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Abstract: Molecular computing and bioinformatics are two important interdisciplinary sciences
that study molecules and computers. Molecular computing is a branch of computing that uses
DNA, biochemistry, and molecular biology hardware, instead of traditional silicon-based computer
technologies. Research and development in this area concerns theory, experiments, and applications
of molecular computing. The core advantage of molecular computing is its potential to pack vastly
more circuitry onto a microchip than silicon will ever be capable of—and to do it cheaply. Molecules
are only a few nanometers in size, making it possible to manufacture chips that contain billions—even
trillions—of switches and components. To develop molecular computers, computer scientists must
draw on expertise in subjects not usually associated with their field, including organic chemistry,
molecular biology, bioengineering, and smart materials. Bioinformatics works on the contrary;
bioinformatics researchers develop novel algorithms or software tools for computing or predicting
the molecular structure or function. Molecular computing and bioinformatics pay attention to the
same object, and have close relationships, but work toward different orientations.

Keywords: molecular computing; bioinformatics; machine learning; protein; DNA; RNA; drug;
bio-inspired

1. Introduction

The origin of molecular computing was as early as 1961, which was conceived by Feynman [1].
Due to the limitations of experimental conditions, materials, and biotechnology at that time, Feynman’s
idea was not really realized. In the following decades, biological theories have been evolving, and
new biotechnology and experimental methods have been constantly emerging, which paved the way
for the final reality for molecular computing. In 1994, Adleman [1] put forward a DNA molecular
biological calculation method based on the Hamilton graph and successfully achieved molecular
computing in DNA solution for the first time. Adleman’s pioneering work opened a new field for
computational science, which was of great significance and soon gained extensive attention from
researchers in the field of mathematics, computer, biology, etc. In addition, other biological computing
models, such as membrane computing [2], bacterial computing [3], evolutionary calculation [4,5], and
virus calculation [6] have been proposed and implemented.

With the development of new generation sequencing technology, the scale of DNA, RNA, and
protein biological database has been increasing dramatically [7]. An era of biological big data set
in. How to efficiently analyze biological big data becomes a great challenge. Bioinformatics is an
important means to cope with this challenge [8,9]. Bioinformatics combines the tools of mathematics,
computer science, and biology to more efficiently elucidate and understand the biological implications
and significance for a variety of sequence and structure data as well as other biological data, which has
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enormously promoted the research and development of many areas relative to biology. For instance,
specific biological macromolecules identification and functional analysis could be achieved via
bioinformatics [10,11]. By means of bioinformatics, we could uncover the relationship between
genes and diseases and analyze the mechanism of diseases, both of which would benefit diseases
diagnosis, diseases treatment, and even epidemic prevention [12,13]. Using the relationship between
the structure and function of biomolecules gained by bioinformatics, we could analyze the effective
composition of complex drugs, discover the target of new drugs, and design new drugs [14]. All of these
achievements come with new software, new algorithms, and new tools originated from continuously
evolving bioinformatics.

After a rigorous review process, 25 papers submitted from numerous countries including China,
Malaysia, South Korea, Poland, Saudi Arabia, and so on are published in the special issue. Twenty-two
of these papers are directly related to topics of molecular computation and bioinformatics. Three of
them are new areas with overlapping frontiers, which are assigned to bio-inspired research areas. It
is hoped that the researchers’ results and perspectives in the issue will arouse readers’ interest and
inspire readers.

2. Molecular Computing

Differing from traditional silicon-based computing, DNA computing is an integrated technology
with DNA molecules, biochemical reactions, and molecular biology. As the field has gained insight into
the molecular structures, physical–chemical properties and biomechanisms of DNA, DNA computing
has been developing rapidly and become an increasingly important branch in the field of computing.
The DNA double strands complementary hybridization rule is the cornerstone for DNA computing.
Based on this, it uses well-designed DNA sequences with a variety of carefully selected parameters
such as the position binding force of the double-strand formation to realize the chemical reaction
of the DNA chain system for DNA computing. Two articles in the issue focus on DNA computing.
Han et al. [15] designed an 8-bit adder/subtractor with domain tags based on DNA chain displacement.
The adder/subtractor used different domains to represent 0 and 1 signals instead of high and low DNA
concentration. Their simulation results proved the feasibility and accuracy of the adder/subtractor
logic calculation model based on the domain label, which could extend its application for molecular
logic circuits. Beak et al. [16] developed an enzyme weight-updating algorithm on the basics of
DNA molecular learning for future smart molecular computing systems. The new algorithm used
a hypernetwork model, which integrated the internal circulation structure of DNA and ensemble
learning to update the enzyme weight. It enabled the enzyme to be used for the large-scale parallel
processing of DNA. At the same time, the intuitive method of DNA data construction in Beak’s work
could significantly reduce the number of unique DNA sequences that are needed for covering the
large search space of the feature set. It was an algorithm that realized the combination of molecular
computation and machine learning.

Along with DNA computing as one of the biological computing models, there are other forms of
biological computing, including membrane calculation [17–19], evolutionary calculation [4,5], virus
calculation [6], etc. The purpose of bacterial computing is to build “bacterial computers” to solve
complex problems. In this issue, Wang et al. [20] proposed a bacterial and plasmid computing
system (BP system). Two bacteria, 34 plasmids, and two genes were used to build two BP systems to
demonstrate the possibility of building powerful bacterial computers.

3. Bioinformatics

3.1. Biomolecules Structure and Function Analysis

The analysis of the structure and function of biomolecules is an important area in biology, which
involves multiple subjects such as protein secondary structures, protein and gene identification, and
the analysis of specific functional binding sites for DNA and proteins, etc. The algorithm tools
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and software provided by bioinformatics greatly advance the progress in these fields. This special
issue contains six related papers to the subtopic. Ping et al. [21] utilized bioinformatics tools and
software such as the Basic Local Alignment Search Tool (BLAST), MEGA7.0, GSDS2.0 etc. to identify
laccase gene families from three different Brassics. A series of changes under the stress for BnLACs
(laccase genes from the Brassica napus genome) expression was investigated by RNA sequencing and
quantitative real-time polymerase chain reaction and resulted in better insights for BnLACs’ evolutions
and functions. Su et.al. [22] used TransportTP, WOLF-PSORT, MEME, and other bioinformatics tools to
conduct genome-wide identification and comparison of oligopeptide transporter (OPT) family genes for
ginseng and 11 flowering plants. They also analyzed the expression, evolution, and biological function
of OPT family genes. Their work improved the interpretation of metabolic transport mechanism and
signal transduction during the cultivation of ginseng plants. Miskiewicz et al. [23] applied WebLogo,
ContextFold, RNApdbee, RNAComposer and other tools to discover structural motifs in miRNA
precursors from the Viridiplantae kingdom, and they revealed the secondary structural pattern of
microRNA. Kalidasan et al. [24] studied the iron harvesting system of stenotrophomonas maltophilia
using BLAST tools and biological experimental techniques, and proved that stenotrophomonas
maltophilia acquired iron during iron starvation and used specific iron sources. Zhang et al. [25]
proposed a method called Reprsent Concat, which integrated multiple heterogeneous interactive
networks. The method was able to infer gene function. More heterogeneous network methods
and applications could be referred to the review [26]. Feng et al. [27] carried out a support vector
machine ensemble classifier algorithm to construct a recognition method for D modification site in
the saccharomyces cerevisiae transcriptome. They achieved an accuracy of 83.09% with a Matthew
correlation coefficient of 0.62. Using machine learning to predict modification sites is currently a
hot topic in the field of biological information. Some state-in-art deep learning methods have been
developed for predicting N6-methyladenosine(m6A) [28], N4 -methylcytosine (4mC) [29], and so on.

In addition, molecular topological index is defined as the invariant of the distance or degree of the
vertex in the molecule, which is used to describe molecules and is useful for predicting the physical
and chemical properties of proteins, DNA, and RNA and for verifying macromolecular structural
characteristics. In the issue, Zhang et al. [30] employed two classical operations in graph theory, i.e.,
Cartesian product and graph connection, to construct an edge version topological index for atomic
bond connection and geometric frameworks. They gave the proof detail of theory involved.

3.2. Drug Research and Development (R&D)

It is well known that drug R&D is notoriously long and expensive. A study published in
Nature Medicine in 2010 found that a drug took an average of 13 years and cost $1.8 billion to
develop from its initial laboratory study to its final release [31]. However, bioinformatics enables us
to effectively reduce the drug R&D period and expense, thus making it more productive for drug
R&D. In the issue, Chen et al. [32] gave a comprehensive overview of machine learning algorithms
for drug-target interaction prediction, and also summarized a brief list of frequently used databases.
They introduced the principles, pros, and cons of representative methods, especially the latest new
algorithms, and expounded the challenges and future trends for drug–target interaction prediction. In
response to the challenge regarding the dense protein interaction network identification algorithm
not being suitable for sparse protein–protein interaction (PPI) networks, Cao et al. [33] developed a
new method for identifying punitive protein complexes based on penalized matrix decomposition
(PMD). This method surpassed previously reported methods, and achieved an ideal overall f-measure
performance, better accuracy (ACC), and a maximum matching rate. Chen et al. [34] constructed
a prediction algorithm for the outflow mechanism of p-glycoprotein compound substrates, which
could be used for drug discovery and development. In Chen’s work, a new hierarchical support
vector regression scheme was built to study the nonlinear quantitative structure–activity relationship
(QSAR) and explore the complex relationship between descriptor and outflow rate. With deep learning
framework, Hu et al. [35] proposed a general method (SDHINE) for predicting adverse drug reactions
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by embedding heterogeneous networks, which integrated protein–protein interaction (PPI) information
into drug embedding. Indeed, machine learning—including deep learning—is so helpful for drug
R&D that quite a mass of works has published in recent years. For example, besides in this issue, Su et
al. [36] used different deep learning methods to predict the efficacy and adverse reactions of cancer
drugs. Ding et al. predicted the correlation between drug targets [37,38] and drug side effects [39,40]
with types of machine learning methods.

Additionally, a review of the use of bioinformatics to identify Chinese herbs is presented in this
special issue. Han et al. [41] outlined the two kinds of technology—biochip and DNA barcode—and
their application for the identification of Chinese herbal medicine. Chinese herbs generally came from
a wide range of sources, and some of them seemed to be so similar that it was hard to distinguish them
by shape, color, or other apparent characteristic. However, with bioinformatics strategic methods,
the identification of Chinese herbal medicine composition was speedy and accurate, as mentioned
by Han et al.

3.3. Disease Analysis and Research

Bioinformatics affords us a feasible and novel means for studying on diseases diagnosis, treatment,
and even on transmission mechanism. This special issue includes several related papers. Oh et al. [42]
used the TRANSFAC tool and biological experimental technique to study the therapeutic effect of the
HIF-1 alpha hypoxia inducer on peri-implant bone formation in diabetic mice, and concluded that the
local application of HIF-1 alpha induced gene expression and growth promotion of the bone around
the implant. On the basis of amino acid mutation, Qiang et al. [43] established a prediction model
of avian influenza transmission from bird to human via using random forest, support vector, and
other machine learning methods. Their research concluded that there were three molecular patterns
of avian-to-human transmission for avian influenza that existed in nature. Xu et al. [44] exploited a
support vector machine (SVM) to discriminate genes of Alzheimer’s syndrome (AD) with an accuracy
of 85.7%. Zakariah et al. [45] used the new generation sequencing technology, Hum-mPLoc 3.0, and
other tools to study the human mycoplasma protein targeting the endoplasmic reticulum and its
effect on the causes of prostate cancer. Their prediction found that intercellular infection in host cells
was capable of leading to prostate cancer. Abnormal miRNA expression in various environmental
factors (such as anxiety, alcoholism, etc.) gives rise to a series of diseases. The identification of
the relationship between miRNA and environmental factors would facilitate the curing of diseases.
Luo et al. [46] developed a new algorithm that integrated multiple types of biological information to
reveal the interaction between miRNA and environmental factors, and the area under curve(AUC) of
the algorithm reached 0.8208. Similarly, web-based methods have also been applied to predict the
relationship between miRNA and disease [47–50]. The gene fusion structure is a common somatic
mutation in cancer genome. The identification of drivers for fusion structures is of great importance for
many downstream analyses, and is useful for clinical practice. Xu et al. [51] proposed a new algorithm
for the stable identification of fusion structure driver genes. The algorithm took the gene network as a
priori information and estimated the driver gene according to the destructive hypothesis.

Beyond the above-mentioned studies, this issue collectsan article on large-scale biomedical text
data mining. Xing et al. [52] developed a parallel processing framework called ParaBTM for biomedical
text mining on supercomputers. When running on the Tianhe-2 supercomputer, it took less than 12 h
to process 60178 PubMed full texts by ParaBTM.

4. Bio-Inspired Research

The remaining three papers are on cross-cutting research and organized as a bio-inspired research
area. Inspired by DNA sequences with the biological properties such as parallel computation and low
energy consumption, DNA computation and DNA coding are widely used in image encryption [53].
In this issue, Wang et al. [54] introduced their new algorithm for correcting image encryption errors
by using DNA coding. Hamming distance was used to reduce the similarity of DNA sequences
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for error correcting. Image edge detection is a fundamental task in image processing and computer
vision. Yuan et al. [55] applied the enzymatic numerical P system (ENPS) to solve image edge detection
problems. ENPS was a cell-like P system with a nested membrane structure consisting of four
membranes. The calculation of edge detection was carried out in parallel among the three inner
membranes. Exploring and examining the causal relationship between variables has shown great
practical value in recent years, and could be used for scientific discovery from big data. Hong et al. [43]
constructed the so-called K2 and BSO combined causal discovery optimization algorithm, which
mimicked the human way of solving problems with brainstorming. Their algorithm took advantage of
the K2 mechanism and used BSO to design the optimal topological order of searching nodes instead of
the traditional graph space, which was able to solve the problem that the traditional algorithm could
not work properly, since the graph space was too large.

5. Conclusions

This special issue covers several emerging topics in the fields of molecular computing and
bioinformatics, which is supposed to intrigue a wide variety of readers. It must express gratitude to the
Molecules editorial board for offering such a good opportunity to organize such a special issue. It must
also appreciate the efforts of the reviewers to ensure the high quality of this special issue. Finally, it is
thankful for all those who have contributed to this issue. More authors and readers are expected to
contribute to Molecules in the future.
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