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Predicting microstructure evolution can be a formidable challenge, yet it is essential to building microstruc-
ture-processing-property relationships. Yang et al. offer a new solution to traditional partial differential
equation-based simulations: a data-driven machine learning approach motivated by the practical needs to
accelerate the materials design process and deal with incomplete information in the real world of microstruc-
ture simulation.
The recent rapid rise in data-driven

practices in the materials science

domain has led to the development of

efficient, generalizable, and accurate

approaches for several applications,

including material property prediction,1

mining (micro)structure-property and

(micro)structure-processing relation-

ships,2–4 and characterization of mate-

rial microstructures.5,6 Central to the

materials science domain is linking

microstructure to properties and perfor-

mance, and critical to building such

linkages is understanding how micro-

structures evolve as a function of envi-

ronmental exposure or processing

conditions (e.g., time, temperature,

applied stress or strain, irradiation).

Improvements in computational capa-

bilities have been enabled by deep neural

networks, improved hardware, and

openly available software packages.

Computational materials science is a

broad field with numerous methods that

range in length scale from the atomic

scale to continuum. Techniques such as

phase field modeling are widely used for

predicting microstructure evolution in

two- and three-dimensional systems.7 In

addition, density functional theory (DFT),

a quantum-based method, has been

instrumental in discovering newmaterials,

identifying dopants for alloy strength-

ening, detailing diffusion mechanisms,

and more. However, any computational

approach is constrained by the length

and timescales of simulations, accuracy,

and generalizability (or transferability) be-

tween different material systems.8 Prog-

ress in materials science will rely heavily

on feedback both from these computa-
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tional models and validation with experi-

ments. Yet, the scaling of such methods

to larger datasets, particularly in three di-

mensions, can be time consuming and

computationally expensive. In the May

14, 2021 issue of Patterns, Yang et al.9

offer a new alternative to partial differen-

tial equation (PDE)-based simulations us-

ing a data-driven approach employing

recurrent neural networks (RNN) in their

article ‘‘self-supervised learning and pre-

diction of microstructure evolution with

recurrent neural networks.’’

Motivated by the practical need to deal

with incomplete information in real world

applications of microstructure evolution

simulations, RNNs were trained to infer

parameters from input image sequences

to correctly predict microstructure evolu-

tion. The authors demonstrate that even

with incomplete information of the PDEs

and their solutions, the RNN can be

trained to accurately emulate system tra-

jectory. Numerical simulations were used

to generate image sequences used as

training sets for four classic microstruc-

ture evolution phenomena with variable

complexity: (1) plane wave propagation,

(2) grain growth, (3) spinodal decomposi-

tion, and (4) dendritic crystal growth. A

convolutional RNN was trained to predict

spatiotemporal evolution of material

microstructure, building upon several

prior works that have cited convolutional

NNs (CNNs) as excellent models for rep-

resenting microstructure image data.3,10

The novel architecture presented in this

work is intentionally trained with only par-

tial information of the PDE solutions. The

challenge of training a neural net to pre-

dict long-time evolution behavior based
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only on short-time data that have much

faster dynamics is explored in this work.

For both grain growth and spinodal

decomposition problems, the RNN was

trained with early-stage microstructure

images only and was able to accurately

predict the much slower evolution at

10-fold larger times. This impressive

long-term prediction capability is also

computationally efficient when compared

to PDE-based simulations. The RNN

performance is not limited by numerical

stability of PDEs and can make reliable

predictions at much larger time steps.

RNNs are shown to accelerate predic-

tions by 92 times for spinodal decomposi-

tion when run on a GPU, and 7.6 times

when run on a CPU, for example.

Several key findings from Yang et al.’s9

work include that the RNN architecture

developed can (1) generalize well beyond

training datasets over long time periods

up to 10 times the training data’s time

span, (2) be applied to larger images

than the training set with comparable ac-

curacy, (3) predict evolution of micro-

structures with different morphologies

than the training dataset, and (4) employ

time steps 1–2 orders of magnitude larger

than PDE-based simulations.

This study demonstrates that a well-

trained RNN can not only serve as a

PDE emulator but also infer implicit ma-

terial properties from spatiotemporal

data and provides a representation of

the targeted problems that lowers data

demand and improves training and pre-

diction efficiency. The architecture and

approach detailed in Yang et al.’s9 study

has wide applicability. In particular, this

approach may be applied to the analysis
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of both two- and three-dimensional mi-

croscopy data collected during in situ or

in operando experimentation to further

improve our understanding of the

spatiotemporal evolution of material mi-

crostructures. This work represents a

timely, important advancement in the

development of reliable computational

methodologies using neural networks

that can provide advantages over tradi-

tional approaches for predictive mate-

rials modeling. Hence, Yang et al.’s9

approach and findings have implications

to a wide range of applications in the ma-

terials research community.
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