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Abstract

Background: Gene regulatory networks (GRNs) provide insight into the mechanisms of differential gene expression at a
system level. However, the methods for inference, functional analysis and visualization of gene regulatory modules and
GRNs require the user to collect heterogeneous data from many sources using numerous bioinformatics tools. This makes
the analysis expensive and time-consuming.

Results: In this work, the BiologicalNetworks application–the data integration and network based research environment–
was extended with tools for inference and analysis of gene regulatory modules and networks. The backend database of the
application integrates public data on gene expression, pathways, transcription factor binding sites, gene and protein
sequences, and functional annotations. Thus, all data essential for the gene regulation analysis can be mined publicly. In
addition, the user’s data can either be integrated in the database and become public, or kept private within the application.
The capabilities to analyze multiple gene expression experiments are also provided.

Conclusion: The generated modular networks, regulatory modules and binding sites can be visualized and further analyzed
within this same application. The developed tools were applied to the mouse model of asthma and the OCT4 regulatory
network in embryonic stem cells. Developed methods and data are available through the Java application from
BiologicalNetworks program at http://www.biologicalnetworks.org.
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Introduction

One of the goals of systems biology is to infer gene regulatory

networks (GRNs) from experimental data. GRNs describe and

visualize dependencies between proteins, transcription factors

(TFs) and their target genes. GRNs has proven to be a useful tool

in describing complex transcriptional programs in development

[1], hematopoiesis [2], and global regulatory programs in S.

cerevisiae [3] and bacteria [4]. GRNs can be built from the modules

of co-expressed genes, assuming that TFs and other regulators are

co-expressed with the genes they regulate [3,4,5,6]. An assumption

that only regulated genes should be co-expressed can also be

applied [7,8]. Several methods have been developed to address the

problem both at the level of cis-regulatory modules and global

network (see [1] and references within). Some methods, such as the

Signature Method [9], Stochastic LeMoNe [10] and Inferelator

[11] use only expression data; while others, for example, GRAM

[5], SPARC [12], DISTILLER [13], GPS [14], and others [15]

use additional experimental data and thus fall into the category of

integrative methods. Integrative methods might take into account

known protein-protein interactions [16], data on TF affinity to

various DNA sequences [17], in vitro-obtained DNA-binding

specificities [12], sequence data on experimentally determined

TF binding sites from genome-wide experiments [5,13] or de novo

DNA motifs [3], even searching for them concurrently with the bi-

clustering genes and conditions of the expression data [18].

Integrative methods are the most attractive and promising for

inferring gene regulatory modules and global networks because

they take into account a wealth of biological data [4]. However,

these methods challenge the user to collect heterogeneous data

from many sources and to use numerous bioinformatics tools. The

necessity of using different tools for visualization and module

functional analysis further complicates the analysis, making it

expensive, irreproducible, and time consuming. For example, to

identify modules of co-regulated genes involved in response to

asthma [19], the authors had to extract data from fifteen different

databases, map the human genes to those in mouse, infer the

modules using Genomica [3], and finally visualize and analyze the

generated network and modules using the Ingenuity software.

The goal of this presented work was to develop a resource that

simplifies and streamlines the regulatory network inference and

analysis. The resource relies on the database IntegromeDB, which

integrates public data on gene expression, pathways, gene and

protein sequences from multiple species, and contains a compre-

hensive collection of public data on TF binding sites and gene

regulatory sequences [20]. This database is accessible within the

BiologicalNetworks application that has been developed by the
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authors to provide integrative analysis and visualization of

networks, microarrays, and sequences [21,22]. In this work,

BiologicalNetworks was extended with tools for inferring and

analysis of gene regulatory modules and networks. The imple-

mented module inference method is unsupervised and integrative.

The method is designed to be query-driven, which can be applied

for inferring global networks as well. Following the recent trend

[7,8], TFs and regulators are assumed to not necessarily be co-

expressed with the target genes. All data required for regulatory

modules discovery are automatically mined during the module

network inference. Additional data to mine can be integrated in

the database by the user at www.integromedb.org/integration.jsp

or used directly in the application.

BiologicalNetworks allows a researcher, starting with the list of

genes or TFs and gene expression experiments, to select

homologous TFs/genes, to select sources of data on known or/

and predicted TF binding sites from the integrated databases, to

build and visualize regulatory modules and network, and to

explore them synchronically with expression data, protein-protein

interactions, canonical pathways, and sequences of genes and

regulatory sites. Similar to other available software for inferring

regulatory modules and networks, this program allows users to

upload their own data on TF-gene pairs and protein-protein

interactions, as well as work with their own microarray exper-

iments. The usability of the presented tools is demonstrated in two

case studies.

Methods

The tools described in this work are implemented within the

BiologicalNetworks application. The modules, search, analysis and

visualization capabilities are described in detail in the authors’

earlier works [21,22,23].

IntegromeDB Database
The BiologicalNetworks application’s backend database is

IntegromeDB [20] that integrates public data on gene expression,

pathways, gene and protein sequences from multiple species and

contains a comprehensive collection of public data on TF binding

sites and gene regulatory sequences. Thus, all data required for

regulatory modules discovery are automatically mined during the

module network inference.

Genomic regulatory sequences, such as TF binding sites, are

integrated with meta-graph (e.g., molecular interactions) and

experimental data (e.g., microarray gene expression, etc.) in the

backend database so that the genomic sequence intervals,

represented as a Relational Interval (RI)-tree structures, are

assigned to meta-graph objects. (RI)-trees are used for navigation

through sequences (scroll upstream/downstream, GetNext gene/

operon/chromosome, etc.) and annotation of multiple overlapping

sequences. Internal enumerations in the integrated databases–for

example, TRANSFAC [24], which provides localization of

regulatory regions in respect to the transcription start site–are

recalculated to correspond to global genome positions. All

databases listed in the category Transcriptional regulator sites and

transcription factors of the NAR Database depository [25] have been

integrated in IntegromeDB. Among them are databases collecting

only curated binding sites, e.g., TRANSFAC and ORegAnno

[26], as well as databases providing predicted binding sites, e.g.,

ECRbase [27] and GenomeTraFaC [28].

Workflow of Regulatory Modules Inference
The procedure of data mining and building modules in

BiologicalNetworks consists of eight steps that are described in

this section. The provided implementation of a network inference

is query-driven; that is, to obtain the modules and a network, the

user has to specify the list of genes or TFs (Step 1 below). The

BiologicalNetworks’ Build Transcription Regulatory Network Wizard

guides the user through these steps. The screen shots of

BiologicalNetworks at each step are shown in files S1 and S3.

Step 1. Specify genes and TFs. To proceed with the

analysis, the user has to specify genes/TFs or any other IDs

because BiologicalNetworks recognizes virtually all publically

available IDs or aliases for genes and proteins. Alternatively,

genes/TFs can be obtained from the search and analysis of

pathways in KEGG [29], REACTOME [30], NCI-Nature [31],

and Human Cyc [32] or microarray experiments in GEO [33]

and ArrayExpress [34] compendiums, which are integrated in

IntegromeDB and available for search in BiologicalNetworks. To

perform a search, the user specifies genes/TFs that can be typed

directly in the search window of BiologicalNetworks, uploaded as a

text file, or obtained through keyword or other types of search

available in BiologicalNetworks. When the genes/TFs are selected,

the user launches Build Transcription Regulatory Network Wizard, or

simply the Wizard, which prompts the user to specify for each

selected gene/TFs whether it should be considered a gene

(transcription factors binding its regulatory regions will be

searched), TF (its target genes will be considered), or both.

Step 2 (optional). Homology search. In the previous step,

the user can either skip homology search or specify its stringency

by selecting the minimum Blast bit-score as provided by the COGs

database [35], from which the information about homologous was

imported. Homologies across over 1100 organisms are supported.

The Wizard allows the user to select genes/TFs for which targets

and/or TF binding sites will be searched.

Step 3. Search target genes and binding sites. In this step,

the user is prompted to specify data sources that provide

information about TF binding sites and their target genes: either

curated only, computed only, or both; specific data sources can be

also selected/unselected. All databases listed in the category

Transcriptional regulator sites and transcription factors of the NAR

Database depository are available for selection. The region for

searching TF binding sites can also be specified. On this step the

user can also upload a data file(s) with TF-gene pairs obtained, for

example, using genome-wide studies or motif-search algorithms.

This data can be considered on its own, or together with data from

selected databases.

Step 4. Select target genes and binding sites to build

regulatory modules. When the search (Step 3 above) is

complete, the user is encouraged to examine found genes, TFs,

and binding sites and select only those that will be used to build a

regulatory network (see file S1). Information about selected

binding sites can also be saved in a file. As the integrated approach

implemented in the IntegromeDB is purely automatic, erroneous

sites and genes might be expected, meaning that BiologicalNet-

works provides just the tool to examine found entries and

manually narrow the search. In many cases, for the first

exploration of data, the user doesn’t need to spend time on

investigating each site and make a decision of whether to select it

or not, because, for example, if an inferred module contains genes

co-expressed with both the selected TFs and at least one of their

targets (see the method of module inference below), the probability

of obtaining such a module by chance is low. Further, the

experiment can be repeated with a thorough selection of the sites

and target genes. In this step, the user should select the species for

which the experiments will be searched and for which the network

will be built; by default, the species specified on Step 1 is chosen.

An Integrative Approach to Inferring GRNs
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All target genes and TFs in other species will be matched to

homologous TFs/genes in the selected species.

With this tool, BiologicalNetworks provides unprecedented

opportunity to simultaneously access and extract information from

all databases listed in the category Transcriptional regulator sites and

transcription factors of the NAR Database depository. For example,

one can start with a list of transcription factors, using either their

names or IDs from any database integrated or linked to the

databases integrated in BiologicalNetworks (e.g., UniProt or PDB

IDs), and using the Wizard, search for the list of target genes and

binding sites. Note, however, that if the sequence of the site is

specified in the database, the tool checks if this sequence matches

to the sequence of the specified region of the gene. If there is no

match, the site is not reported.

Step 5. Specify parameters to build regulatory

modules. In this step, the user specifies the p-value (based on

t-distribution) that will be used as a threshold for the significance of

the Gene Ontology (GO) terms in selecting clusters of genes (the

clustering method is described in the section Building regulatory

modules and the network below). The user has also to specify whether

the file(s) with the microarray experiment(s) will be provided by the

user or multiple experiments will be selected from IntegromeDB

and used to build the modules. In the former case, after the user

specifies the file(s) located on the computer, Step 6 will be skipped.

In the latter case, GEO and ArrayExpress will be searched for

microarray experiments in which selected genes/TFs and their

targets are strongly co-expressed; that is, the FDR (False Discovery

Rate)-corrected on multiple experiments where the Pearson

correlation coefficient is above 0.75. The experiments with a

number of conditions (columns) more than 25 are not considered

to avoid bias towards the experiments with too many conditions;

likewise, experiments with less than 5 columns are also excluded to

avoid bias towards samples with basic/control levels of expression

that are usually present in every experiment. The number of

experiments with more than 25 conditions did not exceed 5% of

all available experiments. Still, the user can analyze an experiment

of any size uploading the file.

For information on how to upload the user’s file, and for

supported formats, see the tutorial at http://biologicalnetworks.

org/tutorials/index.php#7. We recommend loading the micro-

array file in the system before opening the Wizard to make sure

that the system recognizes the file format and opens the file

properly, since the file will be loaded only after the Wizard finishes

its work. As we are still in the process of obtaining statistics on the

number of expression data points for human/mouse that can be

processed at specific allocation of RAM, we give the user warning

if the PC’s RAM might not be able to handle the selected amount

of experiments. At 4 GB RAM we recommend working with fewer

than 200 samples, or 10–20 average-size microarray experiments.

In the future, we will provide an option to run extensive

calculations on the server side.

Step 6. Select experiment(s) to build regulatory modules:

the matrix of multiple experiments. The selected experi-

ments are represented in the Wizard as a matrix (Fig. 1)–the

concept introduced earlier in a web resource MEM (Multi-

Experiment Matrix) for gene expression similarity searches across

datasets [36]. MEM outputs a ranked list of genes that are co-

expressed with the query gene in the selected collection of

experiments, which is platform-specific. Due to the integrated

nature of IntegromeDB, our tool can deal with multiple genes and

multiple collections of experiments, basically with all microarray

data from GEO and ArrayExpress in which the query gene(s) can

be found. And while MEM treats each probe for each gene in each

microarray separately, we average data across multiple probes–if

any–for each gene in each experiment, thus allowing the user to

abstract from considering only one specific microarray platform.

The matrix depicts the experiments (shown in rows) in which

genes (shown in columns) were found to be co-expressed with the

query gene(s). Co-expressed genes in the matrix are ranked based

on averaged over M experiments average Z-values of the Pearson

correlation coefficients of co-expression of the gene x with the

query genes {yi} (i = 1…N, where N is the number of genes in the

query list), which are calculated using Fisher’s Z-to-r transforma-

tion [37,38]:

Dr(x)D~D eZ(x){e{Z(x)
� �

= eZ(x)ze{Z(x)
� �

D ð1Þ

Z(x) ~
1

M

XM

k~1

1

N

XN

i~1
Zk(x,yi) ð2Þ

where Zk(x,yi) is Fisher’s r-to-Z transformation of the Pearson

correlation coefficient rk(x,yi) for the genes x and yi in a selected

experiment k (k = 1…M, where M is the number of considered

experiments):

Zk(x,yi) ~
1

2
ln 1zrk(x,yi)ð Þ = 1{rk(x,yi)ð Þ½ � ð3Þ

The experiments are ranked based on average Z-values (Eq. 2)

averaged over all genes (columns) in the matrix.

The multi-experiment viewer (Fig. 1) was designed to allow the

user selecting the best co-expressed genes and experiments that

will be used for inferring regulatory modules. The user can select

experiments in three different ways: by using a lever (to select the

top ranked experiments), by keywords associated with the

experiments, or both. Genes can be selected only by using the

lever. For building the modules and the network, the selected

genes will be considered in addition to previously selected TFs and

their targets.

Step 7. Select regulators. At this step, the Wizard asks the

user to select/unselect regulators which will be used in building the

modules and the network, along with previously selected genes and

TFs. Regulators are selected from IntegromeDB as annotated by

the GO term or any database’s keyword Transcriptional Regulation.

In contrast to the query gene/TFs, binding sites are not searched

for regulators. Relationships between regulators and other genes/

proteins are established based on available information about their

physical interactions and co-citation.

Step 8. Final parameters setting. The final stage of the

Wizard shows the final set of genes and proteins that the user has

chosen for analysis and memory settings necessary for the run. In

this step, the user can opt out of the visualization of the network,

which takes additional time. Then, only regulatory modules will be

inferred and shown. After the user clicks Finish, the Wizard finishes

its work, and the nodes with their properties are retrieved from the

database, the modules are inferred, and the network is generated.

The time duration of this final step depends on the size of the

microarray experiment(s), the number of considered genes and

regulators, and the speed of the Internet connection. For example,

on an Intel 2 GHZ processor and 6 GB RAM with 5 GB allocated

for Java, runs for Studies 1 and 2 (see files S1 and S3) took about

15 minutes each.

An Integrative Approach to Inferring GRNs
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Building Regulatory Modules and the Network
In each selected experiment, the expression values for each gene

are averaged across the gene probes for each sample. In cases

where only one microarray experiment was selected or the user

provided the experiment, each gene is described by a vector of

expression values averaged over the gene probes. The similarity

between each pair of genes, x and y, is calculated using either the

Euclidian distance, Pearson correlation coefficient r(x,y), or other

distance; the similarity matrix is used as an input of the TEASE

algorithm [39]. When more than one experiment is selected, the

experiments cannot be uniformly normalized because data in

different experiments may already be normalized in different

scales and this information cannot be extracted from the

experiment descriptions. Therefore, for multiple experiments,

the TEASE’s input is the averages of transformed Pearson

correlation coefficients computed for each pair of genes, x and y,

across M experiments using Fisher’s Z-to-r transformation (Eqs. 1–

3; where yi = y and N = 1).

The genes in the selected experiment(s) are hierarchically

clustered with simultaneous GO term functional enrichment

analysis as described in TEASE, prioritizing genes that are known

to be regulated or have a binding site(s) for a respective TF(s) in the

cluster. The module is inferred when at least one target gene for

specified TFs/regulators can be found in the cluster with the

TEASE’s p-value for at least one GO term below a specified

threshold. The inferred modules are integrated in the regulatory

network, which in turn is integrated with known (from literature as

co-citation and public databases as direct or indirect evidence)

protein-protein interactions.

It should be noted that TFs and regulators are treated both as

genes and proteins since they can be regulated by other TFs and

even self-regulated; therefore, on the network they are depicted

twice as TFs/regulators and genes. Also, genes and proteins are

treated as separate objects in BiologicalNetworks; thus, if two

Figure 1. Screen-shot of the Multi-Experiment viewer (Use Case #1, Study 2). (A) The matrix represent the genes (in columns) co-
expressed with the query gene(s) in microarray experiments (in rows). The brightness of blue of the matrix element corresponds to the co-expression
value of the gene in an experiment (Eq. 4). The genes and experiments are sorted by average Z-values of genes (Eqs. 1–3). The vertical and horizontal
levers allow selecting the highest ranked genes and experiments for building regulatory modules (the selection is shown in a black square). Hovering
over the genes and experiments brings up their short description. (B–C) Clicking on the experiment ID brings up the experiment properties and
visualization of the expression data. (D) A word cloud that characterizes the found set of experiments described by keywords (ontology terms
representing cell types, tissues, diseases, biological processes, etc.). Clicking on the term in the cloud highlights respective experiments. The
‘Recalculate’ button allows the user to recalculate the matrix choosing only the experiments containing selected terms.
doi:10.1371/journal.pone.0052836.g001

An Integrative Approach to Inferring GRNs

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e52836



objects are known to be connected (through protein-gene, protein-

protein interactions, co-expression, or co-citation) that connection

between them is drawn on the network. However, to simplify the

network representation, connections are not drawn among the

genes in the modules. If the user is interested in seeing the known

interactions among the genes and proteins within a module, these

interactions can be drawn in BiologicalNetworks using Build-

PathwayWizard (called by a right mouse-click).

Integrative View of the Module Regulatory Network in
BiologicalNetworks

After the Wizard finishes inferring the modules, both the

modules and the regulatory network can be seen in BiologicalNet-

works (Fig. 2). In the final network (Fig. 2A), grey squares depict

inferred modules, nodes represent genes/TFs/regulators, and

edges represent interactions: regulatory (TF-gene) interactions

established through the search for TF binding sites (Fig. 2A, blue

edges), protein-protein interaction (Fig. 2A, grey edges), and co-

expression in the selected experiments (Fig. 2A, red edges).

The windows in BiologicalNetworks are synchronized so that

for a selected module in the network window, e.g., Module 1

(Fig. 2A), functional terms are shown in the Module Table

window (Fig. 2C), the heat-map and hierarchical tree of clustering

the experiments are shown in the Microarray Gene Expression

window (Fig. 2F), and the table of TF/gene binding sites and

accompanying annotation are shown in Figure 2D. Also,

selecting a specific node, for example, Pou2f1 gene, in the network

window (Fig. 2A), the user can see the information about its

sequence and find TF binding sites (Fig. 2D) in the GenomeB-

rowser window (Fig. 2B).

The Modules Table presents a summary table of inferred

modules (Fig. 3). For each module, the following information is

provided: (i) significantly enriched GO terms; (ii) number of genes

in the module (column ‘G’ in Fig. 3); (iii) functional/biological

coherence of the module measured as the percentage of genes in

Figure 2. Integrative view of the OCT4 regulatory network (Use Case #1, Study 2). (A) Gene regulatory modular network of OCT4
transcription factor. Grey boxes represent the gene regulatory and co-expressed modules; rectangles represent the genes; red rectangles, the genes
with known binding sites; a yellow triangle, the transcription factor; blue edges, TF-target gene relationships; red lines, co-expressed TF-gene pairs.
The top module (shown in C), called ‘Module 19, is highlighted. (B) GenomeBrowser window showing the sequences of the genes and TF binding
sites. The OCT4 binding site for the selected in the network (A) Pou2f1 gene is shown. (C) Module Table showing the gene modules, TFs, and
functional annotation for each module with Fisher enrichment score (p-value) of GO terms. The top ‘Module 19 is highlighted. (D) Table of TFs and
target genes found in public databases. Gene Pou2f1 (selected in A) is highlighted in magenta. (E) Multi-Experiment Viewer represents the matrix of
genes (in columns) co-expressed with the query gene(s) in microarray experiments (in rows). (F) Microarray Gene Expression window showing the hit
map and hierarchical tree of clustering data from selected experiments. Pointing out the mouse on the tree vertex shows the significant GO terms for
the cluster; ‘Module 19 is highlighted.
doi:10.1371/journal.pone.0052836.g002
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the module covered by significant gene annotations (column ‘%’ in

Fig. 3); and (iv) TFs and other regulators predicted to regulate the

genes in the module, along with supporting evidence for each

regulator/TFs. The supporting evidences are compiled from

integrated data and can be as follows: ‘a regulator has known or

predicted binding site in the gene(s) in the module’ (Fig. 3, red squares), ‘a

regulator is co-expressed with the gene(s) in the module in the selected for the

module inference experiments’ (Fig. 3, blue squares), and ‘a regulator is

involved in protein-protein interactions with the product(s) of the genes in the

module’ (Fig. 3, grey squares).

Figure 3. Screen-shot of BiologicalNetworks showing top OCT4 regulatory modules (Use Case #1, Study 2). The top module is marked
in red as it contains OCT4 gene and the genes (marked in red) that are co-expressed with OCT4 in the selected in Study 2 experiments. It is also
marked in grey as it contains genes (marked in grey) in which protein products are known to be involved in protein-protein interactions with OCT4
either in human or mouse. And it is marked in blue when it contains genes that have been selected in Study 2 as the mouse or human genes
containing known or predicted OCT4 binding sites in the promoters. The ‘G’ column specifies the number of genes in each module. The ‘%’ column
represents functional coherence of each module, measured as percentage of genes in the module covered by significant gene annotations (at a
specified threshold on p-value). Each module is formed by a part of hierarchical clustering tree and thus represents a hierarchical tree with different
terms assigned to different clusters. For each selected and shown GO term, we provide p-value, number of genes assigned to this GO term (the ‘List
Hits’ column), number of genes in the tree clusters associated with this term (the ‘List Total’ column), and number of genes with this term among all
mouse genes (the ‘Population Hits’ column) in the ontology (the ‘Population Total’ column). Genes with GO terms listed are shown in bold. Column
‘Regulators’ contains transcription factors and regulators (in this case OCT4 only) predicted to regulate a respective module. The search window on
the right bottom allows the user to search genes and GO terms in the table.
doi:10.1371/journal.pone.0052836.g003

An Integrative Approach to Inferring GRNs
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Results and Discussion

Two use cases have been chosen to test the presented tools.

The first use case studies the OCT4 regulatory network in

mammalian embryonic stem (ES) cells, using microarrays and

OCT4 binding data obtained in mouse ES cells [40], as well as

data from public databases. The second case concerns a

regulatory map of asthma in mouse built using microarray

data published in [19]. The sequence of steps to reproduce the

analysis described in this section is shown in files S1, S2, and
S3 and the Web tutorial. Note, however, that since the

database and the ontology are regularly updated, the results of

search and the resulting modules and networks obtained later

might differ from those discussed here. In the multi-experiment

matrix top ranked genes and experiments might also change

with new experiments added in the database.

Use Case #1: OCT4 Regulation in Mammalian ES Cells
Transcription factor OCT4, also known as POU5F1, was first

isolated from mouse ES cells; it is a member of a large family of

transcription factors that bind to the octameric DNA sequence

ATGCAAAT [41]. OCT4 is a key factor of embryonic

development, it controls self-renewal and pluripotency in ES cells

[42,43]. OCT4 regulation has been extensively studied in human

[44] and mouse ES cells, using ChIP-PET [45], Oct4 knockdowns

[46] and other experimental [47] and computational [48]

approaches. Here we demonstrate the results of the two following

computational experiments. In Study 1, we considered only data

from [40], specifically, time course data in mouse ZHBTc4 ES

cells, in which the level of OCT4 expression was reduced in

tetracycline-controllable manner, and OCT4 binding sites iden-

tified by Sharov and others as the most functionally relevant, using

ChIP-PET data from [45]. In Study 2, an OCT4 regulatory

network was built using public data on microarrays in mouse and

human ES cells and OCT4 binding sites in the promoters of

mouse and human genes, both experimentally identified and

predicted as provided in public databases.

Study 1. In this study, for the module inference, the user’s

data were used only. We started from searching the mouse

OCT4 transcription factor in BiologicalNetworks (it was found

under the name ENSMUSP00000025271) and then opened

Built Transcription Regulatory Network Wizard, which guided us

through the steps of building the regulatory modules. Micro-

array data was used as provided in Additional file 2 from [40]

(see file S4). Also, we used OCT4 target genes from [45],

selecting only those genes that had OCT4 PET-regions in

[210 kb;+1 kb] relative to the transcription start site (file S5).

Regulators were not considered. The Pearson correlation

coefficient was used as a measure of distance for the clustering

of microarray data. At p-value of 1.0E-6 for GO term

assignment, 26 modules were obtained; they were associated

with such terms describing biological process as Embryo

development and Embryonic organ morphogenesis (90 genes), Cell cycle

(85 genes), Tissue development and Intracellular signal transduction (96

genes), Primary metabolic process (102 genes), Nucleic acid metabolic

process (100 genes), Positive regulation of biological process (70 genes),

Biosynthetic process (80 genes), Translation and Ribosome biogenesis (59

genes). Among 1919 genes assigned to the modules there were

486 genes which promoters bound OCT4 in ChIP-PET [45],

including well-studied direct OCT4 targets, Sox2 and Nanog.

At the less stringent p-value of 1.0E-4, 212 modules containing

10,003 genes were inferred, with 2063 of them with promoters

binding OCT4 in ChIP-PET and 186 genes which protein

products are known to bind OCT4. We looked closer at the top

70 modules ranked by the number of genes associated with

significant GO terms and the genes which promoters bound

OCT4 (file S6). They included 5371 genes, among which 140

were involved in protein-protein interactions with OCT4. The

modules were associated with Cell cycle, Tissue development, Signal

transduction, Cell death, Apoptosis, Anatomical structure development,

Metabolic process, Muscle fiber development, Nucleic acid metabolic process,

Gene expression, Cellular response to hormone stimulus, Catabolic process,

Regulation of DNA repair, Mesoderm morphogenesis, Formation of primary

germ layer, Regulation of T-cell migration/chemotaxis/apoptosis, Nucleo-

some assembly, Chromosome segregation, Retina development, Eye

morphogenesis, Organ morphogenesis, Nervous system development, Posi-

tive/negative regulation of fatty acid oxidation, Positive regulation of cell

growth, Erythrocyte differentiation, Regulation of response to stress, Learning

or memory, Female gamet generation, Embryonic organ development,

Chordate embryonic development, Regulation of multicellular organismal

development, Skeletal system development, and other biological

processes that are known to be associated with mammalian

embryo development and were found for the putative OCT4

targets identified by Sharov and others, using the same

experimental data and their own algorithm.

Study 2. This study was different from Study 1 as it relied

only on public data and, along with regulatory modules (when

the module of co-expressed genes contains at least one OCT4

target gene), the modules of only co-expressed genes were

inferred. We started again with searching the mouse OCT4

transcription factor in BiologicalNetworks, searched for the

OCT4 target genes in human and mouse in all databases

providing experimentally identified and predicted OCT4 bind-

ing sites and looked for the sites located at [210 kb;+1 kb]

relative to the transcription start site. Microarray experiments

were searched in IntegromeDB; and in the obtained matrix of

gene-experiment pairs (Fig.1), we selected the experiments that

were associated with the keyword Embryonic stem cell, and then

among them we selected the five top-ranked microarrays that

contained 200 top genes co-expressed with OCT4 in human

and mouse (the modules containing at least one of those genes

will be attempted to be inferred as well). File S1 provides the

detailed instructions on how to repeat this run. At p-value of

1.0E-3, 118 modules containing 5780 genes were inferred (file
S7). Among them, 61 modules included genes that contained

known or predicted OCT binding sites reported in the

databases. Of these 61 modules, 28 top modules included also

genes that proteins are known to interact with OCT4 in either

human or mouse; 16 of these 28 modules included genes that

were co-expressed with OCT4 in the selected microarrays.

Among these 28 modules (1871 genes), 16 modules (1289 genes)

were associated with GO terms describing developmental

processes and cell differentiation (two top modules are shown

in Fig. 3); the rest modules were associated with biological

processes Lymphocyte differentiation (3 modules), RNA splicing’’ and

Chromosomal segregation, Response to stimulus and Localization, Nucleic

acid metabolism, Organ growth and Regulation of transcription, Response

to chemical stimulus and ER-nucleus signaling pathway, Interaction with

symbiont, Immune system process and Defense response (2 modules), and

T cell activation. This result demonstrates the power of the

presented tools as a researcher with no preliminary data can

infer the regulatory and co-expressed modules and build the

gene regulatory network in a matter of a few hours. Figure 2
shows the network built by the program and a screen-shot of

the integrative view of discovered genes, experiments, and

modules.

Comparison of the results in study 1 and study 2. The

direct comparison of modules inferred in Study 1 and Study 2
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is not strictly appropriate by the study design. Thus, in Study 1,

only one microarray was used, OCT4 targets were obtained

from ChIP-PET data, and the modules were required to

contain at least one OCT4 target gene. While in Study 2,

public data on OCT4 binding sites were used, along with public

microarray data associated with the keyword Embryonic stem cell

and containing genes co-expressed with OCT4; the modules

were not required to contain OCT4 targets, they required to

contain at least one gene co-expressed with OCT4. Also, Study

1 was restricted to a specific mouse cell line, while Study 2

included all available data for both mouse and human. These

differences in the studies might explain the different number of

inferred modules (212 in Study 1 and 118 in Study 2) and the

low number of common genes obtained in Study 1 and Study

2, which was 1743, or 18% of all genes in the modules of Study

1 and 30%, of Study 2. The 100 top modules in each Study

shared 167 significant GO terms (the hierarchy of GO terms

was not considered), 18 of which were associated with

development processes and included the GO terms Embryonic

Organ Development, Embryonic Organ Morphogenesis, Endoderm Forma-

tion, Anatomical Structure Morphogenesis, Blood Vessel Development,

Positive Regulation Of Cell Proliferation; 20 terms were related to

metabolic processes; 20, to regulation and response; and other

terms that are known to be associated with mammalian embryo

development.

The results obtained in both studies support the hypothesis

that the OCT4 may regulate transcription of many genes via

mostly indirect binding to their promoters [40]. For example, it

was shown that about 66% of the enriched (based on ChIP-on-

ChIP) sequences did not contain OCT4 motifs, likely being

indirect targets of OCT4 [48]. Among the genes in the modules

inferred in Study 1 (at p-value of 1.0E-4) there were 61% of

direct targets of OCT4 as identified in [40] and 35–52% of

direct targets identified in the other three works, [48], [45], and

[47]. It was not surprising that even so large a set of genes

contained only half of direct OCT4 targets predicted by others

as it was shown that an inter- and intra-species for ES and EC

(embryonal carcinoma) cells comparison of putative OCT4

targets resulted in a rather small (from 10 to 25%) overlap of

common targets [48]. This might be explained by the different

platforms and analysis tools employed in the considered studies.

Also, in Study 1 we intended to identify the genes that were co-

expressed with the potential direct and indirect targets of OCT4

identified in ChIP-PET rather than searching for direct targets

of OCT4. Among the genes in the modules inferred in Study 2

there were only 33% (1163) direct targets of OCT4 as identified

in [40] from ChIP-PET data. This number is also not surprising

as Study 2 was intended to infer along with regulatory modules

(when the module of co-expressed genes contains at least one

OCT4 target gene) the modules of only co-expressed genes.

Our analysis was also influenced by the accuracy of GO

annotation. Sharov and others considered only significantly

down- and up-regulated genes and weighted the ChIP-binding

sites based on the number of ChIP-PET ditags, the distance

from TSS, and presence of CpG-rich regions. The absence of

such data in pre-processing might have affected our results as

well.

Use Case #2: Gene Regulatory Module Network of
Asthma

In this use case, to build a regulatory module network, we used

published microarray data [19] and compared the modules

inferred by BiologicalNetworks with the modules inferred by the

authors using Module Networks software [3]. In Study 1, the input

was all mouse genes listed in 61 modules inferred by Novershtern

and others (the modules were inferred for 8086 mouse genes). To

run the analysis on so many genes (6890 genes, as not all genes

were included in the modules), 10 GB RAM was required.

Therefore, we also conducted Study 2 on a much smaller set of 16

genes from one module. The sequence of steps to reproduce the

analysis is shown in file S3.
Study 1. In this study, the genes included in the modules

inferred by Novershtern and others were searched in Biologi-

calNetworks; TF binding sites in these genes were searched in

all databases (for details see file S3). General transcriptional

regulators were also considered. The Pearson correlation

coefficient was used as a measure of distance for the clustering.

In the result, 128 modules were inferred at p-value of 0.001 (see

file S8). Among the top modules were the modules associated

with the GO terms describing the immune system, leukocyte

and lymphocyte regulation (p-value ,1.0E-10; module #2, 108

genes); response to stimulus, inflammatory response and

cytokine production (p-value ,1.0E-10; module #9, 102 genes;

module #51, 75 genes); immune response and leukocyte

activation (p-value ,1.0E-10; module #11, 116 genes); muscle

and heart contraction and blood circulation (p-value ,1.0E-10;

module #24, 104 genes); signaling and cell communication (p-

value ,1.0E-9; module #25, 97 genes; module #29, 93 genes);

oxidation-reduction process and respiratory chain (p-value

,1.0E-20; module #36, 91 genes; p-value ,1.0E-15; module

#65, 54 genes; p-value ,1.0E-10; module #74, 52 genes); and

negative regulation of transcription, metabolic and biosynthetic

processes (p-value ,1.0E-8; module #6, 140 genes). These

terms were found among those that were associated with the

modules inferred by Novershtern and others. The gene Il1rn

(interleukin 1 receptor antagonist), which is known to be

associated with asthma in humans [49], was found in the

module #58 that included 70 genes, was regulated among other

by Myc, Irf1, E2f1, Ccl2, Pax6, p53, and was associated with the

GO terms describing response to chemical stimulus, wounding,

defense, nitric oxide mediated signal transduction, and CCR2

chemokine receptor binding (p-value ,1.0E-6).

Study 2. In this study, 16 genes from the Novershtern’s

module #622, further called NC_622, were used as an input.

Considering all found TFs and regulators potentially regulating

these genes, 6 modules containing 349 genes were inferred in

BiologicalNetworks (file S9). Module #1 of 39 genes contained 11

genes from Module NC_622 (Fig. 4; see also a screen-shot of

integrative view in file S3) and was associated with responses to

oxidative stress, hormone, endogenous and chemical stimuli. The

genes in this module were potentially regulated by 25 TFs (when at

least one TF binding sites were recorded in TRANSFAC,

ORegAnno, Pazar, or TRRD databases) as these TFs co-

expressed with the genes in the module; one of these TFs,

GTF2h4, was common with potential regulators of module

NC_622. Module #2 was associated with respiratory and lung

development and metabolic process. Two of the rest modules were

associated with the terms describing embryonic and organ

development, morphogenesis and cell differentiation; this agrees

with recent observations about a ‘developmental origin’ of asthma

[50].

Data Access

The described tools are available within the BiologicalNetworks

software that can be download at www.biologicalnetworks.org. It is free

for academic users.
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Tutorials and Demo
The ‘Regulation of OCT4 in mammalian ES cells’ and ‘Gene

Regulatory Modular Network of asthma’ Projects, can be opened

from the Welcome Page upon launching the BiologicalNetworks

application, or from the BiologicalNetworks main page www.

biologicalnetworks.org (see Driving Projects section).

Data Used in the Use Cases
In Study 1 of Use Case #1, OCT4 regulatory genes identified

by BiologicalNetworks were compared with the lists of genes

provided in Additional files 4, 16, and 17 in [40], which in turn

included the lists from [47] and [45]. For Study 1, microarray data

and OCT4 binding sites were taken from Additional files 2 and 13

from [40]. Among the genes in Additional file 13, only genes that

had OCT4 PET-regions in [210 kb;+1 kb] relative to TSS were

selected (3583 genes). The files in the txt-format that were used in

Study 1 are provided as files S4 and S5. In Use Case #2,

microarray data for analysis and regulatory modules were

downloaded at http://www.jail.cs.huji.ac.il/̃shefi. Specifically, to

build the modules, we used a unified compendium of microarray

data for 8086 genes and 52 samples. Modules 421 and 622 were

considered in this work in detail.

System Requirements
BiologicalNetworks is a Java application, requiring a minimum

of 2 GB RAM dedicated to the Java Runtime environment and a

stable Internet connection at all steps of the analysis. The

quickness of the system response depends on RAM dedicated to

Java. The use cases demonstrated in this work were performed on

a PC with Windows 7 OS and 6 GB RAM, 5 GB of which was

allocated for Java Runtime Environment (the RAM allocation can

be specified upon installation of BiologicalNetworks).

Supporting Information

File S1 How to get started in BiologicalNetworks and
step-by-step analysis for Use Case #1.

(DOC)

File S2 How to compare two lists of genes/proteins in
BiologicalNetworks.

(DOCX)

Figure 4. The modular network inferred for the genes from Module NC_622 (Use Case #2, Study 2). Grey boxes represent gene
regulatory modules; rectangles, genes in the modules; red rectangles, genes from module NC_622; yellow triangles, transcription factors with known
binding sites; red triangles, transcription factor that are co-expressed with the genes in the modules; red diamonds, regulators that are co-expressed
with the genes in the modules; blue edges, TF-gene binding; red edges, co-expression relationships; grey edges, protein-protein interaction.
doi:10.1371/journal.pone.0052836.g004

An Integrative Approach to Inferring GRNs

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e52836



File S3 Step-by-step analysis for Use Case #2.
(DOCX)

File S4 Microarray data used in Use Case #1, Study 1.
(TXT)

File S5 TF-gene pairs used in Use Case #1, Study 1.
(TXT)

File S6 Modules inferred in Use Case #1, Study 1.
(TXT)

File S7 Modules inferred in Use Case #1, Study 2.
(TXT)

File S8 Modules inferred in Use Case #2, Study 1.
(TXT)

File S9 Modules inferred in Use Case #2, Study 2.
(TXT)

File S10 List of genes in 70 top modules obtained in Use
Case #1, Study1.
(TXT)

File S11 List of 420 genes (OCT4 targets) from Sharov’s
Add. File 17 [45].
(TXT)
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