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Abstract

Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to
the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a
comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate
cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer
research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has
impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to
the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin,
and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and
gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine
improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area.
These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and
collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in
the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell
viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings
provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with
respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular
cytoskeleton arrangement.
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Introduction

In multicellular organism tissues the extracellular space

surrounding cells is filled with a complex mixture of macromol-

ecules referred to as the extracellular matrix (ECM). The ECM is

composed of polysaccharides and proteins, such as laminin,

fibronectin, elastin, collagen, and their relative amount is tissue

specific. These proteins are embedded in a polysaccharide gel. [1]

Despite the initial thoughts of serving merely as a scaffold for cells,

it is now known that the ECM is not just structural but instructive,

being responsible for regulating cellular behavior and affecting

their proliferation, shape, function, migration, survival and

development [2–5].

Many of the ECM proteins have important adherence function.

[1] Most cells are anchorage-dependent and need to attach to the

ECM in order to survive and proliferate. [6] Integrins are

transmembrane proteins in the form of ab heterodimers integral

for the ECM protein-cell attachment. This interaction generates a

cascade of intracellular signals that can also control differential

gene expression. [7,8] The signaling response is related to the

ECM molecular composition that changes according to the cell

response to their micro-environment. [9,10] In this way, the ECM

is in constant change to facilitate cell requirements of develop-

mental plasticity. [11] Nevertheless, little is known about the

molecular details involved in the signal transduction. The cell

response to the ECM components is variable and dependent on

which integrin subunits are expressed by the cells. Many research

groups have been using different ECM proteins in tissue culture to

modify cell behavior, primarily cell attachment. [12–15] However,

in addition to increasing attachment, the coating proteins can

affect other aspects of cell biology, influencing the final results of

the assay [16].

The androgen-sensitive human prostate adenocarcinoma cell

line, LNCaP, is one of the most commonly used model systems in

prostate cancer (PCa) research. It was derived from a metastatic

lesion in the lymph node of a 50-year old Caucasian male in 1977.
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[17] Weak cell-surface adhesion of cell lines is a common problem

of tissue culture research and presents technical limitations to the

design of experiments. Their characteristically weak attachment to

the surface of tissue culture vessels and cover slips have impeded

their manipulation, analysis and use in high throughput screening

since LNCaP cells can be easily dislodged through modest

mechanical forces like fluid shear stress. To improve the adherence

of LNCaP cells to the culture surface, we compared different

coating reagents (poly-L-lysine, poly-L-ornithine, collagen IV,

fibronectin, and laminin) and culturing conditions, e.g. cell

density, and analyzed their impact on cell proliferation, adhesion,

mobility and morphology with a real-time cell analyzer (RTCA).

Our findings are a helpful tool for the selection of the ideal coating

reagent and culture conditions for the LNCaP cell line with respect

to their effect on proliferation rate, attachment, morphology and

cellular cytoskeleton arrangement.

Materials and Methods

Cell culture
LNCaP cells (American Tissue Culture Collection, Rockville,

MD) were routinely cultured in RPMI growth media without

phenol red (Invitrogen) supplemented with 10% (v/v) FBS

(Invitrogen). LNCaP cells were propagated for no more than 40

passages.

Coating conditions
All coating reagents were prepared as recommended by the

manufacturers. The volume and concentration of the substances

used for coating the wells were 1.3 mL laminin (LAM, 0.5 mg/mL

in H2O, Invitrogen), 1 mL collagen from human placenta type IV

(COL, 1 mg/mL in H2O, Invitrogen), 0.4 mL fibronectin (FN,

1 mg/mL in H2O, Invitrogen), and 0.32 mL poly-L-lysine (PLL,

1 mg/mL in H2O, Invitrogen). These coating reagents were

mixed with H2O to a total volume of 50 mL per well of a 96-well

plate. 50 mL poly-L-ornithine (PLO, 0.01% in H2O, Sigma-

Aldrich) were directly added to the wells, and the plates were

incubated overnight at 37uC in 5% CO2. The incubation time for

LAM and FN was 4 h using the same conditions described above.

The coated wells were washed once with DPBS followed

immediately by cell seeding. The volume of coating substances

was adjusted according to the growth area when different culture

vessels were used.

Real time cell analyzer (xCELLigence System)
The real time cell analyzer (RTCA) xCELLigence system

(Roche Applied Science) comprises four main parts: the RTCA

analyzer, the RTCA SP station, which stays inside a tissue-culture

incubator, the RTCA computer with integrated software, and a

96-well E-plate. The bottom of the disposable 96-well E-plate is

approximately 80% covered with gold microelectrodes that

monitor the electronic impedance, detecting physiological changes

of the cells. Cells in contact with the electrode will act as insulators,

leading to an increase in impedance. Thus, the electrode

impedance changes proportionally with alterations to number,

size and adherence of cells growing in a monolayer [18,19].

Changes in impedance are translated as the unitless term cell
index (CI). CI = (Zi2Z0)/15, where Zi is the impedance at an

individual point of time during the experiment and Z0 is the

impedance at the start of the experiment. Thus, the CI is a

quantitative and composite measure of the overall state of the cells

in an electrode-containing well [18,19].

First, 100 mL of complete medium were added to each well for

measurement of the background. Then, LNCaP cells were seeded

in a 96-well E-plate uncoated or coated with the indicated reagents

as described above at a density between 9.46103 and 6.256104

cells/cm2 in triplicate. The E-plate was allowed to incubate at

room temperature for 30 min and placed on the reader in the

incubator for continuous recording of the cell index. The E-plate

was incubated for 96 h at 37uC in 5% CO2, and the attachment of

the cells was monitored via the CI for 4 h every 2 min. After this

period, the CI was measured every hour for 92 h.

Cell proliferation and viability
Cells were seeded in 96-well plates uncoated or coated with the

indicated reagents at a density of 1.256104 cells/cm2. Growth as a

function of increasing confluence was measured using the live

content cell imaging IncuCyte HD system (Essen BioScience).

Images were taken with a 10x objective at 2 h intervals from 3

separate wells per coating condition, and mean 6 SD of

confluence percentages was computed. Metabolic activity of the

cells grown on the different coatings was measured with

AlamarBlue after 96 h according to the manufacturer’s instruction

(Invitrogen, USA). Kinetic analysis was performed with GraphPad

Prism (GraphPad Software). Average values of triplicates were

calculated after background correction.

Adhesion and quantification of morphological
parameters

LNCaP cells were seeded in a 96-well plate, uncoated or coated

with the indicated reagents at a density of 3.126104 cells/cm2.

After 24 h, 48 h, 72 h and 96 h the cells were fixed with 4%

paraformaldehyde for 20 min on ice, permeabilized with 0.2% (v/

v) Triton X-100/PBS for 10 min, and stained with CellMask Deep

Red Plasma membrane Stain (2.5 mg/mL, Invitrogen) and 1 mg/

mL DAPI (Invitrogen). The assessment of cell adhesion was

performed measuring the number of cells left attached to the plate

after the washing steps using the Operetta High Content Imaging

System (PerkinElmer). The morphological parameters cell area

and nuclei area were quantified.

Time-lapse imaging
Surfaces of a 6 well/plate were coated as described above.

LNCaP cells were seeded at a density of 1.586104 cells/cm2 and

monitored for 96 h. Every 15 min an image was taken with a Zeiss

Axio Observer light microscope (objective 206) to follow shape

changes and migration during time. The videos can be found as

Video S1–S6.

Distribution of F-actin
LNCaP cells were grown on glass cover slips uncoated and

coated with the indicated reagents for 24 h and 96 h. Cells were

then fixed and permeabilized as described above, followed by

staining with rhodamine-phalloidin (1:40, Invitrogen) and 1 mg/

mL DAPI (Invitrogen). The immunofluorescence complexes were

visualized with an Olympus (FV1000 Spectral) confocal micro-

scope using a 606 lens. Optical sectioning was carried out by

acquiring a stack of images at different focal positions along the z-

axis.

Scratch wound assay
LNCaP cells (3.126104 cells/cm2) were seeded in a 96-well

Essen ImageLock plate (Essen BioScience) uncoated or coated as

described previously, and were grown to confluence in a CO2

humidified incubator. After 24 h, the scratch was made using the

96-pin WoundMaker (Essen BioScience). Wound images were

taken every 1 h for 36 h, and the data were analyzed by the
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integrated metric Relative Wound Density part of the live content

cell imaging system IncuCyte HD (Essen BioScience). The

experiment was done in triplicate.

Sensitivity to simvastatin
The influence of FN, PLO and PLL coating on the cell

sensitivity to simvastatin was investigated. LNCaP cells were

seeded in triplicate and grown in a 96-well E-plates as described

above. After 24 h incubation, the cells were treated with different

concentrations of simvastatin (Sigma-Aldrich) and monitored

every 1 h for 60 h using the RTCA system. The IC50 for 24 h,

48 h and 72 h treatment were calculated using the software

GraphPad Prism 5 (GraphPad Software).

qRT-PCR
Surfaces of a 6 well-plate were coated as described above, and

LNCaP cells were seeded at a density of 1.056104 cells/cm2. After

72 h, the growth media was substituted by charcoal-stripped

(androgen-depleted) serum RPMI media (CSS, Invitrogen, USA)

supplemented with 5% (v/v) CSS and the cells were cultured for

48 h. Finally, LNCaP cells were treated with 20% (v/v) ethanol as

control or the androgens R1881 (1 nM) and DHT (10 nM) for

30 h.

Total RNA was obtained using the RNeasy mini kit (Qiagen,

USA) according to the manufacturer’s instructions. The quantity

and the quality of the RNA were measured using a NanoDrop UV

spectrophotometer (ThermoFisher Scientific, USA). Samples with

a 260/280 ratio higher than 2.0 were used for subsequent

procedures. The samples were treated with DNAse Amp grade I,

and 2 mg of total RNA was reverse-transcribed using the cDNA

synthesis method for the qPCR kit (Invitrogen). QRT-PCR was

performed with SYBR Green master mix (Invitrogen) using the

7900HT Fast Real-Time PCR System (Applied Biosystems). Data

were analyzed with SDS2.3 software (Applied Biosystems). The

mRNA expression levels were calculated by the DDCt method and

normalized relative to the expression levels of the house keeping

gene (GAPDH or RPL32) of the respective treatment and

calculated relative to the ethanol uncoated control. The sequences

of the primers used are listed in Table S1.

Results

FN, PLO and PLL improve cell-substrate adherence
The real time cell analyzer (RTCA) xCELLigence is a label-free

methodology that measures proliferation rate, adherence and

morphology based on impedance changes. Changes in impedance

are translated as the unitless term cell index (CI). We performed

RTCA analysis of LNCaP cells seeded in wells pre-treated with the

different coatings at cell densities between 9.46103–6.256104

cells/cm2 in a 96 well plate, and investigated both the attachment

phase (24 h post seeding) (Fig. 1) and the proliferation phase

(24 h to 96 h post seeding) of the cell culture (Fig. 2). It was

assumed that the attachment of cells out of suspension onto the

substrate and the cell morphology changes associated with this

process were the major contributors to the CI during the first 24 h

of the experiment (Fig. 1). Hence, the contribution of prolifera-

tion to the CI for this period was considered marginal, which was

further supported by the fact that LNCaP cells grown under

similar conditions displayed a doubling time of 36 h. [20] Indeed,

comparison of the different seeding densities of the control and the

coating reagents at 3.126104 cells/cm2 in a 96 well plate after

24 h revealed that PLL increased the CI to a similar extent as

doubling the number of seeded cells, i.e. from 3.126104 to

6.256104 cells/cm2 (Fig. S1). At all cell densities, coating with

fibronectin (FN) resulted in the highest CI after 24 h, followed by

poly-L-lysine (PLL) and poly-L-ornithine (PLO). PLL and PLO

increased the CI at very similar rates up to 3.126104 cells/cm2,

while PLO decreased the slope at all cell densities (Fig. 2). The

laminin (LAM) coating did not affect the CI when compared to

control, while collagen type IV (COL) caused the CI to rise slower.

Interestingly, this order was not affected by increasing the number

of seeded cells. These findings suggested that FN, PLL and PLO

markedly improved the attachment of LNCaP cells, with the ECM

protein being superior to the poly-amino acids.

The proliferation phase was monitored from 24 h after seeding

the cells to 96 h (Fig. 2). The major contributors of this phase to

changes of the CI are cell proliferation, adherence and morphol-

ogy. At all cell densities tested, LNCaP cells grown on LAM

displayed a rate of CI increase that was indistinguishable from that

of control. In contrast, LNCaP cells grown on COL substrate

showed a lag phase where the CI did not increase up to 48 h after

seeding, and an overall reduced rate of CI rise (Figs. 2B–E).

These effects were independent of the number of seeded cells. At

all cell densities the PLL substrate caused a detectable slowdown in

the CI increase. The same effect was visible on PLO substrate at

the highest seeding density (6.256104 cells/cm2, Fig. 2E), while

the CI increased faster on PLO-coated substrate at lower seeding

densities (Fig. 2A and B). Apart from the lowest cell density

(9.46103 cells/cm2), the CI rate increase of cells grown on FN

substrate were consistently higher than control (Figs. 2B–E); an

effect which appeared to be unaffected by increases in the number

of seeded cells. Taken together, high cell densities (.4.696104/

cm2) negatively affected the CI when LNCaP cells were grown on

substrates coated with poly-amino acids (PLL and PLO) but were

unaffected with ECM proteins (COL, LAM and FN). This

observation is of particular importance for cell culture experiments

where a high cell confluence is desirable. Furthermore, a seeding

density of 9.46103 cells/cm2 was overall detrimental to cell culture

of LNCaP cells, resulting in lack of cell proliferation, which was

probably due to a scarcity of cell-cell contacts.

All coating conditions reduced cell proliferation but did
not strongly affect LNCaP cell viability

The cell index is a combined measure of the proliferation rate,

adherence and morphology of the cells. Hence, the effects of the

coating reagents on each of these parameters were investigated

separately. The cell density of the coated wells increased slower

than the uncoated wells. Cells grown on FN, PLL, PLO and LAM

displayed similar growth rates (Fig. 3A). Collagen type IV was the

coating substance that negatively impacted cell proliferation the

most. Examination of viability/metabolic activity of LNCaP cells

grown for 96 h on the different coating substrates by AlamarBlue

assay revealed that all coating reagents reduced cell viability, with

COL slightly worse than the other coatings (Fig. 3B). This effect

was similar to the results obtained for well confluence on different

coatings (Fig. 3A). Taken together, these results showed that the

coating reagents affected cell proliferation and metabolism activity

of LNCaP cells.

COL and LAM induced LNCaP cells to aggregate
IncuCyte images revealed that LNCaP cells were attached to

the surface in all coating conditions after 24 h (Fig. 4A). The cells

grown in wells pre-coated with FN, PLL, PLO, LAM, as well as

the control displayed a fibroblast-like shape typical for LNCaP

cells. [21] In contrast, LNCaP cells cultured on COL had a

rounder shape. Cells grown on COL and LAM also tended to

aggregate. In addition, the wells coated with LAM and FN

contained more round cells when compared to the other coating
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substrates (Fig. 4A). The same was observed after 96 h (Fig. 4B).

After 96 h, most of the cells acquired a spindle shape in all coating

conditions. Cells on COL grew in aggregates at 96 h (Fig. 4B).

In order to investigate the effect of the coating reagents on cell

mobility and morphology more detailed in real-time, LNCaP cells

were studied by high magnification time-lapse microscopy. Similar

to the IncuCyte experiment, time-lapse microscopy showed that

COL and LAM (Fig. 4C) caused LNCaP cells to form aggregates.

In addition, cells grown in LAM-coated wells displayed the

presence of numerous polarized cells, characterized by the

presence of asymmetric cells. The PLL- and PLO-treated samples

displayed a similar morphology when compared to the control.

Yet, LNCaP seeded on these substrates seemed to attach faster

than the control cells and migrate less. Videos of the time-lapse

microscopy over a period of 96 h can be found in Video S1–S6.

LNCaP cells attach better to surfaces coated with FN, PLO
and PLL, which also affect cell morphology

Attachment and cell morphology, which compose part of the

CI, were investigated by high content screening (HCS). HCS of

LNCaP cells measured a substantially higher cell density (better

attachment) after pre-treatment of wells with PLO or PLL when

compared to control, FN, COL or LAM at all time points

(Fig. 5A). Cells cultured in the presence of FN attached better

than the control cells at 72 h and 96 h. In regards to cell

morphology changes, the area of the nucleus and the total cell area

were affected by all coatings (Figs. 5B and 5C). Cells cultured on

PLO, PLL and FN for 96 h showed increased nuclear and cellular

areas of at least 8% and 18%, respectively, when compared to

control. Relative to the control, COL and LAM decreased the

nuclear and cellular areas by 7% and 10%, and 15% and 14%,

respectively.

Figure 1. Coating and cell density effects on cell-substrate adherence of LNCaP cells. The cells were monitored for 24 h to analyze cell-
substrate adherence from the time cells were added to the wells (t = 0) using a real-time cell analyzer (xCELLigence, Roche). Each data point is
represented by its means (n = 3) 6 SD.
doi:10.1371/journal.pone.0112122.g001

Figure 2. Coating and cell density effects on proliferation rate and morphology of LNCaP cells. The cells were monitored for 72 h to
analyze the effects of the coatings on LNCaP cells from 24–96 h using a real-time cell analyzer (xCELLigence, Roche). The data was normalized at 24 h
for comparison of the slopes. Each data point is represented by its means (n = 3) 6 SD.
doi:10.1371/journal.pone.0112122.g002
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The different coating reagents affected F-Actin
organization

To investigate the changes in cell morphology and mobility of

LNCaP cells in more detail, we performed confocal fluorescence

microscopy and investigated the F-actin organization of LNCaP

cells, such as the presence of lamellipodia at 24 h (Fig. 6A) and

96 h (Fig. 6B) post-seeding. These structures consist of parallel-

bundled actin filaments that probe the substrate to decide where

and how the focal adhesions should be established for attachment.

In addition, these filaments contribute to the formation of actin

stress fibers. [22,23] The adhesion and spreading of cells involves

the remodeling of the cytoskeleton. Dynamic structures called

focal contacts form around integrins at the adhesion sites. The

integrins are bound to ECM components on one side, and to actin

filaments called stress fibers on the other side. The application of

force in one side cause reaction on the other, and this, together

with integrin signaling pathways, determines the cell shape. [3]

Consistent with the results observed in the time-lapse microscopy

experiment, we observed many polarized cells after 24 h on FN-

and LAM-treated glass cover slips (Fig. 6A). In addition, after

96 h it was observed that the fibers became more disorganized

with some cortical actin accumulation around the cell body and a

reduced number of stress fibers in the presence of FN (Fig. 6B).

Furthermore, FN caused a substantial increase in actin staining,

and the cells lost their polarity (Fig. 6B).

Cells grown in the presence of PLL and PLO (Fig. 6) displayed

a more diffuse actin pattern with some concentrated actin staining

at the cell periphery at 24 h and 96 h. The presence of many actin

bundles and radially extended actin filaments around the cells,

which are called filopodia, were observed. The nuclei of the cells

cultured on PLL displayed a strong DAPI intensity at 24 h

(Fig. 6A), which was reduced at 96 h (Fig. 6B). Moreover, the

nuclei increased in size after 96 h.

At 24 h, the cells in the wells coated with COL (Fig. 6A)

showed an actin pattern similar to the control. Nevertheless, after

96 h of growth, the actin filaments became more organized than

in the control (Fig. 6B).

PLL, PLO, or FN-coated wells increase the attachment of
LNCaP cells and slightly decreased cell mobility, while
LAM increases migration

Morphological changes are usually associated with alterations of

other cell characteristics, including motility, differentiation and

metabolic activity. [24] To address this possibility, the motility of

Figure 3. Relative confluence and cell viability of LNCaP cells seeded on wells pre-coated with different substances over a period of
96 h. LNCaP cells were seeded at 1.256104 cells/cm2 on a polystyrene 96 well-plate uncoated or coated with poly-L-ornithine, poly-L-lysine, collagen
type IV, laminin or fibronectin. (A) Wells confluence was monitored every 2 h for 96 h using IncuCyte system. (B) Metabolic activity/cell viability was
measured by AlamarBlue assay after 96 h. Each data point is represented by its means (n = 3) 6 SD. Significant results (p,0.05) are marked with an
asterisk.
doi:10.1371/journal.pone.0112122.g003
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Figure 4. Morphology of LNCaP cells grown on different coated polystyrene well substrates. LNCaP cells imaged after 24 h (A) and 96 h
(B) with IncuCyte system, 106. Scale bar = 300 mm. (C) Snap shots from the 96 h time-lapse microscopy video of LNCaP cells. Arrows indicate
lamellipodia of polarized cells. Scale bar = 50 mm (206, Zeiss Axio Observer).
doi:10.1371/journal.pone.0112122.g004
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LNCaP cells grown on polystyrene treated with the different

coating reagents was assessed in a wound healing assay (Fig. 7).

LNCaP cells were seeded for 24 h in wells coated with FN, LAM,

PLL, PLO or COL, and the cell monolayer was scratched using a

96-pin WoundMaker. The quality of the wounds generated on

PLL, PLO, or FN-coated wells were superior to the control (no

coating) and LAM, as judged by the relative smoothness of the

edges of the scratch as well as a very similar wound area (Fig. S2).

Another observation was that LNCaP cells cultured in PLO or

PLL-treated wells colonized the well in a semi-organized pattern,

where the elongated cell bodies were aligned in parallel (Fig. S2).

Pre-treatment with LAM did not improve the adherence of

LNCaP cells when compared to the control, and the Wound-

Maker generated wounds with uneven edges and of different area.

LNCaP cells dislodged as large sheets of cells from COL-treated

wells when processed with the WoundMaker (data not shown),

indicating that COL was inferior to uncoated wells and not

suitable for this application. Analysis of the relative wound density

showed that cells grown in the presence of LAM migrated 62%

faster into the wound area than the control cells after 36 h

(Fig. 7). In comparison, PLL, PLO and FN caused LNCaP cells

to migrate slower than the control, displaying a reduction of

wound density by 15%, 33% and 20% grown under these

conditions respectively. Notably, LNCaP cells displayed a

doubling time around 36 h, as observed in the RTCA experi-

ments, [20] suggesting that the observed effects on the wound

density were caused predominantly by cell migration and not

proliferation.

PLL sensitizes LNCaP cells for the HMGCR inhibitor
simvastatin

Previous studies have shown that the pre-coating with ECM

components can affect the sensitivity of cells to various drugs. For

instance, LAM and FN have been reported to increase resistance

to ionizing radiation and to the cytotoxic drug Ukrain in human

tumor and normal cells in vitro. [25] Furthermore, it was reported

that adherence to a FN substrate induced cholesterol synthesis

through activation of HMGCR and also increased fatty acid

synthesis in human fibroblasts and rat hepatoma cells, while a PLL

substrate or FN in solution had no effect on these pathways [26].

Hence, the effect of the coating reagents PLL, PLO and FN on

the sensitivity of LNCaP cells to the HMGCR inhibitor

simvastatin was investigated by RTCA, and the IC50 was

calculated for treatment periods of 24 h, 48 h, and 72 h (Fig.
S3). LAM and COL effects were not analyzed because these

coating reagents had adverse effects on LNCaP cell-surface

adherence and caused cell aggregation. While the IC50 for

simvastatin was relatively similar among the four coating

conditions at 24 h, PLL increased the sensitivity of LNCaP cells

to the HMGCR inhibitor by two-fold after 48 h of treatment

when compared to control (Fig. S3). At 72 h, LNCaP cells grown

on a PLL substrate displayed a three-fold lower IC50. Similarly,

PLO and FN increased the sensitivity of LNCaP cells to

simvastatin by two-fold relative to the control at 72 h. However,

it has been observed that PLO, PLL and FN reduced the cell

viability by one third at 96 h (Fig. 3B). Hence, the sensitization of

LNCaP cells by PLO and FN to simvastatin might be actually the

effect of these coatings on cell viability. In this case, only PLL may

Figure 5. Quantification of morphological parameters and cell density of LNCaP cells (3.126104 cells/cm2) seeded on indicated
coating reagents. Cells were analyzed for cell density (A), nuclear area (B) and cellular area (C) at four different time points using a high content
screening instrument (Operetta).
doi:10.1371/journal.pone.0112122.g005
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significantly sensitize LNCaP cells for the HMGCR inhibitor

simvastatin in a time-dependent manner.

Androgen responsiveness and AR signaling were in
general not affected by the coating conditions

In the healthy human adult prostate epithelium, AR expression

and cell adhesion to the substratum occur in separate cell layers,

namely in luminal and basal cells. Hence, the pathways of AR

signaling and cell adhesion are unlikely to interact directly. [29]

During the development of prostate cancer, malignant luminal

epithelial cells change from cell-cell adhesion to cell-substratum

adhesion, and signals from cell adhesion and AR are co-expressed.

[27] The LNCaP cell line is an important model system to study

androgen receptor (AR)-mediated signaling in prostate cancer. It

was recently shown that changes to cell-cell contacts and the

extracellular matrix altered the response of LNCaP cells to

androgens. [28] Hence, it was important to investigate if the

coating reagents FN, PLL and PLO, which increased LNCaP

adherence, affected AR signaling in this model system. To address

this issue, the expression of genes regulated by androgens was

examined by qRT-PCR. [28] As shown in Figure 8 for the classic

androgen-regulated genes PSA [29], TMPRSS2 [30] and FKBP5

[28], androgen-depleted LNCaP cells displayed a typical response

to androgen treatment with DHT or the synthetic androgen

R1881 by an up-regulation of gene expression when compared to

control. Furthermore, analysis of additional androgen-regulated

Figure 6. Immunofluorescence of LNCaP cells stained for F-actin. Cells were grown on glass cover slips without coating (control), or coated
with fibronectin (FN), laminin (LAM), poly-L-lysine (PLL), poly-L-ornithine (PLO), or collagen type IV (COL IV). After 24 h (A) or 96h (B), cells were stained
for F-actin with rhodamine-phalloidin, counterstained with DAPI, and analyzed by confocal fluorescence microscopy (606, Olympus). Arrows indicate
lamellipodia of polarized cells and arrow heads mark filopodia. Scale bar = 50 mm.
doi:10.1371/journal.pone.0112122.g006
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genes derived from a gene set of 6598 genes commonly regulated

by androgens (DHT and R1882) showed no significant differences

in their differential expression (Fig. S4). [28] In summary,

androgen responsiveness and AR signaling were in general not

affected by growing LNCaP cells on PLO, PLL or FN substrates.

Table 1 summarizes the effects of the different coating substrates

on androgen responsiveness and on other cellular parameters

investigated in this study.

Discussion

Most epithelial derived cells are anchorage-dependent. Their

attachment to a surface is mandatory for viability and prolifera-

tion, and detachment induces cell death through the process of

anoikis. Attachment is also necessary for events such as cell

spreading, cell migration and differentiation. [13] The use of ECM

components such as FN, COL and LAM to improve cell

attachment is a common practice in tissue culture and may be

essential for high throughput screening where liquid shear forces

can disrupt cell attachment. The use of other substances such as

poly-amino acids and different textures of the substrate surface are

alternative strategies used to improve the adherence of cells.

Nevertheless, an increase in cell-substrate adherence can affect

various aspects of cellular behavior. For example, cell surface

receptors (integrins) that mediate the cell attachment also control

processes such as survival, proliferation, differentiation and

migration [7].

The prostate cancer cell line LNCaP is a popular model system

to study androgen-regulated pathways critical for this disease.

Nevertheless, use of LNCaP cells in applications like siRNA-

Figure 7. Wound healing assay by live cell imaging on the IncuCyte system. Relative wound density at different time points of LNCaP cells
over a period of 36 h. The measurements are from wounds made on a monolayer of LNCaP cells cultured in the presence of different coating
treatments and control.
doi:10.1371/journal.pone.0112122.g007

Table 1. Summary of the general effects of the coating substances on different cellular parameters.

Cellular parameter Poly-L-lysine Poly-L-ornithine Fibronectin Laminin Collagen type IV

Abbreviation PLL PLO FN LAM COL

Attachment q q q Q Q

Proliferation Q Q Q Q Q

Cell viability Q Q Q Q Q

Cellular area q q q Q Q

Nuclear area q q q Q Q

Migration « Q « q nd

Actin organization Q Q Q « q

Actin staining « « q « «

Polarized cells Q Q Q q «

Cell aggregation « « « q q

Androgen response « « « nd nd

Sensitivity to simvastatin q « « nd nd

The results below were obtained by the analysis of the last time point of different experiments. Nd = not determined; Q=decrease; q= increase; «=no change
observed.
doi:10.1371/journal.pone.0112122.t001
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mediated gene silencing, immunofluorescence microscopy, wound

healing, and high content screening, which involve tissue culture

manipulations that generate mechanical forces like fluid shear

stress is currently negatively impacted by their weak attachment to

polystyrene and glass surfaces. To facilitate the use of LNCaP cells

in these assays, different coating reagents and seeding densities

were tested. Three ECM proteins (FN, COL and LAM) and two

poly-amino acids (PLL and PLO) were used to pre-coat the wells

before cells were seeded. The RTCA instrument measures the CI

of the cell culture in real time based on changes to the impedance,

which is influenced by adherence, cell morphology and cell

number. Hence, in a proliferating cell culture the CI increase over

time is mainly due to an increase in the cell number. Nevertheless,

RTCA results need to be interpreted with caution because major

changes to cell morphology and adherence can give a misleading

understanding of the proliferative status of a cell culture. This was

highlighted by the first 24 h of the RTCA experiment where

coating-mediated changes in cell adherence increased the CI to

the same extent as a doubling of the cell number. Hence, the

RTCA experiment was divided into two phases, the attachment

phase and the proliferation phase. Monitoring of the attachment

process in real time revealed that FN, PLL and PLO markedly

improved adherence of LNCaP cells. Notably, the ECM protein

(FN) was superior to the relatively unspecific poly-amino acids

(PLL and PLO). An accelerated increase of the CI in the presence

of FN was previously reported for NIH3T3 and ND7/23 cells.

[31,32] The effect of all five coating reagents on LNCaP cells

during the attachment phase was not impacted by alterations in

the seeding cell density. However, this was not the case during the

proliferation phase, i.e. substrate coated with PLO negatively

affected the CI when LNCaP cells were seeded at high cell

numbers (.3.126104 cells/cm2) and PLL decreased CI slope at all

cell densities. PLL has been previously shown to slow down the

rising CI over time in NIH3T3 cells. [31] This density-dependent

effect was not observed with ECM proteins (COL, LAM and FN).

This observation is of particular importance for cell culture

experiments where a high cell confluence is desirable. Further-

more, the results shown here advise against a too low seeding

density (9.46103 cells/cm2) and recommend a seeding cell number

between 1.566104 and 3.126104 cells/cm2 in a 96-well plate. The

measurement of cell density in a live content imaging experiment

revealed that the CI increase observed in the presence of PLO and

FN were not due to a positive effect on cell proliferation. Actually,

the proliferation rate slightly decreased in the presence of coating.

Hence, the phenomenon observed was a result of an increase in

cell adherence and/or morphology changes. The decrease in CI

observed with COL-coated polystyrene could be explained by the

clustering of cells into aggregates, the round cell morphology and

the reduction in the proliferation rate. This phenomenon was also

observed with platelets cultured in the presence of collagen type

IV. [33] HCS data confirmed the smaller cellular area and also the

weak attachment of the cells to the COL substrate. LNCaP cells

dislodged as a sheet of cells during the scratch making, and it was

not possible to obtain a useful scratch on COL substrate. In

contrast, the data obtained from confocal fluorescence microscopy

indicated that the cells grown on COL-coated glass attached well

to the substrate and displayed a morphology that was similar to the

control. An increase in stress fibers and in lamellipodia for the cells

cultured on COL was also observed, suggesting increased cell

mobility. The structures observed are the result of integrin-

mediated cell adhesion that re-organizes the actin cytoskeleton of

the cells. This event comprises the recruitment of signaling

complexes to the membrane. [7] The disparity between the results

with COL coating could be due to the different surface substrate

Figure 8. Relative expression levels of classic AR-regulated
genes in response to androgen treatment in the presence of
different coatings. LNCaP cells were grown on uncoated (NC) or
coated wells (PLL, PLO or FN) in androgen-depleted medium for 72 h
before androgen treatment with R1881 (1 nM) and DHT (10 nM) for
30 h. The expression levels of the indicated genes were analyzed by
qRT-PCR, normalized to the housekeeping gene GAPDH and calculated
relative to the ethanol uncoated control (NC).
doi:10.1371/journal.pone.0112122.g008
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material used (polystyrene versus glass). It has been previously

shown that different substratum characteristics, including surface

charge, topography, hydrophobicity or hydrophilicity, surface

chemistry and surface energy may influence cell behavior. [34]

The characteristics of the substrate may also affect the polymer-

ization/conformation of the ECM protein that could exhibit

different binding sites to interact with integrins. Thus, the modified

cell-substrate interaction could affect the generation of intracellu-

lar signals. [14,35,36] The experiments using RTCA, HCS and

phase-contrast microscopy were performed with polystyrene

plates, while glass cover slips were used for confocal fluorescence

microscopy. Moreover, the response of cells to diverse textures is

different than when they are on a smooth surface. [13] It has been

demonstrated that rough surfaces are advantageous for cell

attachment. This fact is continuously used in the development of

osteoimplants [37–39].

LAM did not affect the CI compared to control. However,

LAM decreased the cell proliferation rate and the adherence of

LNCaP cells, as shown by the slightly worse scratches during the

wound making process when compared to the control. Despite

this, calculation of the relative wound density revealed that cells

grown on LAM substrate migrated into the wound much faster

than the control or any of the other coatings. This increased cell

mobility was also observed by time lapse microscopy and was also

indicated by the large number of polarized cells with expanded

filopodia.

The effect of FN on the CI was mainly due to an improvement

in adherence. LNCaP cells seeded on FN quickly attached to the

substrate as observed by time-lapse microscopy. These findings

were supported by the increase in cell area observed by HCS, and

by the increase of cellular F-actin and filopodia. Despite the

increase in stress fibers and lamellipodia, FN reduced the mobility

of LNCaP cells, which may be related to the increase in

attachment of the cells to the substrate and to the reduction in

polarization. The observed decrease of LNCaP cell proliferation

with FN is in accordance with literature data [40].

As shown by HCS, F-actin staining and wound assay, PLO and

PLL improved adherence of LNCaP cells to polystyrene and glass

when compared to control. It is the first time that PLO has been

reported to increase the adherence of LNCaP cells. The use of this

poly-amino acid has been preferable to PLL in some applications

for being less immunogenic. [41] The flat morphology of the cells

and the high intensity of F-actin staining could be observed on the

confocal images. Furthermore, it is noteworthy to mention the

presence of many filopodia around the cells. Work by the Faix lab

demonstrated that the number of filopodia is directly proportional

to the dDia2 protein level in the cell. [42] Abundant filopodia have

been linked to invasive phenotype in cancer cells when most of the

filopodia are found at the lamellipodia of a migrating cell but not

all around the cell like in our data. [43] The finding that PLL and

PLO improved adherence was further supported by a reduction in

cell migration as seen in the wound healing assay and time lapse

microscopy. A correlation between strong cell adhesion and

reduced mobility has been noted when NHK cells are grown on

laminin-332 matrix. [44] The cells also displayed a more

disorganized actin pattern with many filopodia around the cells.

The reduced number of stress fibers, lamellipodia and polarized

cells suggest that the cells were not constantly migrating. A similar

phenotype has been described for MDA-MB-231 cells treated with

strongylophorine-26. The inhibition of cell migration by this

marine natural product was in part due to the transient activation

of the small GTPase Rho. This protein is important in the

regulation of actin dynamics and cell adhesion in migratory cells

though the formation of stress fibers and focal adhesions. In

addition, Rho, Rac proteins and CDC42 seem to be likely

candidates affected by the coatings because of their roles in the

induction of lamellipodia and polarization. [45,46] On the other

hand, PLL and PLO had only minor effects on cell morphology,

such as a slightly increased cellular area. Interestingly, cells seeded

at high confluence on PLL and PLO grew in an organized pattern,

where cells were aligned parallel to each other. Filopodia have an

important function in the assembling of adherens junctions

between cells. Thus, the interdigitation of the abundant number

of filopodia observed on the cells grown on PLL and PLO might

have contributed to the parallel cell alignment. [43] Hence, the

increased CI rate/doubling time relative to control observed by

RTCA was probably predominantly caused by a stronger

adherence and increased cell surface area attached to the well.

It is well known that physic-chemical characteristics of the

substratum can modulate gene expression by remodeling chro-

matin structure. The reorganization of chromatin may allow

access of protein complexes and transcription factors. [47,48]

LNCaP cells grown on PLL displayed elevated DAPI staining

intensity compared to the control at 24 h. The increase in DAPI

staining might be related to the increase in chromatin condensa-

tion. Interestingly, the nuclear area of these cells was larger at 96 h

along with reduced DAPI staining. Vergani and collaborators

showed that modifications of cell shape directly reflected on the

nucleus and the nuclear architecture, followed by chromatin

condensation, and finally affecting the transcriptional profile of

genes. [49] In addition, the integrins presented by the cells are an

effect of the surface substrate which can control the expression

levels of their subunits [50].

FN, PLO and PLL were the coating reagents that improved

LNCaP cell-substrate adherence. A previous study found that

adherence to a FN substrate induced cholesterol (HMGCR

activity) and fatty acid synthesis in human fibroblasts and rat

hepatoma cells, while a PLL substrate or FN in solution had no

effect on these pathways. [26] In addition, FN has been reported

to prevent cells from undergoing apoptosis, the mode of death

induced by simvastatin. [40] Our studies with the HMGCR

inhibitor simvastatin showed that PLL affected the sensitivity to

simvastatin. The reason for this somewhat unexpected result is

unclear.

The LNCaP cell line is an important model system to study AR-

mediated signaling in prostate cancer. It was recently shown that

changes to cell-cell contacts and the extracellular matrix altered

the response of LNCaP cells to androgens. [28] Importantly, our

qRT-PCR analysis revealed that coating with FN, PLL or PLO in

general did not alter the response of LNCaP cells to androgens.

Although the data shown here investigated only a small cohort of

androgen-regulated genes, they strongly suggest that coating with

FN, PLL or PLO did not in general change the response of

LNCaP cells to androgens, highlighting that these coating reagents

are suitable for this important model system of prostate cancer.

Conclusions

LNCaP cells are the most popular model to study AR-regulated

pathways in prostate cancer; however, their use is technically

challenging due to their weak cell-substrate adherence. In order to

facilitate the use of LNCaP cells in assays that require a strong

attachment of the cells to the substrate, five different coating

reagents were compared for their impact on various cellular

parameters. Coating with PLO, PLL or FN and a cell density of

3.126104 cells/cm2 were found to be ideal with respect to

improved adherence and minimal adverse effects on cell behavior.
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Supporting Information

Figure S1 Cell density effects on cell index (CI) of
LNCaP cells seeded on uncoated wells. Different numbers

of cells were seeded on uncoated wells and monitored for 24 h to

analyze cell-substrate adherence from the time cells were added to

the wells (t = 0) using a real-time cell analyzer (xCELLigence,

Roche). Each data point is represented by its means (n = 3) 6 SD.

(TIF)

Figure S2 Wound healing assay by live cell imaging on
the IncuCyte system. Representative images of wounds made

on confluent LNCaP cells grown for the indicated times on wells

coated as labeled on the left side of the panel. The initial wound

contour (t = 0 h) is marked by the dark cell mask and migrating

cells are visualized in light gray.

(TIF)

Figure S3 Sensitivity of LNCaP cells cultured on
different coatings to simvastatin. 24 h after seeding, cells

were treated with 98 nM–50 mM simvastatin and growth was

monitored for 72 h by RTCA. The IC50 was calculated for the

indicated time points together with the 95% confidence interval

(CI).

(TIF)

Figure S4 Relative expression levels of AR-regulated
genes in response to androgen treatment in the presence
of different coatings. LNCaP cells were grown on uncoated

(NC) or coated wells (PLL, PLO or FN) in androgen-depleted

medium for 72 h before androgen treatment with R1881 (1 nM)

and DHT (10 nM) for 30 h. The expression levels of the indicated

genes were analyzed by qRT-PCR, normalized to the housekeep-

ing gene GAPDH and calculated relative to the ethanol uncoated

control (NC).

(TIF)

Table S1 Sequences of the sense and antisense primers
used for qRT-PCR experiments.

(DOCX)

Video S1 Time-lapse microscopy video of LNCaP cells
grown on a well without coating for 96 h. Scale

bar = 50 mm (206, Zeiss Axio Observer).

(AVI)

Video S2 Time-lapse microscopy video of LNCaP cells
grown for 96 h on a well coated with poly-L-lysine. Scale

bar = 50 mm (206, Zeiss Axio Observer).

(AVI)

Video S3 Time-lapse microscopy video of LNCaP cells
grown for 96 h on a well coated with poly-L-ornithine.
Scale bar = 50 mm (206, Zeiss Axio Observer).

(AVI)

Video S4 Time-lapse microscopy video of LNCaP cells
grown for 96 h on a well coated with fibronectin. Scale

bar = 50 mm (206, Zeiss Axio Observer).

(AVI)

Video S5 Time-lapse microscopy video of LNCaP cells
grown for 96 h on a well coated with collagen type IV.
Scale bar = 50 mm (206, Zeiss Axio Observer).

(WMV)

Video S6 Time-lapse microscopy video of LNCaP cells
grown for 96 h on a well coated with laminin. Scale

bar = 50 mm (206, Zeiss Axio Observer).

(AVI)
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