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Abstract  
The rise in multi-drug resistant bacteria and the inability to develop novel antibacterial agents limits our arsenal against 
infectious diseases. Antibiotic resistance is a global issue requiring an immediate solution, including the development of new 
antibiotic molecules and other alternative modes of therapy. This article highlights the mechanism of bacteriophage treat-
ment that makes it a real solution for multidrug-resistant infectious diseases. Several case reports identified phage therapy 
as a potential solution to the emerging challenge of multi-drug resistance. Bacteriophages, unlike antibiotics, have special 
features, such as host specificity and do not impact other commensals. A new outlook has also arisen with recent advance-
ments in the understanding of phage immunobiology, where phages are repurposed against both bacterial and viral infec-
tions. Thus, the potential possibility of phages in COVID-19 patients with secondary bacterial infections has been briefly 
elucidated. However, significant obstacles that need to be addressed are to design better clinical studies that may contribute 
to the widespread use of bacteriophage therapy against multi-drug resistant pathogens. In conclusion, antibacterial agents 
can be used with bacteriophages, i.e. bacteriophage-antibiotic combination therapy, or they can be administered alone in 
cases when antibiotics are ineffective.
Key points
• AMR, a consequence of antibiotic generated menace globally, has led to the resurgence of phage therapy as an effective 
and sustainable solution without any side effects and high specificity against refractory MDR bacterial infections.
• Bacteriophages have fewer adverse reactions and can thus be used as monotherapy as well as in conjunction with 
antibiotics.
• In the context of the COVID-19 pandemic, phage therapy may be a viable option.

Keywords Bacteriophage therapy · Multi-drug resistance (MDR) · Phage cocktail · Extreme-drug resistance (XDR) · 
Combination therapy · Antimicrobial resistance (AMR)

Introduction

“The role of the infinitely small in nature is infi-
nitely great…”. The prevailing global pandemic 
COVID-19 reminds us of this quote by the Father of 

Microbiology-Louis Pasteur. The current pandemic makes 
us realize and reimagine the immense power of the tiniest 
microorganisms. Phages are viruses that infect prokaryotic 
(bacteria) cells but have no effect on eukaryotic (human 
or animal) cells; hence, they can be employed to manage 
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infections caused by bacteria (Domingo-Calap and Del-
gado-Martínez 2018). The administration of bacterio-
phages for treatment traces back almost a century, and the 
widespread availability of effective and safe antibacterial 
medications following WWII led to scepticism of bacte-
riophage use until the 1990s (Abedon et al. 2011).

Over the last three decades, the global spread of multi-
drug resistant (MDR), pan-drug resistant (PDR), and 
extreme-drug resistant (XDR) bacteria, as well as the 
decreased availability of new effective antibacterial agents, 
has rekindled the scientific community’s interest in bacte-
riophage as an alternate antibacterial agent (Perros 2015; 
WHO 2018). Phage particles are natural and versatile. Fur-
thermore, owing to their (phages) lack of affinity for eukary-
otic cells, their modifications contribute to their prospective 
use in gene therapy and medicinal applications (Hashemi 
et al. 2010; Robertson et al. 2011; Yata et al. 2014; Bardy 
et al. 2016). According to Biset et al. (2020) and Folliero 
et al. (2020), the most commonly reported resistant bac-
teria were Escherichia coli (56.67%), Klebsiella pneumo-
niae (50%), Enterobacter cloacae (100%), Staphylococ-
cus aureus (45.45%), Coagulase-negative Staphylococcus 
aureus (76.47%), Enterococcus spp. (97.50%), Acinetobacter 
baumannii (100%), and Pseudomonas aeruginosa (96.80%). 
If corrective measures are not implemented, MDR infection 
mortality may exceed 10 million by 2050 (WHO 2020).

Antibiotic resistance (AR) has been continuously 
increasing and has primarily been addressed from the 
perspective of human misuse, whereas in veterinary and 
agricultural context, their overuse leading to MDR has 
not received the requisite attention. Antimicrobial resist-
ance (AMR) poses a significant threat to the ecosystem, 
which must be acknowledged and addressed when design-
ing effective AMR plans (O’Neill 2014). The global prob-
lem of MDR bacterial infections necessitates immediate 
actions, and one such infection control option could be 
bacteriophage therapy (Chanishvili and Aminov 2019). 
Besides, in addition to engineered phages, bacteriophage-
produced lytic enzymes also exhibit properties that can be 
marketed in medical and industrial sectors.

With the current advent of AMR throughout the world 
and the dried pipelines of pharmaceutical industries, phage 
therapy could be the answer. In this review, we emphasize 
the aspects of phage therapy that make it a promising solu-
tion to MDR infectious diseases and also delineate some 
of the hurdles that must be addressed in the designing and 
implementation of clinical research to determine the effec-
tiveness of phage therapy in humans against MDR infec-
tions and briefly discuss the prospects of phage therapy in 
COVID-19 pandemic. Most of the mini-reviews that have 
been published before discuss how phages were discov-
ered? Where were they practiced before? Why they were 

abandoned and their advantages compared to antibiotics? 
To break the cycle of resistance and circumvent this silent 
global epidemic, the pharmacokinetics of phage therapy 
must be adopted which is being used in some instances 
that we have summarized in this manuscript based on dif-
ferent clinical infections. The clinical cases outlined in this 
manuscript focuses on major systemic diseases in which 
phage therapy experiments have contributed to the fight 
against resistant bacterial infections caused by MDR bac-
teria. This manuscript has not nullified antibiotics use but 
has stipulated an approach where bacteriophages can be 
used synergistically, as evident from some practical clini-
cal case studies.

Understanding the phenomenon of AMR 
to antibiotics

In a natural ecosystem, antibiotics play a critical part in 
the regulatory processes of the microbes (Aminov 2009), 
where they serve as signalling molecules in small quantities 
(Davies et al. 2006). However, when used in an appropri-
ate concentration, antibiotics act as bacteriolytic and bac-
teriostatic agents in the management of bacterial infections 
(Leekha et al. 2011). Antibiotics are also commonly used 
at sub-therapeutic concentrations in the livestock feed for 
metaphylaxis (Manyi-Loh et al. 2018). Antibacterial agents, 
which are imprudently used in the medical, aquaculture, 
agricultural, and other industries, are hotspots for their con-
tinual entry into the ecosystem, leading to the selection and 
amplification of antibiotic-resistant genes (ARG) (Yadav and 
Kapley 2021). ARG is incorporated into the commensal flora 
at this stage, and the expense of “fitness” of an organism 
carrying ARG is reduced (Beceiro et al. 2013). As a result, 
even in the absence of antibacterial agent-induced selective 
pressure, AR bacterium persists (Andersson and Hughes 
2011; Brown and Wright 2016). The pool of amplified ARG 
is subsequently discharged into other compartments of the 
ecosystem, along with the accompanying antibacterial medi-
cations, from whence it is further distributed to even more 
distant ecological compartments via horizontal gene transfer 
(HGT) processes [Fig. 1] (Aminov 2011; Duran et al. 2016; 
Brown et al. 2017).

Mechanism of action of bacteriophage 
therapy

Bacteriophages bind to and adsorb on specific receptors on 
the surface of their hosts (bacteria) before introducing their 
genetic material to begin viral propagation; their relation-
ship ranges from parasitic to mutualistic (Weinbauer 2004; 
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Sime-Ngando 2014). In lytic infection, the phage adheres 
to the bacterial surface [Fig. 2A], injects its chromosomes 
into the bacterial cell, and reproduces naturally [Fig. 2E] 
with the release of new virions (virulent phage) [Fig. 2F]. 
During the lysogenic cycle, phage genetic material inte-
grates into bacterial chromosomes [Fig. 2B], allowing bac-
teria to continue reproducing normally [Fig. 2C] along 
with phage genetic material (prophage) resulting in the 
release of temperate phages. Thus, virulent phages outper-
form temperate phages in terms of therapeutic potential.

Antibiotics gained popularity due to their broad-
spectrum activity (Fair and tor 2014), however, with the 

increase in the understanding of the human microbiome, 
this broad-spectrum killing potential is rapidly revealing 
itself as a significant disadvantage (Cho and Blaser 2012). 
Being natural bacteria predators, bacteriophages have an 
advantage over antibiotics as they are specific, target-
ing only their host bacteria, implying a gentler approach 
to local microflora (Divya Ganeshan and Hosseinidoust 
2019). However, another factor to consider is the interac-
tion of the polyvalent lytic phages with the commensal 
flora (Ly-Chatain 2014). This is especially true in the case 
of gut flora if the phage is administered orally. There-
fore, the impact of bacteriophages on any microbiome, 

Fig. 1  Illustration of the mecha-
nism of antimicrobial resistance 
in a bacterial cell

Fig. 2  Mechanism of action of bacteriophage therapy: After bacte-
riophage infection (A), phage DNA (purple) is either conventionally 
replicated and processed as new virions at the cost of the host cell 

(virulent phage in the lytic cycle; left, A, E and F) or reproduces with 
host DNA (temperate phage in the lysogenic cycle; right, B, C and D) 
(Fabijan et al. 2020)
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particularly gut microbiota, must be regarded as an essen-
tial component that governs the microbiome and should be 
further researched (Sutton and Hill 2019).

Drug resistance is a worrisome and widespread prob-
lem worldwide, with the emergence of MDR, PDR and 
XDR strain containing novel ARGs and the paucity of 
new medicines for treating bacterial diseases (Fair and Tor 
2014). Bacterial defence mechanisms evolved as a result of 
the fight for survival between bacteria and the phages that 
infect them; yet, phage counteracting mechanisms are little 
understood and unexplored (Rostøl and Marraffini 2019). 
Phages can evolve in tandem with their hosts, increasing 
their chances of infecting their host. Lysogenic phages/tem-
perate phages insert their DNA into the bacterial genome 
and may act as vehicles for HGT and ARG dissemination, 
making them ineffective in acute infections (Principi et al. 
2019; Lin et al. 2017). Hence for bacteriophage therapy, lytic 
phages should be employed. ARG can be carried by phages 
and spread to other bacterial pathogens; however, utilizing 
DNA sequencing methods assures that therapeutic phage is 
clear of any virulent genes (Taati Moghadam et al. 2020).

Bacteriophage therapy—successful case 
studies

Many experimental data have demonstrated the potential 
role of phage-antibiotic synergistic effects and efficacy of 
bacteriophage alone on different models for different indi-
cations. The concept of bacteriophage therapy, which was 
used to treat bacterial diseases at the turn of the twentieth 
century, has garnered attention in the current period of ris-
ing AMR (Schooley et al. 2017; Furfaro et al. 2018; Aslam 
et al. 2019). However, due to the unavailability of validated 
and adequately controlled clinical trials, phage therapy faces 
many challenges in its progression in the present scenario. 
Additional care needs to be taken in the organising and 
designing such trials where therapeutic variables such as 
the dose (Payne and Jansen 2003) and concoction of phage 
cocktails are required (Aslam et al. 2019). Some of those 
systemic studies of antimicrobial agents and chemotherapy, 
of diseases caused by MDR organisms, successful treat-
ments with adjunctive bacteriophage therapy are described 
below (Fig. 3).

Fig. 3  Current summary of 
phage therapy clinical trials 
targeting some major diseases
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Bone and joint infections

Bone and joint infection (BJI) pose significant manage-
ment challenges and cause severe morbidity [Table 1]. 
If ignored, BJIs induce acute sepsis with bone and joint 
deterioration, severe pain, sinuses, and permanent impair-
ment, necessitating exceptional microbiological examina-
tion to allow for targeted antibiotic therapy (Colston and 
Atkins, 2018). A recent study suggested that local phage 
administration into the joints, with hardware removal, 
systemic antibiotics, and antibiotic spacers, successfully 
managed MDR P. aeruginosa infection of prosthetic joint 
(PJ) and osteomyelitis (Tkhilaishvili et al. 2020). In vitro, 
the authors discovered phage-antibiotic synergistic effect 
against P. aeruginosa biofilm. Several other studies in the 
publication endorse the use of supplementary bacterio-
phage therapy in the management of resistant BJIs. Ferry 
et al. (2018) reported a recent case study of recurring S. 
aureus PJ infection treated with a phage cocktail and anti-
biotic combination instilled locally. Another case report 
documented treatment via bacteriophage and antibiotics 
of left tibial infection caused due to XDR A. bauman-
nii and MDR K. pneumoniae, thereby resulting in tis-
sue healing and limb preservation (Nir-Paz et al. 2019). 
Yilmaz et al. (2013) investigated the therapeutic efficacy 
of MRSA (methicillin-resistant Staphylococcus aureus) 
and P. aeruginosa induced rat tibiae infection utilizing 
a phage cocktail and an antibiotic in combination and/
or alone, resulting in the reduction of bacterial colony-
forming units. Another animal model study for the man-
agement of S. aureus osteomyelitis was undertaken, where 
the potential of bacteriophage therapy alone in the treat-
ment of chronic infections caused by MDR bacteria was 
demonstrated by Kishor et al. (2016). As a result, phage 
application in orthopaedic surgery as an adjuvant to antibi-
otic therapy or alone against drug-resistant bacteria holds 
a lot of promise. BJIs have a significant impact on health-
care resources due to growing urbanization and an ageing 
population, necessitating well organized, novel multidis-
ciplinary collaboration for successful therapy.

Urinary tract infections

The prevalence of urinary tract infection (UTI) is high, 
resulting in significant loss of man hours, financial bur-
den on society, and a strain on health-care infrastructure. 
UTI complications frequently result in sepsis and can 
be fatal if caused by AMR pathogens, and various stud-
ies demonstrate the effectiveness of bacteriophages in 
the management of it [Table 2] (Bhargava et al. 2021). 

Leitner et al. (2017) reported lytic activity, as well as the 
resilience of phages to resistance, can be a useful option 
for the treatment of the world’s ever-increasing AR. To 
treat recurrent UTI caused by ESBL (extended spectrum 
beta-lactamase)-positive K. pneumoniae in a subject with 
an indwelling urostomy and uretral stent, Kuipers et al. 
(2020) employed a personalized phage-antibiotic combi-
nation. Valerio et al. (2017) investigated the efficacy of 
bacteriophages and antibiotics alone or in combination in 
managing E. coli-induced UTI and also the susceptibility 
of the bacteria to the screened antibacterial agents in the 
presence and absence of bacteriophages. The effective-
ness of combination therapy is determined by the AR, the 
bacteria in question, and the type of antibiotic employed 
(bactericidal or bacteriostatic). In another case study, bac-
teriophage therapy against P. aeruginosa UTI in humans 
was documented where combination therapy of phage and 
antibiotic was well tolerated resulting in treatment of the 
patient (Khawaldeh et al. 2011). The high bacterial inac-
tivation efficiency of phage alone or in conjunction with 
antibiotics, as well as their self-limitation property, lay the 
groundwork for future comprehensive studies into UTI and 
AMR management and control.

Biofilm infections

Biofilm formation by multiple microorganisms causes per-
sistent tissue and foreign body infections which become 
highly resistant to the antibiotics [Table 3]. Bacteria in 
biofilm flourishes in slime-encased aggregations that affect 
millions of individuals, and it is sometimes difficult to treat, 
resulting in a chronic infection that medical practitioners 
struggle to control (Harper et al. 2014). As biofilms are 
difficult to treat in general, a novel technique is required; 
currently, antibiotics and basic disinfectants have shown a 
limited ability to successfully remove biofilms. Fong et al. 
(2019) conducted an experimental investigation on an ani-
mal model in which P. aeruginosa biofilm-induced frontal 
sinusitis was reduced by phage cocktail and concluded that 
it was effective and safe. Bacteriophages reproduce within 
the host bacterium and synthesize enzymes that disintegrate 
the bacterial biofilm extracellular polymeric substance, 
resulting in pathogen eradication. In their research, Coulter 
et al. (2014) documented that a combination of bacterio-
phage and antibiotics resulted in the complete eradication 
of biofilm and the reduction of bacteria resistant to both 
phages and antibiotics. Similar studies conducted using 
antibiotics combined with phage have resulted in the eradi-
cation of Klebsiella pneumoniae and Staphylococcus aureus 
biofilms (Verma et al. 2010; Rahman et al. 2011). Chaudhry 
et al. (2017) conducted an in vitro experiment in which P. 
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aeruginosa biofilms were treated alone and in combination 
with bacteriophages and bacteriolytic antibiotics. The find-
ings delineated that combination therapy of bacteriophage 
and antibiotics for the treatment of biofilm infections are 
more effective and a better therapeutic option. Furthermore, 
Rahman et al. (2011) demonstrated in their study that com-
bining a bacteriophage and an antibiotic effectively com-
bats Staphylococcus aureus biofilm. In another investiga-
tion paired lytic bacteriophage with an antibacterial agent, 
which resulted in increased biofilm eradication compared to 
either alone, reinforcing the concept that when combined, 
they are more efficient (Verma et al. 2010). Bacteriophages 
have tremendous potential for the management of biofilms; 
nevertheless, such applications are still in their early phases 
because the processes of killing by drugs and phages dif-
fer significantly, necessitating additional experimental 
investigation.

Heart/pulmonary infections

The emergence of MDR bacteria has entailed the search for 
novel therapeutic designs or strategies [Table 4]. Heart and 
pulmonary infections are highly challenging as they often 
lead to septicemia. If left ignored, they might affect other 
organs as well. When pathogenic microorganisms evolve 
and gain resistance to potential treatments, novel therapeutic 
approaches would preferably target them, resulting in infec-
tion management. As an illustration of such a technique, 
Chan et al. (2018) isolated a lytic bacteriophage against 
MDR P. aeruginosa with multi-drug systemic porin M 
on its outer membrane, where phages bind. It culminated 
in the process of evolution in which the phage altered the 
bacteria’s efflux pumping mechanism, making the pathogen 
susceptible to several classes of antibacterial drugs. Antibi-
otics alone are frequently ineffective in treating these resist-
ant infections due to AR, poor biofilm permeability, and 
other factors; however, phages are host specific, killing the 
intended bacterium, and the development of phage resistance 
may lead to an increase in antibiotic sensitivity (Chan et al. 
2018). In a patient with Pseudomonas aeruginosa, Oechslin 
et al. (2017) demonstrated that a single dose of bacterio-
phage had a high synergistic activity with an antibiotic and 
phage-resistant bacteria had decreased infectivity. Phage 
therapy, when used alone or in combination with antibiotics, 
warrants further clinical investigation to improve the efficacy 
of existing methodologies or develop innovative approaches. 
Cao et al. (2015) found that administering phage intrana-
sally to mice with a Klebsiella pneumoniae pulmonary infec-
tion reduced pathogenicity and pro-inflammatory cytokine 
levels. An in vivo investigation was conducted in mice in 

which MDR A. baumannii lung infection was treated with 
a newly isolated phage cocktail, resulting in a higher rate of 
survival after infection as compared to the untreated group 
(Cha et al. 2018). As AR among bacteria is a problematic 
issue that necessitates the creation of next-generation treat-
ment approaches in which phage can thrive and soon be at 
the forefront of clinical care in the management of heart and 
pulmonary infections.

Gastrointestinal infections

The causes of gastrointestinal infection (GI) are many; 
however, bacterial causes are often responsible for severe 
cases of infectious diarrhoea than other infectious aetiolo-
gies [Table 5]. The gut microbiota offers various benefits to 
the healthy host; yet, perturbations in it may have a nega-
tive impact on an individual’s health and impair protec-
tion against colonization (Casals-Pascual et al. 2018). Over 
the last decade, a variety of global resistance concerns in 
bacterial GIs have emerged, necessitating immediate atten-
tion and innovative therapeutic interventions. Sarker et al. 
(2016) from Bangladesh conducted a randomized trial in 
which they administered two coliphage formulations orally 
to children suffering from acute diarrhoea. The findings 
demonstrated that coliphage movement along the gut was 
uneventful but failed to amplify, concluding that a higher 
dose of phage is required. Another research study conducted 
by Gelman et al. (2018) employed a single dose of specific 
bacteriophage against Vancomycin-Resistant Enterococ-
cus (VRE) which induced severe microbial peritonitis and 
reported a favourable response. They further stipulated that 
in the case of fulminant AR infections, antibiotics com-
bined with phages will provide significant benefit in both 
the immediate and delayed outcomes, with a good survival 
rate. Chaturvedi and Nath (2018) reported that when K. 
pneumoniae (MDR)-specific phages were administered 
orally in the gut of albino mice, they eliminated MDR bac-
teria that had the potential to cause additional nosocomial 
infections upon translocation. Furthermore, Green et al. 
(2017) demonstrated that phages isolated from the environ-
ment could be effective in combating even the most serious 
of infections caused by Escherichia coli superbugs found 
in intestinal tracts of immunocompromised patients, which 
when translocate, pose a considerable threat. Despite the 
favourable findings of phage therapy, multiple studies have 
demonstrated that phage–host interactions are more compli-
cated and that the majority of attention is focused on them 
and less on the phage–human interaction. As a result, more 
research is needed to make this medication broadly avail-
able for human usage.
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Septicemia/bloodstream infections

Bloodstream infection (BSI) due to bacteria (bacteremia) is 
a severe multisystem disease that is strenuous to treat due to 
its high mortality rates and manifestation [Table 6]. Bacte-
remia can have several serious health repercussions, and the 
haematogenous spread of bacteria may result in diseases like 
endocarditis or osteomyelitis (Holland et al. 2016; Agarwal 
and Aggarwal 2016). Jennes et al. (2017) described the first 
contemporary report of bacteriophage monotherapy against 
MDR P. aeruginosa septicaemia in a patient, which resulted 
in the eradication of the pathogen. Hung et al. (2011) con-
cluded in an experimental study of phage therapy that liver 
abscess and bacteremia in mice due to K. pneumoniae could 
be a prospective mode of therapeutic intervention. In a study 
conducted by Vinodkumar et al. (2008), a single dosage 
of lytic phage administered to mice suffering from MDR 
Pseudomonas aeruginosa-induced septicemia resulted in its 
redemption. The phage strain utilized in this study displayed 
broad-spectrum lytic activity against other isolated MDR 
strains of Pseudomonas aeruginosa, implying that phage 
therapy might be employed as a stand-alone treatment for 
AR infections. In an original research work, Sunagar et al. 
(2010) investigated the effect of bacteriophage therapy on 
fatal S. aureus-induced bacteremia in non-diabetic and 
streptozotocin-induced-diabetic mice. They concluded that 
bacteriophages could also be used to prevent Staphylococcus 
aureus infections in immunocompromised patients. Further-
more, Watanabe et al. (2007) ascertained the effectiveness of 
phage in an animal model of P. aeruginosa-induced sepsis. 
The results of this experiment showed that newly isolated 
lytic phage strain administration was extremely effective 
against sepsis caused by P. aeruginosa. Although bacterio-
phage therapy is thought to have significant potential in the 
treatment of a variety of topical and localized infections, this 
interest has not extended to the treatment of BSIs, which is 
surprising given that phages are likely to be safe and efficient 
when delivered in a controlled manner.

Skin and soft tissue infections

Skin and soft tissue infections (SSTIs) are caused by micro-
bial infiltration of the epidermis, dermis, subcutaneous tis-
sue, superficial fascia, or muscles and can present with a 
wide range of symptoms, etiological agents, and severity 
(Ki and Rotstein 2008). The advent of AR bacteria has com-
plicated the management of SSTIs, with MRSA, VRE, and 
ESBL positive isolates of Escherichia coli and Klebsiella 
spp. being the most common (Moet et al. 2007), necessitat-
ing a reconsideration of the use of phage for its treatment 
[Table 7]. Chhibber et al. (2017) investigated the efficiency 

Ta
bl

e 
7 

 O
ve

rv
ie

w
 o

f b
ac

te
rio

ph
ag

e 
cl

in
ic

al
 st

ud
ie

s f
or

 th
e 

tre
at

m
en

t o
f s

ki
n 

an
d 

so
ft 

tis
su

e 
in

fe
ct

io
ns

SS
TI

s:
 S

ki
n 

an
d 

so
ft 

tis
su

e 
in

fe
ct

io
ns

;  P
ha

ge
# : C

oc
kt

ai
l o

f p
ha

ge
s (

N
o 

id
en

tifi
ca

tio
n 

gi
ve

n)

C
as

e 
stu

dy
D

es
cr

ip
tio

n
A

dm
in

ist
ra

tio
n

Re
su

lt
Re

fe
re

nc
es

Tr
an

sf
er

so
m

al
 p

ha
ge

 c
oc

kt
ai

l t
re

at
m

en
t 

ag
ai

ns
t S

ST
Is

 in
 a

 ra
t m

od
el

Th
e 

po
ste

rio
r p

or
tio

n 
of

 b
ot

h 
th

ig
hs

 o
f 

4–
6 

w
ee

k 
ol

d 
fe

m
al

e 
ra

ts
 w

as
 in

tra
m

us
-

cu
la

rly
 in

je
ct

ed
 w

ith
 S

ta
ph

yl
oc

oc
cu

s 
au

re
us

Ph
ag

e 
(M

R-
5 

&
 M

R-
10

)-
In

tra
m

us
cu

la
r

10
0%

 su
rv

iv
al

 ra
te

 w
as

 o
bs

er
ve

d 
fo

r b
ot

h 
30

 m
in

 a
nd

 1
2 

h 
po

st-
in

fe
ct

io
n

C
hh

ib
be

r e
t a

l. 
20

17

C
om

pa
ris

on
 o

f b
ac

te
rio

ph
ag

e 
an

d 
an

ti-
bi

ot
ic

s f
or

 th
e 

tre
at

m
en

t o
f b

ur
n 

w
ou

nd
 

in
fe

ct
io

n

A
 B

A
LB

/c
 m

ou
se

 w
as

 in
fe

ct
ed

 w
ith

 K
le

b-
si

el
la

 p
ne

um
on

ia
e,

 w
hi

ch
 re

su
lte

d 
in

 th
e 

es
ta

bl
is

hm
en

t o
f t

he
 b

ur
n 

w
ou

nd

Ph
ag

e 
(K

pn
5)

 o
r a

nt
ib

io
tic

 (s
ilv

er
 

ni
tra

te
 a

nd
 g

en
ta

m
yc

in
)-T

op
ic

al
Su

rv
iv

al
 ra

te
 (6

3.
3%

) v
ia

 p
ha

ge
 w

as
 

hi
gh

er
 th

an
 o

th
er

 tw
o 

ag
en

ts
 (5

6.
66

%
 &

 
53

.3
3%

) a
nd

 u
nt

re
at

ed
 p

ha
ge

 g
ro

up

K
um

ar
i e

t a
l. 

20
11

A
 c

lin
ic

al
 tr

ia
l f

or
 th

e 
tre

at
m

en
t o

f 
w

ou
nd

s v
ia

 a
 b

ac
te

rio
ph

ag
e 

co
ck

ta
il

Pa
tie

nt
s a

ge
d 

be
tw

ee
n 

12
 to

 6
0 

ye
ar

s w
ith

 
ch

ro
ni

c 
no

n-
he

al
in

g 
w

ou
nd

s c
au

se
d 

by
 

Es
ch

er
ic

hi
a 

co
li,

 S
ta

ph
yl

oc
oc

cu
s a

ur
eu

s 
an

d 
Ps

eu
do

m
on

as
 a

er
ug

in
os

a

Ph
ag

e# -T
op

ic
al

Se
ve

n 
pa

tie
nt

 in
fe

ct
io

ns
 e

ra
di

ca
te

d,
 w

hi
le

 
th

e 
re

m
ai

ni
ng

 1
3 

w
ou

nd
 si

ze
s d

ec
re

as
ed

 
si

gn
ifi

ca
nt

ly

G
up

ta
 e

t a
l. 

20
19

B
ac

te
rio

ph
ag

e 
th

er
ap

y 
ag

ai
ns

t a
bs

ce
ss

 
in

du
ce

d 
in

 a
 ra

bb
it 

m
od

el
St

ap
hy

lo
co

cc
us

 a
ur

eu
s w

as
 in

je
ct

ed
 in

to
 

th
e 

th
ig

h 
ar

ea
 o

f a
du

lt 
N

ew
 Z

ea
la

nd
 

ra
bb

its
, p

ro
gr

es
si

ng
 to

 w
ou

nd
 in

fe
ct

io
n

Ph
ag

e 
(L

S2
a)

-s
ub

cu
ta

ne
ou

s
A

bs
ce

ss
 in

 9
0%

 o
f r

ab
bi

ts
 c

ur
ed

 c
om

-
pl

et
el

y
W

ill
s e

t a
l. 

20
05

9059Applied Microbiology and Biotechnology (2021) 105:9047–9067



1 3

of a transfersomal phage cocktail in the treatment of MRSA-
induced SSTIs. They concluded that using transfersome as 
a delivery vehicle improves the stability and persistence 
of the enclosed bacteriophages in vivo. Similarly, when 
an animal model burn wound was infected with Klebsiella 
pneumoniae, bacteriophage was applied topically, which 
reduced mortality and resulted in an insignificant decrease 
in phage titre, indicating its stability (Kumari et al. 2011). 
An original clinical study reported by Gupta et al. (2019) 
stated that topical bacteriophage application for treatment 
of chronic non-healing wounds is highly effective. Chronic 
wounds are often recalcitrant to medication due to MDR 
pathogens and biofilm formation; however, phage cocktail 
was an excellent alternative to drugs (Jault et al. 2019). 
Wills et al. (2005) reported a wound infection caused by 
S. aureus, where staphylococcal phage managed to prevent 
abscess formation when injected simultaneously with the 
bacterium. Phage multiplied in the tissues. Therefore, the 
authors concluded that phages might also be valuable proph-
ylaxis against staphylococcal infection (Wills et al. 2005). 
Superficial bacterial infections impose significant emotional 
and economic burdens on healthcare systems worldwide and 
are frequently worsened by AR, for which phage therapy is 
a viable potential antibacterial option (Abedon et al. 2011).

Phage and antibiotic interaction

Antibiotic resistance is a cause of concern, and phage has 
been advocated as one feasible therapeutic alternative for 
therapy and antibiotic potency enhancement. Bacteriophage 
is presently the recommended therapeutic modality, either 
alone or combined with an antibacterial agent, with the latter 
is expected to boost efficiency (Gkartziou et al. 2021). The 
combination of phage with antibiotics could have a variety 
of outcomes, including additive, synergistic, ineffective, 
or antagonistic effects (Abedon 2019; Gu Liu et al. 2020). 
Principi et al. (2019) suggested that bacteriophages reduce 
the minimum inhibitory concentration of AR bacteria to 
the level of sensitive bacteria. Antibacterial agents are fre-
quently chosen based on antibiotics susceptibility data and 
the patient’s medical condition so that when phages are cou-
pled, a “phage adjuvation” effect can be produced (Gu Liu 
et al. 2020). Antibiotic concentration must also be optimized 
since they increase the rate of bacterial cell mutation when 
used at sub-lethal concentrations, rendering coupled strain-
specific phage useless (Saha and Mukherjee 2019). Several 
phage-antibiotic combinations have been assessed in vitro. 
However, due to inconsistent results with the combinato-
rial treatment, a customized in vitro assessment approach 
is required for optimal therapeutic effect in vivo against 
distinct bacterial species (Torres-Barceló et al., 2018). Cur-
rently, phage therapy does not replace antibiotics, but with 

the emergence of MDR, the concurrent use of personalized 
phage alone or in combination with antibiotics may be the 
way to the future. However, because some antibiotics can 
interfere with phage therapy by killing their host (bacterium) 
and blocking their reproduction, more rigorous sophisticated 
preclinical clarifications are essential prior to in vivo admin-
istration (Abedon 2019). There are significant gaps in how 
bacteriophages, bacteria, and antibiotics interact. Antibiot-
ics can modify phage features such as growth rate, infectiv-
ity, and burst size, and their fate is mostly unknown and 
unexplored (Cairns et al. 2017). Torres-Barceló et al. (2018) 
findings imply that the effects of antibacterial medications 
on bacteriophages, and the combined effects of phages and 
antibiotics on bacteria, can alter substantially as interactions 
evolve. Although multiple studies have demonstrated a syn-
ergistic link between phages and antibiotics, the focus is 
often on bacteria, with little knowledge about the influence 
on phages. Therefore, further research is required to test it 
in its entirety.

Engineered phages and its enzymes

In various medical and biotechnological areas, innova-
tions in genetic engineering and molecular biology for 
the application of phages have been observed. One of the 
phage modifications, “modus operandi”, is based on the 
integration of bacteriophage coat protein genes with for-
eign molecules (Bardy et al. 2016). It results in the creation 
of numerous bacteriophage variants. Currently, engineered 
bacteriophages have generated little proof of robust efficacy 
(Nair and Khairnar 2019). It has contributed to inconsistent 
outcomes in the treatment of diseases, as it has been less 
explored. Contrary to antibiotics, modified phages conflicted 
results are due to their unknown detailed molecular com-
position (Pizarro-Bauerle and Ando 2020). When bacterio-
phages are introduced into the food chain, they progress into 
the environment uncontrollably. When they infect bacteria, 
altering those would alter associated microbiota that may 
or may not be governable (Nair and Khairnar 2019). Engi-
neered bacteriophages can pose an issue in terms of public 
acceptance due to a lack of knowledge and understanding 
(Sybesma et al. 2018). They are themselves living entities 
that are allowed to thrive on their host, which is thriving on 
another living organism. Hence, phage therapy via modified 
phages further derails its approval as a mainstream treat-
ment option. For its concrete establishment in the world of 
medicine, there is a need for thorough research with exten-
sive clinical trials (Pizarro-Bauerle and Ando 2020; Kutter 
et al. 2010; Miedzybrodzki et al. 2012; Carvalho et al. 2017). 
Unlike antibiotics, phages have genomes and replicate while 
parasitising on their host; engineering them may result in 
further complications and would lead to the addition of 
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clauses of legislation regarding the ethical concerns related 
to genetic modifications (Abdelkader et al. 2019).

Bacteriophage recombinant lytic proteins can be used as 
enzybiotics (Schuch et al. 2002). For gram-positive bacteria, 
external administration of endolysin results in cell disrup-
tion (Young 2013). Moreover, for gram-negative bacteria, 
lysins are unable to cross the bacterial outer cytoplasmic 
membrane (Fischetti 2018). Therefore, endolysin therapy is 
futile since it can also lead to the release of a large amount 
of endotoxin. Furthermore, it is a significant constituent 
of lipopolysaccharide, which, when released in the blood-
stream of an infected host, would result in gram-negative 
septic shock causing hemodynamic and metabolic anomalies 
(Bardy et al. 2016; Prins et al. 1994). Also, when lysins are 
put up for therapeutic use, the production of neutralising 
antibodies is induced, which subsequently hinder their anti-
bacterial activity on multiple administrations. Hence their 
use as an antimicrobial agent in human treatment raises 
concerns as they possess relatively short plasma life, immu-
nogenicity and possible toxicity, proinflammatory response 
to bacterial debris and its inadequacy to lyse intracellular 
bacteria (Vazquez et al. 2018). Furthermore, the transfer of 
toxin-producing genes by genetically engineered phages puts 
them on the downside. However, new strategies are being 
implemented to safely use such phages after the risk of 
recombination and horizontal gene transfer among bacterio-
phages is thoroughly investigated. The successful launch of 
modified bacteriophages cannot be implemented by putting 
health, safety and environment at risk (Bardy et al. 2016).

Challenges and future perspectives

Currently, no framework (Verbeken et al. 2014) exists that 
could define phage as a medicinal product for human use. 
However, institutes in Georgia, Poland, provide custom-
ized phage cocktails to chronically ill patients for whom 
all other options of authorized treatment get exhausted 
(Yilmaz et al. 2013). Although in other parts of the world, 
bacteriophage therapy is still controversial, hence a dedi-
cated legal framework is essential for its smooth introduc-
tion into western medicine. Regulatory cells in western 
countries have been debating about norms and steps to 
pioneer guidelines for phage therapy (Vandenheuvel et al. 
2015). For safety purposes, legislation nowadays is heavily 
controlled for the production and administration of drugs 
by having strict quality control procedures. For the safety 
of bacteriophage therapy, a monitoring system needs to be 
implemented for data collection and analysis to follow the 
development of bacterial resistance to phages along with 
the installation of dedicated public structures that could 
pioneer more clinical trials (Sybesma et al. 2018; Kor-
tright et al. 2019; Pirnay et al. 2018; Svircev et al. 2018). 

For bacteriophage stability and effectiveness, good manu-
facturing practice level facilities are necessary for phage 
production and prospective research investigations (Brown 
et al. 2017; Kutter et al. 2010). This would allow for the 
storage of bacteriophage concoctions in retail pharma-
cies. Bacteriophage therapy is currently being developed 
in two directions. The first is the development of broad-
host-range “off-the-shelf” solutions that may be utilised 
for infections caused by specific bacteria, and the second 
is a customized approach, such as the isolation and pro-
duction of specific phage cocktails against a specific strain 
isolated from a patient. Bacteriophages isolated from the 
environment are the initial step toward bacteriophage 
therapeutics; many research investigations are currently 
underway to increase efficiency and optimise biofilm dis-
ruption, employing genetically altered phages (Bradley 
et al. 2016; Haellman and Fussenegger 2016; Wang et al. 
2011) in situations when antibiotics become inadequate 
(Tagliaferri et al. 2019; Aslam and Schooley 2019). For 
further commercialization of phage and its products, there 
is a need for extensive research of bacteriophage metagen-
omics and metaproteomics.

Metagenomics is a concept that refers to the examina-
tion of genetic data from environmental samples in order to 
identify microbial communities (de Abreu et al. 2021). A 
high-throughput sequence (HTS) based functional metagen-
omics technique is useful for identifying and understanding 
resistance mechanisms detecting ARG and examining the 
internal dynamics (DNA or RNA level) of the cell (Churko 
et al. 2013; Sukhum et al. 2019). Because of the significant 
growth in data creation, new bioinformatics tools have been 
developed to deal with the massive volume of sequencing 
reads gathered during genome sequencing investigations 
(Pereira et al. 2020). There are two types of metagenomic 
analyses: sequence-based and functional-based (de Abreu 
et al. 2021). Numerous fragment sequences are generated 
and analysed using software, allowing for the development 
of structural and functional diversity in a microbiome by 
finding genes and metabolic pathways of bacterial genomes 
(Bharti and Grimm 2021). Genomic analysis also deter-
mines the relationship between the bacteriophage and its 
host, genomic content, and genetic linkage between the 
most sensitive and most resistant strains obtained to evalu-
ate phage therapy viability by ensuring they did not encode 
for toxins and/or lysogenic characteristics (Haines et al. 
2021). Furthermore, genetic analysis of isolates with polar 
opposite phage sensitivity could provide additional insight 
into resistance mechanisms, contributing to cocktail formu-
lation design. Pirnay (2020) further discussed in “the future 
Earth 2035”, in which he shared Dr John Iverian’s experi-
ence and work on the technology Phage BEAM (Bedside 
Energized Anti-Microbial). First, a metagenome analysis of 
the entire sample was performed, and the results were stored 
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in the “Phage Xchange” server, where an intricate artificial 
intelligence-driven algorithm predicted the sequence of the 
phage that would most likely infect the infecting bacteria. 
Then the predicted phage genome data was transferred to 
the Phage-BEAM device, which manufactured the phage 
genome and, eventually, the phage itself for clients using 
patented technology (Pirnay 2020).

Antibiotic overuse and abuse in the medical, agriculture, 
and aquaculture sectors has aided the world into a silent pan-
demic of AMR. The most common cause of opportunistic 
infections worldwide is a group of ESKAPE (Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter spp.) organisms, the majority of which are 
MDR isolates (Mulani et al. 2019). The upsurge may be 
seen in the number of bacteriophage therapy publications 
(more than 600) covered by PubMed from 2016 to 2020, 
compared to around 285 articles published between 2010 
and 2015 (Azam et al. 2021). It is worth noting that these 
data from the recent decade reflect a significant increase over 
those from two decades before when there were few papers 
published. The rise in the number of articles published in 
the last two decades indicates that the scientific industry’s 
focus is returning to phage therapy; however, physicians are 
wary of phages because they are a living organism that is 
introduced into a sick patient, and their complete mechanism 
of action is still underexplored.

Emerging prospect of phage therapy 
in COVID‑19 patients

COVID-19 is one of the most prominent disaster-induced 
pandemics of our century (World Health Organization 2020). 
The prevalence, occurrence and manifestations of bacte-
rial infections in patients already diagnosed with SARS-
CoV-2 (COVID-19) are currently not well documented and 
pose many questions (Cox et al. 2020; Huttner et al. 2020; 
Langford et al. 2020). It has been reported that over 70% of 
patients were administered broad-spectrum fluoroquinolones 
and third-generation cephalosporins, despite a significant 
low rate of bacterial infections (Langford et al. 2020). While 
antibiotics are inadequate for the treatment of COVID-19, 
patients with suspected or confirmed secondary bacterial 
infections and/or co-infections are still administered anti-
biotics. This assumption, however, poses the question of 
antibiotic overuse and eventual global bacterial resistance. 
The increasing number and our decreasing ability to eradi-
cate AMR bacteria not only makes us more prone to bacte-
rial infections but also weakens us during viral pandemics 
(Vaillancourt and Jorth 2020). New antibiotics or alternative 
therapies for secondary bacterial infections are required for 
the recurrent waves of COVID-19 and the imminent future 

pandemic. Alternative therapies such as phage therapy can 
be explored as it shows promise. Although data for COVID-
19 is still scarce, an integrative approach is proposed where 
bacterial infections, together with delayed production of 
antibodies results in a significant contributing factor to 
COVID-19 mortality rate. Therefore the implementation of 
phage therapy might lead to microbiota homeostasis accel-
erated development of therapeutic antibodies via “Phage 
display” (Blanco-Picazo et  al. 2020) and also decrease 
the pathogenic bacterial load in the respiratory tract of the 
infected persons (Wojewodzic 2020). Also, phages tend to 
compete with virus for cellular receptors when introduced 
after a primary viral infection and thus reduce the harmful 
activities of it (Meek and Takahashi 1968). Inflammation 
and cell destruction resulting from excessive reactive oxy-
gen species (ROS) are often associated with a respiratory 
virus infecting the lungs (Gorski et al. 2020). Phage and 
phage proteins, however, inhibit the development of ROS 
and thus demonstrate antiviral activities by anti-oxidant 
therapy (Miedzybrodzki et al. 2005; Centifanto 1968). The 
same types and dosage of drugs are used in both techniques, 
the prophylactic and therapeutic: but the prophylactic use 
of antibiotics is not approved by most health institutions 
and policy makers globally due to the reported rise in AMR 
rates, which correlate with the overuse and misuse of antibi-
otics (Manohar et al. 2020; Holshue et al., 2020; Wang et al. 
2020). However, that is not the case with bacteriophages as 
they do not affect any eukaryotic cells and therefore can be 
used both prophylactically and therapeutically (Adhya et al. 
2014; Lin et al. 2017).

Conclusions

With the emerging AR bacterial infections, the activity of 
bacteriophages against resistant bacteria with no major seri-
ous side effects makes them a promising solution in recal-
citrant bacterial infections since bacteriophages are specific 
for their host. As reflected from prior clinical case studies, 
instead of replacing antibiotics altogether, the combination 
of both, i.e. bacteriophage and antibiotic or phage alone, 
could result in potentially viable therapeutic options against 
bacterial pathogens. Enhanced bacterial clearance, more effi-
cient adsorption into biofilms and a lower likelihood of the 
development of bacteriophage resistance are the potential 
advantages of bacteriophage therapy. Furthermore, they 
have pronounced prospective for treating secondary bacte-
rial infections or co-infections during viral pandemics like 
the prevailing Covid-19 pandemic. We are in the midst of 
a significant shift in the medical industry, and we are fail-
ing to combat various diseases caused by AMR organisms. 
Looking at the current scenario, more research that sheds 
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light on the nature of host-phage interactions in the context 
of commensal flora is required that would aid in elucidating 
and accelerating the concept of bacteriophage therapy and 
advocating its regulatory approval in modern medicine.
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