microarray experiment(s) will be provided by the
user or multiple experiments will be selected from IntegromeDB
and used to build the modules. In the former case, after the user
specifies the file(s) located on the computer, Step 6 will be skipped.
In the latter case, GEO and ArrayExpress will be searched for
microarray experiments in which selected genes/TFs and their
targets are strongly co-expressed; that is, the FDR (False Discovery
Rate)-corrected on multiple experiments where the Pearson
correlation coefficient is above 0.75. The experiments with a
number of conditions (columns) more than 25 are not considered
to avoid bias towards the experiments with too many conditions;
likewise, experiments with less than 5 columns are also excluded to
avoid bias towards samples with basic/control levels of expression
that are usually present in every experiment. The number of
experiments with more than 25 conditions did not exceed 5% of
all available experiments. Still, the user can analyze an experiment
of any size uploading the file.

For information on how to upload the user’s file, and for
supported formats, see the tutorial at http://biologicalnetworks.
org/tutorials/index.php#7. We recommend loading the micro-
array file in the system before opening the Wizard to make sure
that the system recognizes the file format and opens the file
properly, since the file will be loaded only after the Wizard finishes
its work. As we are still in the process of obtaining statistics on the
number of expression data points for human/mouse that can be
processed at specific allocation of RAM, we give the user warning
if the PC’s RAM might not be able to handle the selected amount
of experiments. At 4 GB RAM we recommend working with fewer
than 200 samples, or 10-20 average-size microarray experiments.
In the future, we will provide an option to run extensive
calculations on the server side.

Step 6. Select experiment(s) to build regulatory modules:
the matrix of multiple experiments. The seclected experi-
ments are represented in the Wizard as a matrix (Fig. 1)-the
concept introduced earlier in a web resource MEM (Multi-
Experiment Matrix) for gene expression similarity searches across
datasets [36]. MEM outputs a ranked list of genes that are co-
expressed with the query gene in the selected collection of
experiments, which is platform-specific. Due to the integrated
nature of IntegromeDB, our tool can deal with multiple genes and
multiple collections of experiments, basically with all microarray
data from GEO and ArrayExpress in which the query gene(s) can
be found. And while MEM treats each probe for each gene in each
microarray separately, we average data across multiple probes—if
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any—for each gene in each experiment, thus allowing the user to
abstract from considering only one specific microarray platform.
The matrix depicts the experiments (shown in rows) in which
genes (shown in columns) were found to be co-expressed with the
query gene(s). Co-expressed genes in the matrix are ranked based
on averaged over M experiments average Z-values of the Pearson
correlation coefficients of co-expression of the gene x with the
query genes {y;} (¢=1...N, where N is the number of genes in the
query list), which are calculated using Fisher’s Z-to-r transforma-
tion [37,38]:

rol=1 (=29 /(PO 2I) | (1)

- 1 1
Z0 = 323 O Zile) @)

where i(x,p;) 1s Fisher’s r-to-Z transformation of the Pearson
correlation coefficient 7(x,y;) for the genes x and y; in a selected
experiment k£ (k=1...M, where M is the number of considered
experiments):

Ziwr) = [+ [ =ntem)] ()

The experiments are ranked based on average Z-values (Eq. 2)
averaged over all genes (columns) in the matrix.

The multi-experiment viewer (Fig. 1) was designed to allow the
user selecting the best co-expressed genes and experiments that
will be used for inferring regulatory modules. The user can select
experiments in three different ways: by using a lever (to select the
top ranked experiments), by keywords associated with the
experiments, or both. Genes can be selected only by using the
lever. For building the modules and the network, the selected
genes will be considered in addition to previously selected TT's and
their targets.

Step 7. Select regulators. At this step, the Wizard asks the
user to select/unselect regulators which will be used in building the
modules and the network, along with previously selected genes and
TFs. Regulators are selected from IntegromeDB as annotated by
the GO term or any database’s keyword Transcriptional Regulation.
In contrast to the query gene/'TFs, binding sites are not searched
for regulators. Relationships between regulators and other genes/
proteins are established based on available information about their
physical interactions and co-citation.

Step 8. Final parameters setting. The final stage of the
Wizard shows the final set of genes and proteins that the user has
chosen for analysis and memory settings necessary for the run. In
this step, the user can opt out of the visualization of the network,
which takes additional time. Then, only regulatory modules will be
inferred and shown. After the user clicks Finish, the Wizard finishes
its work, and the nodes with their properties are retrieved from the
database, the modules are inferred, and the network is generated.
The time duration of this final step depends on the size of the
microarray experiment(s), the number of considered genes and
regulators, and the speed of the Internet connection. For example,
on an Intel 2 GHZ processor and 6 GB RAM with 5 GB allocated
for Java, runs for Studies 1 and 2 (see files S1 and $3) took about
15 minutes each.
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Figure 1. Screen-shot of the Multi-Experiment viewer (Use Case #1, Study 2). (A) The matrix represent the genes (in columns) co-

expressed with the query gene(s) in microarray experiments (in rows). The bri
value of the gene in an experiment (Eq. 4). The genes and experiments are sol
levers allow selecting the highest ranked genes and experiments for building
over the genes and experiments brings up their short description. (B-C) Cl
visualization of the expression data. (D) A word cloud that characterizes t

ghtness of blue of the matrix element corresponds to the co-expression
rted by average Z-values of genes (Egs. 1-3). The vertical and horizontal
regulatory modules (the selection is shown in a black square). Hovering
icking on the experiment ID brings up the experiment properties and
he found set of experiments described by keywords (ontology terms

representing cell types, tissues, diseases, biological processes, etc.). Clicking on the term in the cloud highlights respective experiments. The

‘Recalculate’ button allows the user to recalculate the matrix choosing only
doi:10.1371/journal.pone.0052836.g001

Building Regulatory Modules and the Network

In cach selected experiment, the expression values for each gene
are averaged across the gene probes for each sample. In cases
where only one microarray experiment was selected or the user
provided the experiment, each gene is described by a vector of
expression values averaged over the gene probes. The similarity
between each pair of genes, x and y, is calculated using either the
Euclidian distance, Pearson correlation coefficient r(x,p), or other
distance; the similarity matrix is used as an input of the TEASE
algorithm [39]. When more than one experiment is selected, the
experiments cannot be uniformly normalized because data in
different experiments may already be normalized in different
scales and this information cannot be extracted from the
experiment descriptions. Therefore, for multiple experiments,
the TEASE’s input is the averages of transformed Pearson
correlation coefficients computed for each pair of genes, x and y,
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the experiments containing selected terms.

across M experiments using Fisher’s Z-to-r transformation (Eqs. 1—
3; where y;=y and N=1).

The genes in the selected experiment(s) are hierarchically
clustered with simultaneous GO term functional enrichment
analysis as described in TEASE, prioritizing genes that are known
to be regulated or have a binding site(s) for a respective TT(s) in the
cluster. The module is inferred when at least one target gene for
specified TFs/regulators can be found in the cluster with the
TEASE’s p-value for at least one GO term below a specified
threshold. The inferred modules are integrated in the regulatory
network, which in turn is integrated with known (from literature as
co-citation and public databases as direct or indirect evidence)
protein-protein interactions.

It should be noted that TFs and regulators are treated both as
genes and proteins since they can be regulated by other TFs and
even self-regulated; therefore, on the network they are depicted
twice as TFs/regulators and genes. Also, genes and proteins are
treated as separate objects in BiologicalNetworks; thus, if two
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objects are known to be connected (through protein-gene, protein-
protein interactions, co-expression, or co-citation) that connection
between them is drawn on the network. However, to simplify the
network representation, connections are not drawn among the
genes in the modules. If the user is interested in seeing the known
interactions among the genes and proteins within a module, these
interactions can be drawn in BiologicalNetworks using Build-
PathwayWizard (called by a right mouse-click).

Integrative View of the Module Regulatory Network in
BiologicalNetworks

After the Wizard finishes inferring the modules, both the
modules and the regulatory network can be seen in BiologicalNet-
works (Fig. 2). In the final network (Fig. 2A), grey squares depict
inferred modules, nodes represent genes/TTs/regulators, and

edges represent interactions: regulatory (TF-gene) interactions
established through the search for TT binding sites (Fig. 2A, blue

An Integrative Approach to Inferring GRNs

edges), protein-protein interaction (Fig. 2A, grey edges), and co-
expression in the selected experiments (Fig. 2A, red edges).

The windows in BiologicalNetworks are synchronized so that
for a selected module in the network window, e.g., Module 1
(Fig. 2A), functional terms are shown in the Module Table
window (Fig. 2C), the heat-map and hierarchical tree of clustering
the experiments are shown in the Microarray Gene Expression
window (Fig. 2F), and the table of TF/gene binding sites and
accompanying annotation are shown in Figure 2D. Also,
selecting a specific node, for example, Pou2fI gene, in the network
window (Fig. 2A), the user can see the information about its
sequence and find TF binding sites (Fig. 2D) in the GenomeB-
rowser window (Fig. 2B).

The Modules Table presents a summary table of inferred
modules (Fig. 3). For each module, the following information is
provided: (i) significantly enriched GO terms; (i) number of genes
in the module (column ‘G’ in Fig. 3); (iii) functional/biological
coherence of the module measured as the percentage of genes in
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Figure 2. Integrative view of the OCT4 regulatory network (Use Case #1, Study 2). (A) Gene regulatory modular network of OCT4
transcription factor. Grey boxes represent the gene regulatory and co-expressed modules; rectangles represent the genes; red rectangles, the genes
with known binding sites; a yellow triangle, the transcription factor; blue edges, TF-target gene relationships; red lines, co-expressed TF-gene pairs.
The top module (shown in C), called ‘Module 1’, is highlighted. (B) GenomeBrowser window showing the sequences of the genes and TF binding
sites. The OCT4 binding site for the selected in the network (A) Pou2fl gene is shown. (C) Module Table showing the gene modules, TFs, and
functional annotation for each module with Fisher enrichment score (p-value) of GO terms. The top ‘Module 1’ is highlighted. (D) Table of TFs and
target genes found in public databases. Gene Pou2f1 (selected in A) is highlighted in magenta. (E) Multi-Experiment Viewer represents the matrix of
genes (in columns) co-expressed with the query gene(s) in microarray experiments (in rows). (F) Microarray Gene Expression window showing the hit
map and hierarchical tree of clustering data from selected experiments. Pointing out the mouse on the tree vertex shows the significant GO terms for

the cluster; ‘Module 1" is highlighted.
doi:10.1371/journal.pone.0052836.9002
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Figure 3. Screen-shot of BiologicalNetworks showing top OCT4 regulatory modules (Use Case #1, Study 2). The top module is marked
in red as it contains OCT4 gene and the genes (marked in red) that are co-expressed with OCT4 in the selected in Study 2 experiments. It is also
marked in grey as it contains genes (marked in grey) in which protein products are known to be involved in protein-protein interactions with OCT4
either in human or mouse. And it is marked in blue when it contains genes that have been selected in Study 2 as the mouse or human genes
containing known or predicted OCT4 binding sites in the promoters. The ‘G’ column specifies the number of genes in each module. The ‘%’ column
represents functional coherence of each module, measured as percentage of genes in the module covered by significant gene annotations (at a
specified threshold on p-value). Each module is formed by a part of hierarchical clustering tree and thus represents a hierarchical tree with different
terms assigned to different clusters. For each selected and shown GO term, we provide p-value, number of genes assigned to this GO term (the ‘List
Hits" column), number of genes in the tree clusters associated with this term (the ‘List Total’ column), and number of genes with this term among all
mouse genes (the ‘Population Hits’ column) in the ontology (the ‘Population Total’ column). Genes with GO terms listed are shown in bold. Column
‘Regulators’ contains transcription factors and regulators (in this case OCT4 only) predicted to regulate a respective module. The search window on
the right bottom allows the user to search genes and GO terms in the table.
doi:10.1371/journal.pone.0052836.g003

the module covered by significant gene annotations (column ‘%’ in
Fig. 3); and (iv) TFs and other regulators predicted to regulate the
genes in the module, along with supporting evidence for each
The supporting evidences are compiled from
integrated data and can be as follows:

regulator/TFs.

predicled binding site in the gene(s) in the module’ (Fig. 3, red squares),
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‘a regulator has known or

¢

a

regulator is co-expressed with the gene(s) in the module in the selected for the
module inference experiments’ (Fig. 3, blue squares), and ‘a regulator is
wmvolved in protein-protein interactions with the product(s) of the genes in the
module’ (Fig. 3, grey squares).
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Results and Discussion

Two use cases have been chosen to test the presented tools.
The first use case studies the OCT4 regulatory network in
mammalian embryonic stem (ES) cells, using microarrays and
OCT#4 binding data obtained in mouse ES cells [40], as well as
data from public databases. The second case concerns a
regulatory map of asthma in mouse built using microarray
data published in [19]. The sequence of steps to reproduce the
analysis described in this section is shown in files S1, S2, and
S3 and the Web tutorial. Note, however, that since the
database and the ontology are regularly updated, the results of
search and the resulting modules and networks obtained later
might differ from those discussed here. In the multi-experiment
matrix top ranked genes and experiments might also change
with new experiments added in the database.

Use Case #1: OCT4 Regulation in Mammalian ES Cells

Transcription factor OCT4, also known as POUSF1, was first
isolated from mouse ES cells; it is a member of a large family of
transcription factors that bind to the octameric DNA sequence
ATGCAAAT [41]. OCT4 is a key factor of embryonic
development, it controls self-renewal and pluripotency in ES cells
[42,43]. OC'T4 regulation has been extensively studied in human
[44] and mouse ES cells, using ChIP-PET [45], Oct4 knockdowns
[46] and other experimental [47] and computational [48]
approaches. Here we demonstrate the results of the two following
computational experiments. In Study 1, we considered only data
from [40], specifically, time course data in mouse ZHBTc4 ES
cells, in which the level of OCT4 expression was reduced in
tetracycline-controllable manner, and OCT4 binding sites iden-
tified by Sharov and others as the most functionally relevant, using
ChIP-PET data from [45]. In Study 2, an OCT4 regulatory
network was built using public data on microarrays in mouse and
human ES cells and OCT#4 binding sites in the promoters of
mouse and human genes, both experimentally identified and
predicted as provided in public databases.

Study 1. In this study, for the module inference, the user’s
data were used only. We started from searching the mouse
OCT#4 transcription factor in BiologicalNetworks (it was found
under the name ENSMUSP00000025271) and then opened
Built  Transcription  Regulatory Network Wizard, which guided us
through the steps of building the regulatory modules. Micro-
array data was used as provided in Additional file 2 from [40]
(see file S4). Also, we used OCT4 target genes from [453],
selecting only those genes that had OCT4 PET-regions in
[—10 kb;+1 kb] relative to the transcription start site (file S5).
Regulators were not considered. The Pearson correlation
coeflicient was used as a measure of distance for the clustering
of microarray data. At p-value of 1.0E-6 for GO term
assignment, 26 modules were obtained; they were associated
with such terms describing biological process as Embryo
development and  Embryonic organ morphogenesis (90 genes), Cell cycle
(85 genes), Tissue development and Intracellular signal transduction (96
genes), Primary metabolic process (102 genes), Nucleic acid metabolic
process (100 genes), Positwe regulation of biological process (70 genes),
Buosynthetic process (80 genes), Translation and Ribosome biogenesis (59
genes). Among 1919 genes assigned to the modules there were
486 genes which promoters bound OCT4 in ChIP-PET [45],
including well-studied direct OCT4 targets, Sox2 and Nanog.
At the less stringent p-value of 1.0E-4, 212 modules containing
10,003 genes were inferred, with 2063 of them with promoters
binding OCT4 in ChIP-PET and 186 genes which protein
products are known to bind OCT4. We looked closer at the top
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70 modules ranked by the number of genes associated with
significant GO terms and the genes which promoters bound
OCT#4 (file S6). They included 5371 genes, among which 140
were involved in protein-protein interactions with OCT4. The
modules were associated with Cell ¢ycle, Tissue development, Signal
transduction, Cell ~death, Apoptosis, Anatomical structure development,
Metabolic process, Muscle fiber development, Nucleic acid metabolic process,
Gene expression, Cellular response to hormone stimulus, Catabolic process,
Regulation of DNA repair, Mesoderm morphogenesis, Formation of primary
germ layer, Regulation of T-cell migration/chemotaxis/ apoptosis, Nucleo-
some  assembly,  Chromosome  segregation, Retina  development, Eye
morphogenestis, Organ morphogenesis, Nervous system development, Posi-
twe/negative regulation of fatty acid oxidation, Positwe regulation of cell
growth, Eythrocyte differentiation, Regulation of response to stress, Learning
or memory, Female gamet generation, Embryonic organ  development,
Chordate embryonic - development, Regulation of multicellular ~organismal
development, ~ Skeletal ~ system  development, and other biological
processes that are known to be associated with mammalian
embryo development and were found for the putative OCT4
targets identified by Sharov and others, using the same
experimental data and their own algorithm.

Study 2. 'This study was different from Study 1 as it relied
only on public data and, along with regulatory modules (when
the module of co-expressed genes contains at least one OCT4
target gene), the modules of only co-expressed genes were
inferred. We started again with searching the mouse OCT4
transcription factor in BiologicalNetworks, searched for the
OCT4 target genes in human and mouse in all databases
providing experimentally identified and predicted OCT4 bind-
ing sites and looked for the sites located at [—10 kb;+1 kb]
relative to the transcription start site. Microarray experiments
were searched in IntegromeDB; and in the obtained matrix of
gene-experiment pairs (Fig.1), we selected the experiments that
were associated with the keyword Embryonic stem cell, and then
among them we selected the five top-ranked microarrays that
contained 200 top genes co-expressed with OCT4 in human
and mouse (the modules containing at least one of those genes
will be attempted to be inferred as well). File S1 provides the
detailed instructions on how to repeat this run. At p-value of
1.0E-3, 118 modules containing 5780 genes were inferred (file
S$7). Among them, 61 modules included genes that contained
known or predicted OCT binding sites reported in the
databases. Of these 61 modules, 28 top modules included also
genes that proteins are known to interact with OCT4 in either
human or mouse; 16 of these 28 modules included genes that
were co-expressed with OCT4 in the selected microarrays.
Among these 28 modules (1871 genes), 16 modules (1289 genes)
were associated with GO terms describing developmental
processes and cell differentiation (two top modules are shown
in Fig. 3); the rest modules were associated with biological
processes Lymphocyte differentiation (3 modules), RNA splicing” and
Chromosomal segregation, Response to stimulus and Localization, Nucleic
actd metabolism, Organ growth and Regulation of transcription, Response
to chemical stimulus and ER-nucleus signaling pathway, Interaction with
symbiont, Immune system process and Defense response (2 modules), and
T cell activation. 'This result demonstrates the power of the
presented tools as a researcher with no preliminary data can
infer the regulatory and co-expressed modules and build the
gene regulatory network in a matter of a few hours. Figure 2
shows the network built by the program and a screen-shot of
the integrative view of discovered genes, experiments, and
modules.

Comparison of the results in study 1 and study 2. The
direct comparison of modules inferred in Study 1 and Study 2
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1s not strictly appropriate by the study design. Thus, in Study 1,
only one microarray was used, OCT4 targets were obtained
from ChIP-PET data, and the modules were required to
contain at least one OCT4 target gene. While in Study 2,
public data on OCT#% binding sites were used, along with public
microarray data associated with the keyword Embryonic stem cell
and containing genes co-expressed with OCT4; the modules
were not required to contain OCT#% targets, they required to
contain at least one gene co-expressed with OCT4. Also, Study
1 was restricted to a specific mouse cell line, while Study 2
included all available data for both mouse and human. These
differences in the studies might explain the different number of
inferred modules (212 in Study 1 and 118 in Study 2) and the
low number of common genes obtained in Study 1 and Study
2, which was 1743, or 18% of all genes in the modules of Study
1 and 30%, of Study 2. The 100 top modules in each Study
shared 167 significant GO terms (the hierarchy of GO terms
was not considered), 18 of which were associated with
development processes and included the GO terms Embryonic
Organ  Development, FEmbryonic Organ Morphogenesis, Endoderm Forma-
tion, Anatomical  Structure  Morphogenesis, Blood Vessel Development,
Positiwe Regulation Of Cell Proliferation; 20 terms were related to
metabolic processes; 20, to regulation and response; and other
terms that are known to be associated with mammalian embryo
development.

The results obtained in both studies support the hypothesis
that the OCT4 may regulate transcription of many genes via
mostly indirect binding to their promoters [40]. For example, it
was shown that about 66% of the enriched (based on ChIP-on-
ChIP) sequences did not contain OCT4 motifs, likely being
indirect targets of OCT4 [48]. Among the genes in the modules
inferred in Study 1 (at p-value of 1.0E-4) there were 61% of
direct targets of OCT4 as identified in [40] and 35-52% of
direct targets identified in the other three works, [48], [45], and
[47]. It was not surprising that even so large a set of genes
contained only half of direct OCT4 targets predicted by others
as it was shown that an inter- and intra-species for ES and EC
(embryonal carcinoma) cells comparison of putative OCT4
targets resulted in a rather small (from 10 to 25%) overlap of
common targets [48]. This might be explained by the different
platforms and analysis tools employed in the considered studies.
Also, in Study 1 we intended to identify the genes that were co-
expressed with the potential direct and indirect targets of OCT4
identified in ChIP-PET rather than searching for direct targets
of OCT4. Among the genes in the modules inferred in Study 2
there were only 33% (1163) direct targets of OC'T4 as identified
in [40] from ChIP-PET data. This number is also not surprising
as Study 2 was intended to infer along with regulatory modules
(when the module of co-expressed genes contains at least one
OCT4 target gene) the modules of only co-expressed genes.
Our analysis was also influenced by the accuracy of GO
annotation. Sharov and others considered only significantly
down- and up-regulated genes and weighted the ChIP-binding
sites based on the number of ChIP-PET ditags, the distance
from TSS, and presence of CpG-rich regions. The absence of
such data in pre-processing might have affected our results as
well.

Use Case #2: Gene Regulatory Module Network of
Asthma

In this use case, to build a regulatory module network, we used
published microarray data [19] and compared the modules
inferred by BiologicalNetworks with the modules inferred by the
authors using Module Networks software [3]. In Study 1, the input
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was all mouse genes listed in 61 modules inferred by Novershtern
and others (the modules were inferred for 8086 mouse genes). To
run the analysis on so many genes (6890 genes, as not all genes
were included in the modules), 10 GB RAM was required.
Therefore, we also conducted Study 2 on a much smaller set of 16
genes from one module. The sequence of steps to reproduce the
analysis is shown in file S3.

Study 1. In this study, the genes included in the modules
inferred by Novershtern and others were searched in Biologi-
calNetworks; TF binding sites in these genes were searched in
all databases (for details see file 83). General transcriptional
regulators were also considered. The Pearson correlation
coeflicient was used as a measure of distance for the clustering.
In the result, 128 modules were inferred at p-value of 0.001 (see
file S8). Among the top modules were the modules associated
with the GO terms describing the immune system, leukocyte
and lymphocyte regulation (p-value <1.0E-10; module #2, 108
genes); response to stimulus, inflammatory response and
cytokine production (p-value <1.0E-10; module #9, 102 genes;
module #51, 75 genes); immune response and leukocyte
activation (p-value <1.0E-10; module #11, 116 genes); muscle
and heart contraction and blood circulation (p-value <1.0E-10;
module #24, 104 genes); signaling and cell communication (p-
value <1.0E-9; module #25, 97 genes; module #29, 93 genes);
oxidation-reduction process and respiratory chain (p-value
<1.0E-20; module #36, 91 genes; p-value <1.0E-15; module
#65, 54 genes; p-value <1.0E-10; module #74, 52 genes); and
negative regulation of transcription, metabolic and biosynthetic
processes (p-value <1.0E-8; module #6, 140 genes). These
terms were found among those that were associated with the
modules inferred by Novershtern and others. The gene l/m
(interleukin 1 receptor antagonist), which is known to be
associated with asthma in humans [49], was found in the
module #58 that included 70 genes, was regulated among other
by Myc, Irfl, E2f1, Ccl2, Pax6, p53, and was associated with the
GO terms describing response to chemical stimulus, wounding,
defense, nitric oxide mediated signal transduction, and CCR2
chemokine receptor binding (p-value <1.0E-6).

Study 2. In this study, 16 genes from the Novershtern’s
module #622, further called NC_622, were used as an input.
Considering all found TFs and regulators potentially regulating
these genes, 6 modules containing 349 genes were inferred in
BiologicalNetworks (file §9). Module #1 of 39 genes contained 11
genes from Module NC_622 (Fig. 4; see also a screen-shot of
integrative view in file 83) and was associated with responses to
oxidative stress, hormone, endogenous and chemical stimuli. The
genes in this module were potentially regulated by 25 TFs (when at
least one TT binding sites were recorded in TRANSFAC,
ORegAnno, Pazar, or TRRD databases) as these TFs co-
expressed with the genes in the module; one of these TFs,
GTT2h4, was common with potential regulators of module
NC_622. Module #2 was associated with respiratory and lung
development and metabolic process. Two of the rest modules were
associated with the terms describing embryonic and organ
development, morphogenesis and cell differentiation; this agrees
with recent observations about a ‘developmental origin’ of asthma

[50].

Data Access

The described tools are available within the BiologicalNetworks
software that can be download at www.biologicalnetworks.org. It is free
for academic users.
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Figure 4. The modular network inferred for the genes from Module NC_622 (Use Case #2, Study 2). Grey boxes represent gene
regulatory modules; rectangles, genes in the modules; red rectangles, genes from module NC_622; yellow triangles, transcription factors with known
binding sites; red triangles, transcription factor that are co-expressed with the genes in the modules; red diamonds, regulators that are co-expressed
with the genes in the modules; blue edges, TF-gene binding; red edges, co-expression relationships; grey edges, protein-protein interaction.

doi:10.1371/journal.pone.0052836.g004

Tutorials and Demo

The ‘Regulation of OCT4 in mammalian ES cells’ and ‘Gene
Regulatory Modular Network of asthma’ Projects, can be opened
from the Welcome Page upon launching the BiologicalNetworks
application, or from the BiologicalNetworks main page www.
biologicalnetworks.org (see Driving Projects section).

Data Used in the Use Cases

In Study 1 of Use Case #1, OCT4 regulatory genes identified
by BiologicalNetworks were compared with the lists of genes
provided in Additional files 4, 16, and 17 in [40], which in turn
included the lists from [47] and [45]. For Study 1, microarray data
and OC'T4 binding sites were taken from Additional files 2 and 13
from [40]. Among the genes in Additional file 13, only genes that
had OCT4 PET-regions in [—10 kb;+1 kb] relative to TSS were
selected (3583 genes). The files in the txt-format that were used in
Study 1 are provided as files S4 and S5. In Use Case #2,
microarray data for analysis and regulatory modules were
downloaded at http://www.jail.cs.huji.ac.il/shefi. Specifically, to
build the modules, we used a unified compendium of microarray
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data for 8086 genes and 52 samples. Modules 421 and 622 were
considered in this work in detail.

System Requirements

BiologicalNetworks is a Java application, requiring a minimum
of 2 GB RAM dedicated to the Java Runtime environment and a
stable Internet connection at all steps of the analysis. The
quickness of the system response depends on RAM dedicated to
Java. The use cases demonstrated in this work were performed on
a PC with Windows 7 OS and 6 GB RAM, 5 GB of which was
allocated for Java Runtime Environment (the RAM allocation can
be specified upon installation of BiologicalNetworks).

Supporting Information

File S1 How to get started in BiologicalNetworks and
step-by-step analysis for Use Case #1.
(DOC)

File S2 How to compare two lists of genes/proteins in
BiologicalNetworks.
(DOCX)

December 2012 | Volume 7 | Issue 12 | e52836



File S3 Step-by-step analysis for Use Case #2.

DOCX)
File S4 Microarray data used in Use Case #1, Study 1.
(TXT)
File S5 TF-gene pairs used in Use Case #1, Study 1.
(TXT)
File S6 Modules inferred in Use Case #1, Study 1.
(TXT)
File S7 Modules inferred in Use Case #1, Study 2.
(TXT)
File S8 Modules inferred in Use Case #2, Study 1.
(TXT)
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