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Mutations in genes involved in DNA methylation (DNAme; e.g., TET2, DNMT3A), are frequently 

observed in hematological malignancies1–3 and clonal hematopoiesis4,5. Applying single-cell 

sequencing to murine hematopoietic stem and progenitor cells, we observed that these mutations 

disrupt hematopoietic differentiation, causing opposite shifts in the frequencies of erythroid vs. 

myelo-monocytic progenitors upon Tet2 or Dnmt3a loss. Notably, these shifts trace back to 

transcriptional priming skews in uncommitted hematopoietic stem cells (HSCs). To reconcile 

genome-wide DNAme changes with specific erythroid vs. myelo-monocytic skews, we provide 

evidence in support of differential sensitivity of transcription factors due to biases in CpG 

enrichment in their binding motif. Single-cell transcriptomes with targeted genotyping showed 

similar skews in transcriptional priming of DNMT3A-mutated human clonal hematopoiesis bone 

marrow progenitors. These data show that DNAme shapes the hematopoietic differentiation 

topography, and support a model in which genome-wide methylation changes are transduced to 

differentiation skews through biases in transcription factor binding-motif CpG enrichment.
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HSCs exhibit transcriptional oscillations that drive cell-fate commitment; a process defined 

as transcriptional priming6,7. Sampling of lineage fates leads to HSC transcriptional 

heterogeneity8, which is epigenetically propagated9. DNAme likely impacts this process as a 

stably inherited epigenetic mark10,11 implicated in the regulation of transcription factor 

binding12–17. Consistent with a prominent role for DNAme in HSC differentiation18,19, 

somatic mutations in DNAme modifiers are frequently observed in myeloid malignancies, 

including mutations in DNMT3A, a key de novo CpG methyltransferase, TET2, encoding an 

enzyme critical for CpG demethylation, and missense mutations in IDH1 and IDH2 leading 

to the production of 2-hydroxyglutarate (2HG), an oncometabolite that inhibits TET2 

activity20. Such mutations are thought to arise in primitive hematopoietic stem and 

progenitor populations, thus disrupting HSC function21. Mutations in DNAme modifiers are 

also frequently observed in clonal hematopoiesis, a state of abnormal HSC clonal expansion 

without overt hematological abnormality, associated with increased risk of heart disease and 

blood cancers22–30. However, how mutations in TET2, DNMT3A and IDH2 skew HSC 

transcriptional priming remains largely unknown. We therefore applied single cell RNA 

sequencing (scRNA-seq) to hematopoietic progenitors from mice with somatic deletion of 

Tet2 or Dnmt3a or expression of mutant Idh2, to uncover transcriptional priming skews in 

HSCs upon disruption of genome wide methylation.

We performed scRNA-seq on bone marrow lineage-negative (Lin−) hematopoietic 

progenitors from Mx1-Cre wild type (WT) and Mx1-Cre Tet2flfl mice (Tet2 KO; Figure 1a, 

Extended Data Figure 1a–d and Extended Data Figure 2a–e). Cells were isolated four weeks 

after Cre-mediated recombination (Figure 1a and Extended Data Figure 1e–f) to study the 

impact on HSC transcriptional priming, before secondary genetic events may take place31 

(Supplementary Table 1). Data integration and clustering identified a total of 26 

transcriptional clusters, consistent with previous reports32 (Figure 1b–d and Supplementary 
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Table 2). This analysis showed that Tet2 KO did not result in novel independent clusters, 

with intermingling of WT and Tet2 KO cells throughout all progenitor clusters (Extended 

Data Figure 1g and Extended Data Figure 3a–c).

Nonetheless, Tet2 deletion affected the frequency of specific cell clusters, including a 50% 

increase of HSC-1 cluster (Figure 2a–b and Extended Data Figure 4a), with similar findings 

in Lin− c-Kit+ progenitors (Extended Data Figure 4b–c). The expanded HSC-1 cluster 

showed decreased cell cycle activity (Figure 2c, left panel and Supplementary Table 3, 

module 15), as well as an increase in cell quiescence (Figure 2c, right panel, Extended Data 

Figure 4d and Supplementary Table 3), which may underlie the expansion of these mutated 

HSCs33. In agreement with these findings, we observed a decrease in Ki67+ LT-HSCs (Lin−, 

Sca-1+, c-Kit+, CD150+, CD48−) and an increase in serial re-plating capacity in Tet2 KO 

bone marrow (BM) cells (Extended Data Figure 4e–f).

We also observed an increase in the myelo-monocytic progenitor cluster Mono-1 (Figure 

2d), marked by Ly6c2, Prtn3 and Lyz2 and lack of expression of H2-Ab1 (Extended Data 

Figure 4g–h), consistent with monocyte/macrophage-biased cell expansion34–37 (Figure 2e 

and Extended Data Figure 5a–b). Consistent with the scRNA-seq data, Tet2 KO mice 

showed increased peripheral blood monocytes (Extended Data Figure 5c). In contrast, we 

identified decreased erythroid progenitor frequencies (Figure 2f and Extended Data Figure 

5b), reflected in decreased peripheral red blood cells in Tet2 KO mice (Extended Data 

Figure 5c) and decreased ability of Tet2 KO bone marrow cells to generate erythroid 

colonies (Extended Data Figure 5d). These skews resulted in a shift in the erythroid-to-

monocytic cell frequency ratio (Figure 2g), which remained 20 weeks after recombination 

(Extended Data Figure 5e–f).

Neomorphic IDH2 mutations result in synthesis of the oncometabolite 2-hydroxyglutarate 

that inhibits TET220,38. TET2 and IDH2 mutations are often mutually exclusive39, 

suggesting convergent mechanisms. Nonetheless, Lin− cells from Mx1-Cre Idh2R140Q/WT 

mice (Idh2-R140Q) showed no changes in the frequencies of HSC 1–3 or Mono-1 clusters, 

with only a decrease in Ery-2 cluster (Extended Data Figure 6a–e). Thus, Idh2-R140Q 

mutations do not phenocopy Tet2 deletion in disrupting hematopoietic differentiation. 

Differential gene expression analysis did not show major changes in Idh2-R140Q mutant 

HSCs compared to WT (Extended Data Figure 6f), suggesting that Idh2-R140Q HSC 

disruption may be less pronounced than Tet2 KO, consistent with emerging data in clonal 

hematopoiesis showing that IDH2 mutations are less frequently observed.

In contrast, DNMT3A is the most commonly mutated gene in clonal hematopoiesis5. 

Notably, DNMT3A is associated with an opposite effect on global methylation compared 

with TET2 loss39. scRNAseq of Mx1-Cre Dnmt3afl/fl (Dnmt3a KO) mice (Extended Data 

Figure 1a and Extended Data Figure 1f) showed an opposite skew in erythroid vs. myelo-

monocytic progenitor frequencies compared to Tet2 KO (Figure 2h–m; Extended Data 

Figure 6g–h), associated with abnormal erythrocyte indices (Extended Data Figure 6i), akin 

to those observed in clonal hematopoiesis5. Thus, Dnmt3a KO showed skews that favor the 

erythroid over the myelo-monocytic lineage (Figure 2n), opposite to biases observed in Tet2 
KO (Extended Data Figure 6j).
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Differential gene expression of Tet2 KO HSCs showed reduced expression of DNA 

replication genes (Figure 3a), consistent with decreased cell cycling. Tet2 KO HSCs 

displayed increased Cxcr4 expression, a mediator of HSC homing40,41 under active 

investigation as a therapeutic target42,43. Notably, consistent with disruption of 

transcriptional priming, we observed increased expression of monocyte-related genes, and a 

decrease in expression MEP genes (Supplementary Table 4) including erythroid related 

genes (e.g. Car1, and Car2). In contrast, Dnmt3a KO HSCs up-regulate Car1 (Figure 3a).

Gene module analysis of WT HSCs (Extended Data Figure 7a–b and Supplementary Table 

3, see online methods) showed anti-correlated erythroid and myelo-monocytic modules 

reflecting that transcriptional priming towards these divergent fates can be observed already 

in uncommitted HSCs (Figure 3b). This analysis further showed that that differentiation 

skews (Figure 2) result from concordant skews in HSC transcriptional priming (Figure 3c–e 

and Extended Data Figure 7c, validated through in vitro assays in Figure 3f). Thus, Tet2 KO 

hyper-methylation leads to myelo-monocytic skews in HSC priming, whereas Dnmt3a KO-

induced hypo-methylation resulted in opposite erythroid-biased skews (Figure 3g–h). These 

data raise an intriguing question: given that changes in DNAme caused by these mutations 

are globally distributed across the genome, how do genome-wide changes in DNAme drive 

deterministic skews in hematopoietic differentiation?

We hypothesized that differences in CpG density of DNA binding motifs of cell-fate specific 

transcription factors may lead to differential sensitivity to global methylation level changes 

(Figure 4a), supported by the association between transcription factor motif sensitivity to 

methylation and change in transcription factor transcriptional activity upon Tet2 KO 

(Extended Data Figure 8a–b). Consistent with our hypothesis that CpG enrichment of 

transcription factor motifs may underlie the link between global DNAme changes and 

deterministic HSC priming skews, the known DNA binding motifs44,45 of erythroid-related 

transcription factors displayed higher CpG content compared with binding motifs of myelo-

monocytic-related transcription factors (Figure 4b–c, see Extended Data Figure 8c–d). This 

was further supported by ATAC-seq with bisulfite conversion (Figure 4d and Extended Data 

Figure 9a–b) that validated the CpG enrichment bias of lineage-specific transcription factor 

binding motifs (Figure 4e and Extended Data Figure 9c, see online methods), showed the 

expected methylation changes even in open chromatin (Figure 4f–g), and notably, showed a 

strong correlation between CpG content and the number of hyper- or hypo-methylated CpG 

sites within transcription factor binding motifs at accessible peaks for Tet2 KO and Dnmt3a 
KO, respectively (Figure 4h–i and Extended Data Figure 9d–f).

In further validation of the impact of DNAme on the binding of transcription factor with 

CpG-rich motifs, single nuclei ATAC-seq (snATAC-seq) demonstrated shifts in transcription 

factor motif accessibility (Figure 5a–d and Supplementary Figure 1a–f). Consistent with our 

model, CpG-rich erythroid transcription factor (e.g., Tal1 and Klf1) motifs showed 

decreased activity in Tet2 KO HSCs relative to WT HSCs, with an opposite effect in Dnmt3a 
KO HSCs (Figure 5e), while myelo-monocytic transcription factors (e.g., Irf8 and Spi1) 

were not affected to the same extent (Supplementary Figure 1g–h). In a complementary 

analysis, de novo motif enrichment in the HSC cluster showed decreased CpG content in 

motifs enriched in Tet2 KO HSCs compared to Dnmt3a HSC motifs (Figure 5f), supporting 
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a model in which CpG-rich motifs are preferentially affected by mutations in DNAme 

modifiers.

To directly link DNAme changes and transcriptional priming in HSCs, we isolated LT-HSCs 

(Figure 6a) and performed multi-omics single-cell methylation and scRNA-seq. These data 

recapitulated the observed changes in our droplet-based scRNA-seq (Figure 2a and Figure 

2h), with an increase in HSC-1 and a decrease in Ery-1 and MkP 1–2 mapped LT-HSCs in 

Tet2 KO compared to Dnmt3a KO (Figure 6b), a decrease in cell cycle in Tet2 KO LT-HSCs 

(Figure 6c, left panel and Extended Data Figure 10a) and an increase in the expression of the 

quiescence signature (Figure 6c, right panel). We also observed similar transcriptional 

priming biases (Figure 6d) and the expected methylation changes at enhancer sites (Figure 

6e and Extended Data Figure 10b). Finally, in support of our proposed model, we observed 

that cells with higher enhancer methylation showed decreased priming towards the erythroid 

cell fate compared to cells with low enhancer methylation (Figure 6f, Extended Data Figure 

10c–d).

The CpG content of the motifs of interest were similar in human transcription factor 

motifs46 (Figure 6g–h). To directly explore changes in transcriptional priming of human 

hematopoietic progenitors, we performed scRNA-seq on CD34+ bone marrow cells from an 

individual with clonal hematopoiesis (Figure 6i and Extended Data Figure 10e–h) driven by 

DNMT3A mutation. Consistent with the findings in Dnmt3a KO mice, the DNMT3A-

mutant CD34+ clonal hematopoiesis sample showed increased frequency of GATA1+ 

erythroid progenitors compared to previously published normal CD34+ cells7 (Extended 

Data Figure 10i). We further applied our recently developed Genotyping of Transcriptomes 

(GoT) protocol47, enabling direct linkage of genotypes to scRNA-seq profiles (Figure 6i), 

and found that DNMT3A mutated CD34+ cells showed an increase in erythroid and decrease 

in monocytic transcriptional priming compared with WT CD34+ cells from the same 

individual (Figure 6j).

In summary, Tet2 KO mice showed expansion of early HSCs marked by Hlf, Sox4 and 

Meis1 expression, consistent with a cell-intrinsic contribution to Tet2 KO related self-

renewal48. Tet2 KO HSC quiescence may be in part mediated by increased susceptibility to 

hypermethylation of Myc and Myb, due to their CpG-rich binding motifs, as these 

transcription factors have been shown to promote increased cell cycle activity and 

asymmetric cell divisions49,50. We also observed deterministic skews in committed 

progenitor frequencies, mainly along the erythroid vs. myelo-monocytic bifurcation, which 

has been recently described as a critical fork in HSC differentiation51. This is consistent with 

human clonal hematopoiesis data that show modest but significant monocytosis even when 

the mutant TET2 allele is present at low frequency24, which may underlie the associated 

cardiovascular risk24. In contrast, DNMT3A loss is associated with opposite biases, which 

was also observed in a human clonal hematopoiesis sample with mutated DNMT3A. 

Notably, we find these biases originate from skews in HSC transcriptional priming.

Nevertheless, DNAme modifier mutations result in only modest DNAme changes that are 

distributed across the genome52. To reconcile stochastic, global DNAme changes and 

deterministic skews to cell fate choices, we suggest a potential mechanism – differential 
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CpG enrichment in DNA binding motifs confers varying sensitivity to methylation changes 

of lineage-defining transcription factors. We anticipate that this model will be further refined 

by emerging data on DNMT binding preferences53, and additional precision on the impact 

of DNAme on transcription factor binding15,54, which may help identify the transcription 

factors most implicated in clonal hematopoiesis phenotypes.

Thus, DNAme shapes the hematopoietic differentiation topography (Figure 3h). Indeed, 

somatic mutations in these modifiers are highly over-represented in hematological 

malignancies55, suggesting an important regulatory role for DNAme in the context of 

hematopoiesis. We may speculate that the less spatially structured hematopoietic 

differentiation process does not benefit to the same degree from environmental cues 

compared to well-organized epithelial tissues56, thus requiring efficient cell-intrinsic 

encoding throughout differentiation, such as that afforded by DNAme. Therefore, the study 

of DNAme in relation to hematopoietic differentiation will inform the understanding of 

topological encoding of HSC differentiation as well as the interrogation of the emerging 

challenge of human clonal hematopoiesis, to chart the critical switches that fuel clonal 

expansions.

Online methods

Mouse Models

All animals were housed at Memorial Sloan Kettering Cancer Center (MSKCC). All animal 

procedures were completed in accordance with the Guidelines for the Care and Use of 

Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committees at MSKCC. Tet2fl/fl [64], Dnmt3afl/fl [65], and Idh2R140Q/WT [66] conditional 

alleles have been described previously, and were crossed to the Mx1-Cre transgenic mice67.

Peripheral blood analysis

Blood was collected by submandibular bleeding using heparinized microhematocrit capillary 

tubes (Thermo Fisher Scientific, Waltham, MA). Automated peripheral blood counts were 

obtained using a ProCyte Dx Hematology Analyzer (IDEXX, Westbrook, ME).

Isolation of lineage-negative bone marrow cells for single-cell analysis

To induce recombination of the conditional alleles, 16–20 week-old male Mx1-Cre, Mx1-
Cre Tet2fl/fl, Mx1-Cre Dnmt3afl/fl and Mx1-Cre Idh2R140Q/WT mice were treated with three 

doses of polyinosinic-polycytadylic acid (pIpC; 12 mg/kg/day; GE Healthcare, Chicago, IL) 

every other day via intra-peritoneal injection. Primary mouse bone marrow (BM) cells were 

isolated into cold phosphate-buffered saline (PBS), without Ca2+ and Mg2+, and 

supplemented with 2% bovine serum albumin (BSA) to generate single cell suspensions. 

Red blood cells (RBCs) were removed using ammonium chloride-potassium bicarbonate 

(ACK) lysis buffer, resuspended in PBS/2% BSA, and filtered through a 40μm cell strainer. 

Total nucleated cells were quantified by Vi-Cell XR cell counter (Beckman Coulter, Brea, 

CA). BM cells were harvested from the legs (femora and tibiae) and hip bones, and lineage 

depletion was performed with biotin-conjugated antibodies against B220 (RA3–6B2), CD19 

(1D3), CD3 (17A2), CD4 (GK1.5), CD8a (53–6.7), CD11c (N418), CD11b (M1/70), Gr-1 
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(RB6–8C5), NK1.1 (PK136) and Ter119, labeled with anti-biotin MicroBeads (130–

090-485; Miltenyi Biotec, Bergisch Gladbach, Germany), and lineage-negative (Lin−) cells 

were magnetically separated using MACS columns according to the manufacturer’s 

instructions (Miltenyi Biotec, Bergisch Gladbach, Germany). Cells were then stained with 

streptavidin-conjugated secondary antibody, and live (DAPI-negative) lineage-negative cells 

were purified by flow cytometry on a BD Aria (BD Bioscience, San Jose, CA) and subjected 

to single-cell analysis.

Flow cytometry analyses

BM cells were incubated with antibodies in PBS/2% BSA (without Ca2+ and Mg2+) for 45 

min on ice. For hematopoietic stem and progenitor cell analysis from adult mouse bone 

marrow, cells were stained with a lineage cocktail of monoclonal antibodies including B220 

(RA3–6B2), CD19 (1D3), CD3 (17A2), CD4 (GK1.5), CD8a (53–6.7), CD11c (N418), 

CD11b (M1/70), Gr-1 (RB6–8C5), NK1.1 (PK136) and Ter119, allowing for mature lineage 

exclusion from the analysis. Cells were also stained with antibodies against c-Kit (2B8), 

Sca-1 (D7), FcγRII/III (93), CD34 (RAM34), CD48 (HM48–1) and CD150 (9D1). DAPI 

was used to exclude dead cells. The composition of mature hematopoietic cell lineages in 

the bone marrow was assessed using a combination of antibodies against B220, CD19, CD3, 

CD4, CD8a, Mac1/CD11b, Gr-1, Ly6C (HK1.4), Ly6G (1A8), MHC-II (I-A/I-E), CD115 

(AFS98), Ter119. For cell cycle analysis on bone marrow LT-HSCs populations, Ki67-FITC 

Flow Kit was following manufacture instructions (Cat#556026; BD Pharmingen, San Jose, 

CA). FACS analysis was performed on an LSR Fortessa (BD Biosciences, San Jose, CA). 

Data analysis was performed using the FlowJo software.

In vitro differentiation assays

For in vitro colony forming assays, 25,000 nucleated BM cells from each genotype were 

plated in duplicates in cytokine-supplemented methylcellulose medium supplemented with 

mSCF, mIL3, hIL6, and hEPO (MethoCult™ GF M3434; StemCell Technologies, 

Vancouver, Canada). Colonies were enumerated 10–14 days later, and 25,000 cells were 

serially re-plated for two more passages in duplicates. For detection of clonogenic BM 

erythroid progenitors, 50,000 nucleated BM cells from each genotype were plated in 

duplicates in serum-free methylcellulose medium supplemented with human transferrin and 

hEPO (MethoCult™ SF M3436; StemCell Technologies, Vancouver, Canada), and colonies 

were enumerated 7–10 days later. To functionally assess lineage priming skews at the level 

of phenotypically-defined long-term hematopoietic stem cells (LT-HSCs), mouse bone 

marrow LT-HSCs (Lin− Sca1+ c-Kit+ CD150+ CD48−) were purified by flow cytometry and 

subjected to differentiation in methylcellulose medium supplemented with mSCF, mIL3, 

hIL6, and hEPO (MethoCult™ GF M3434; StemCell Technologies, Vancouver, Canada), 

and colonies were scored and enumerated 10–14 days later.

Drop-seq data generation and sequencing analysis pipeline

Single-cell transcriptomic profiles were generated using Drop-seq, a technology designed 

for highly parallel genome-wide expression profiling of individual cells using nanoliter 

droplets, as previously described68. In brief, single-cell suspensions and uniquely barcoded 

beads were co-localized in droplets using a microfluidics device (see CAD file from http://
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mccarrolllab.com/dropseq/, manufactured by FlowJEM, Toronto, Canada). The droplets are 

composed of cell-lysis buffer and serve as compartmentalizing chambers for RNA capture. 

Flow rates were adjusted to maintain stable droplet formation and increase droplet 

homogeneity. We then adjusted cell and bead concentrations to accommodate variation in 

droplet size compared to the original publication68 (113 μm in our system). Doublet rate was 

estimated with the species-mixing experiment described previously68. Examination of cells 

showed complete lysis within the time required for examination by microscopy (less than 1 

min), notably shorter than the time cells spend in droplets during lysis and mRNA capture.

Droplet breakage and single-cell library preparations followed the procedure as described68. 

In brief, collected droplets were disrupted and RNA-hybridized beads were extracted. 

Reverse transcription was performed with template switching to allow for cDNA 

amplification by PCR. An additional pre-PCR step was added to determine the appropriate 

number of cycles (17–19 cycles) to achieve a cDNA library at a concentration of 400–1,000 

μg μl−1, as suggested by the protocol. cDNA samples were purified using Agencourt 

AMPure XP (Beckman Coulter, Brea, CA), and were run on a 2100 BioAnalyzer instrument 

with a High Sensitivity DNA kit (Agilent Technologies, Santa Clara, CA). Samples were 

prepared for sequencing using the Illumina Nextera XT kit, and sequenced on a NextSeq 

500 (Illumina, San Diego, CA) at an average of 70,000 reads per cell. Libraries with large 

numbers of cells were divided into technical replicates, which were processed 

independently. Raw reads were processed and aligned (STAR aligner69) using the standard 

Drop-seq pipeline, and according to the ‘Drop-seq Alignment Cookbook’, both found at 

http://mccarrolllab.com/dropseq/. Reads were aligned to the mm10 transcriptome. For each 

read, a single optimal mapping position was retained. Unique transcripts mapping to 

alternative splice variants were combined for subsequent analysis. Single-cell expression 

matrices were generated using cellular barcodes and unique molecular identifiers (UMIs). 

Cells with UMI < 200 or mitochondrial gene percentage > 20% were filtered out. To ensure 

even exclusion of mature erythroid cells across experiments, and additional filter of barcodes 

containing > 1% hemoglobin expression was applied. After filtering, we obtained a total of 

22,041 cells across conditions, with 2,127 ± 43.71 UMIs and 1,130 ± 27.29 genes detected 

per cell.

Chromium 10x single cell RNA-seq data processing

Single cell RNA sequencing data generated with Chromium 10x v2 was processed using 

Cell Ranger (v2.1.0) with default parameters, and data generated with Chromium v3 was 

processed using the updated version of Cell Ranger (v3.1). For both chemistry versions, 

samples were sequenced at an average of 50,000 reads per cell. Raw sequencing data was 

de-multiplexed and post-processed following the custom pipelines provided by 10x 

Genomics. Briefly, raw base calls were de-multiplexed into fastq files using the cellranger 

mkfastq command, followed by alignment to the selected reference mm10 genome for 

mouse samples or hg19 genome for the human subject data, respectively. Barcode and UMI 

counting was performed using the cellranger count command with default parameters. Cell 

barcodes with UMI < 1,000 or mitochondrial gene percentage > 20% were filtered out. Low 

complexity cell barcodes with number of genes detected lower than expected (lower than 

two standard deviations from linear fit, Extended Data Figure 1b) were filtered out. To 
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ensure even exclusion of mature erythroid cells across experiments, and additional filter of 

barcodes containing > 1% hemoglobin expression was applied. After filtering, we obtained a 

total of 31,440 cells from Chromium v2 and 12,212 cells from Chromium v3 experiments. 

Cells show 10,021 ± 79.21 (mean ± SEM) UMIs per cell and an average of 2,466 ± 32.12 

(mean ± SEM) genes detected across all cells.

Single cell RNA-seq data integration and clustering

In order to account for technical variations across Drop-seq, Chromium v2 and Chromium 

v3 platforms, data normalization, integration and clustering was performed using the Seurat 

package (v3.1.0). Filtered count matrices were normalized using the SCTransform 

command, which implements regularized negative binomial regression for normalization and 

variance stabilization70. After normalization, 3,000 integration anchors across technologies 

were defined using the FindIntegrationAnchors function, with the cells from Chromium v2 

(n = 32,995) used as reference dataset. Once the integration anchors were defined, data 

integration was performed using the IntegrateData function, setting normalization.method = 

“SCT”. Once data was successfully integrated, we performed principal component analysis 

(PCA) by running the RunPCA function with default parameters. The first 30 principal 

components were used to define the cell clusters, by first running the FindNeighbors 

function with reduction = “pca” and dims = 1:30 followed by FindClusters with resolution = 

1. For visualization, a UMAP cell embedding was generated using the RunUMAP function 

with the following parameters: reduction = “pca”, dims = 1:30. Cluster labels were manually 

assigned and curated based on expressed genes previously reported by Paul et al32 and 

Giladi et al51. Joint embedding of cells within each cell cluster across the different scRNA-

seq platforms was confirmed (Extended Data Figure 3a). The consistency of gene expression 

for cells assigned to the same cluster between technologies was evaluated through pseudo-

bulk of the single cell count matrix followed by gene expression correlation. Briefly, for a 

given cell cluster and for each of the technologies used, the total number of UMIs mapped to 

each gene was calculated, followed by normalization by the total number of UMIs in the 

cluster and multiplied by 10,000 to obtain the number of molecules per 10,000 UMIs for 

each gene. Next, linear regression between each pair of technologies was performed, and R2 

value for each cluster for each pair of technologies used was calculated (Extended Data 

Figure 3b). Cluster identities were further verified by gene expression correlation with the 

Mouse Cell Atlas71 dataset using the single cell Mouse Cell Atlas (scMCA) function72 

(Extended Data Figure 3c).

For integration of the human data, a similar approach was used. Briefly, single cell 

transform70 was applied for normalization of cell counts, followed by selection of 3,000 

integration features. Integration anchors were defined using the FindIntegrationAnchors 

function with default parameters. Data was integrated by using the IntegrateData function 

with the normalization.method parameter set to “SCT”. Principal component analysis was 

performed using the function with default parameters, and 30 principal components were 

retained for downstream analysis. Dimensionality reduction was performed with the 

RunUMAP function, and clustering was performed by using FindNeighbors function with 

the following parameters: reduction = “pca” and dims = 1:30, followed by the FindClusters 

function with resolution = 1.
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Statistics and Reproducibility

In order to perform statistical comparisons of cluster frequencies between genotypes, we 

implemented linear mixture models (LMM) using the lme4 R package (v1.1–21), similar to 

our previous approach47. This allowed including random effects to account for technical 

variation73. We included both experimental batch and technology as random effects in our 

statistical comparisons. The P-values were calculated by analysis of variance (ANOVA) with 

likelihood ratio test using the Stats R package (v3.5.2) between two LMMs: the first one 

taking into account the variables of interest, and the second one removing the genotype as 

independent variable:

LMM1 =  frequency   genotype  +   1 Technology   +   1 Batch

LMM2 =  frequency    1 Technology   +   1 Batch

anova LMM1,  LMM2

Relevant statistics for this test are presented in Supplementary Table 5.

For all boxplots presented, the box represents the interquartile range; upper and lower 

whiskers represent the largest and smallest values within 1.5 times interquartile range above 

the 75th or below the 25th percentile, respectively; the central line represents the median. 

Dots represent outlier values or data value distributions. For all violin plots presented, the 

violin represent the kernel probability density of the data, dots represent the observed values.

Gene modules

Gene module discovery: In order to identify sets of highly co-expressed genes within 

HSCs (HSC 1–3), we selected WT HSCs only to prevent confounding factors derived from 

altered gene expression in the KO mouse models. Chromium data was used for increased 

depth. Similarly to Martin et al74, UMI counts were downsampled to 2,000 total UMIs per 

cell to ensure homogeneous per-cell coverage. In order to minimize the contribution of 

sample-specific noise, the gene-to-gene Pearson correlation matrix was calculated separately 

for each individual biological replicate and z-transformation was performed followed by 

averaging of the transformed matrices. The correlation coefficients were then used for 

hierarchical clustering of the genes, allowing a total of 30 modules containing a minimum of 

10 genes. A minimum correlation value of 0.1 between sample-specific modules was 

required.

Gene module score per cell: Once the modules were obtained, the per-cell score for 

each of the defined modules was calculated as the fraction of UMIs mapping to the gene set, 

multiplied by a factor of 10,000 to obtain the molecules per 10,000 UMIs mapping to the 

genes comprised by the module.
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Transcriptional priming calculation: Transcriptional priming was defined as the log2 

ratio between erythroid and monocytic gene modules. In order to normalize the distributions 

of module scores, we first implemented quantile normalization of the module score 

distributions, followed by taking the log2 ratio of quantile-normalized erythroid and 

monocytic scores for each single cell. Of note, reduction in the expression of genes related 

to the lymphoid fate (e.g., Dntt, Figure 2a, middle panel) was also observed. This finding is 

consistent with previous data showing that enhancer DNA de-methylation is required for 

proper B-cell differentiation, and that lack of Tet1 or Tet2 expression impairs B-cell 

differentiation by preventing lineage-specific de-methylation events75. The observed down-

regulation of Dntt in HSC clusters of Tet2 KO mice potentially reflects a decrease in 

lymphoid transcriptional priming. Notably, monocytic and lymphoid priming were shown to 

be correlated in HSCs in normal hematopoiesis51 and therefore, our data suggest a 

decoupling of these priming effects in Tet2 KO mice, also manifested in a decrease in 

common lymphoid progenitor (CLP) cluster frequencies (P = 6.53 x 10−5, linear mixed 

model followed by ANOVA, Figure 2a).

SELEX and regulon analysis: To correlate the expression of transcription factor target 

genes with their methylation preference and CpG content, we implemented the SCENIC 

algorithm76 (v1.0) on WT HSC clusters with default settings to identify sets of target genes 

for each transcription factor (“regulons”). We next obtained the available SELEX data15 and 

computed the product of the mean CpG content per base and the SELEX enrichment score, 

obtaining a composite score reflecting both the CpG content and the methylation preference 

for each transcription factor. We focused on those transcription factors negatively impacted 

by methylation of their DNA binding site, since Tet2 KO induced hyper-methylation would 

likely result in disruption of regulon activity, and computed the Pearson correlation between 

the composite score and the regulon activity.

Differential expression analysis

In order to perform differential gene expression analysis for the HSC clusters between 

genotypes, we tested for differential expression between cells in HSCs cluster from mice 

with the genotype of interest (e.g., Tet2 KO) compared with cell in HSCs clusters from mice 

in WT mice. As in Martin et al74, first, we calculated the observed log-fold-change between 

the two groups of cells for each gene. We then randomly permuted the cells of the two 

groups 106 times while maintaining the sizes of the sets and recalculating the log-fold-

change for each permutation. The empirical P-value was then defined based on the rank of 

the difference observed between the log-fold-change of each gene with its empirical fold-

change distribution. The reported P-values were FDR-adjusted by the Benjamini-Hochberg 

method.

For calculating differential gene expression within cluster families (e.g., across HSCs or 

across monocyte clusters, as in Extended Data Figure 4a and Extended Data Figure 4g), the 

clusters of interest were selected and the FindMarkers function from Seurat (v 3.1.0) was 

used, with the following parameters: log.fc.threshold = 0.25; min.pc = 0.2; only.pos = F and 

test.use = “LR”. P-values were adjusted by the Bonferroni method. Cell cycle and 
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quiescence scores were calculated by measuring UMIs mapping to each gene set per 10,000 

UMIs for each cell.

Single cell reduced representation bisulfite plus RNA sequencing library construction

Data generation: Single cells were sorted by flow cytometry into 2.5 μL of RLT Plus 

buffer (Qiagen, Venlo, Netherlands) supplemented with 1 U/μL of RNase Inhibitor (Lucigen, 

Middleton, WI). Sorted cells were immediately store at −80°C. Genomic DNA and mRNA 

have been separated manually as previously described77. Single-cell complementary DNA 

was amplified from the tubes containing the captured mRNA according to the Smart2-seq 

protocol78. After amplification and purification using 0.8X SPRI beads, 0.5ng cDNA was 

used for Nextera Tagmentation and library construction. Library quality and quantity was 

respectively assessed using Agilent Bioanalyzer 2100 and Qubit. Genomic DNA present in 

the pooled supernatant and wash buffer from the mRNA isolation step was precipitated on 

0.8X SPRI beads and eluted directly into the reaction mixtures for Msp1 and HaeIII 

(Fermentas, Waltham, MA) enzymatic reaction (10μL final reaction). MscRRBS protocol is 

then performed on the digested gDNA after the restriction enzyme double digestion step.

scRRBS analysis pipeline: Each pool of 96 cells was first demultiplexed by Illumina i7 

barcodes, resulting in four pools of 24 cells. Each pool of 24 cells was further demultiplexed 

by unique cell barcodes. Reads were assigned to a given cell if they matched 80% of the 

template adapters. Adapters and adapter reverse complements (6 bp) were trimmed from the 

raw sequence reads. After adapter removal, reads were trimmed from their 3’ end for read 

quality by applying a 4 bp sliding window and removing bases until the mean base quality of 

the window had a Phred quality score greater than 15. We aligned trimmed reads in single-

end mode to the mm10 mouse genome assembly using Bismark79 (v.0.14.5; parameters: -

multicore 4 -X 1000 --un –ambiguous) running on bowtie2–2.2.8 aligner80. Bismark 

methylation extractor (--bedgraph --comprehensive) was used to determine the methylation 

state of each individual CpG. For downstream analyses, a site was considered methylated or 

unmethylated only if there was 90% agreement of the methylation state for all reads mapped 

to the site. Mean mapping efficiency was 71.6% with a median of 3,797,027 reads per cell. 

To remove technical methylation variation due to the addition of unmethylated bases during 

the end repair step of library construction, 5bp from the 5’ of read 1 were trimmed. 

Measurement of single cell methylation levels at promoter, enhancer, CpG island, exon or 

intron genomic regions was performed taking into account only CpG sites covered in at least 

3 WT cells, 3 Tet2 KO and 3 Dnmt3a KO cells, to minimize technical variation between 

datasets due to differences in profiled CpGs due to variation in the restriction enzyme 

cutting efficiency.

scRNA-seq pipeline: the sequenced paired-end read fragments were mapped against the 

mm10 mouse genome assembly using the 2pass default mode of STAR69 (v2.5.2a) with the 

annotation of GENCODE81 (v19). The number of read counts overlapping with annotated 

genes was quantified applying the ‘GeneCounts’ option in the STAR alignment. Maximum 

likelihood projection was performed by generating a gene expression model for each of the 

clusters defined in our Chromium 10x and Drop-seq scRNA-seq data as described above, by 

taking the fraction of UMIs mapping to a gene as compared to the total UMIs detected for 
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the cluster. We then calculated the log likelihood for each cell in our dataset to map to each 

of the gene expression models for the clusters. Each cell was then assigned to the cluster 

showing the highest log likelihood value.

Extended Data
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Extended Data Fig. 1. Chromium 10x data summary
a) Summary of Chromium 10x data (pIpC = polyinosinic-polycytadylic acid). b) Number of 

genes detected as a function of the number of unique molecular identifiers (UMIs) per cell 

barcode. Red dots = cell barcodes with mitochondrial content > 20%; blue dots = cell 

barcode with lower than expected complexity (lower than two standard deviations from 

linear fit); dashed red line = linear fit. c) Percentage of cell barcodes removed per sample 

after filtering low complexity barcodes and barcodes with mitochondrial UMIs > 20%. d) 

Quality control of scRNA-seq (n = 13 biological independent animals) after filtering. e) PCR 

validation of Tet2 exon 3 deletion 4 weeks after pIpC administration. Genomic DNA was 

isolated from Lin− bone marrow cells and amplified using the primers Tet2-F1, Tet2-R1 or 

Tet2-R-Lox, (Supplementary Table 5). One representative example of n = 3 independent 

experiments is shown. f) PCR validation of Dnmt3a exon 17 and 18 deletion 4 weeks after 

pIpC administration. Genomic DNA was isolated from Lin− bone marrow cells and 
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amplified using the primers Dnmt3a-F1, Dnmt3a-R1 or Dnmt3a-R-Lox, shown in 

Supplementary Table 5. One representative example of n = 3 independent experiments is 

shown. g) Uniform Manifold Approximation and Projection (UMAP) dimensionality 

reduction showing joint embedding of WT (17,702 cells; n = 7 mice), Tet2 KO (18,651 

cells; n = 7 mice), Dnmt3a KO (13,858 cells, n = 4 mice) and Idh2-R140Q (9,883 cells, n = 

3 mice).
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Extended Data Fig. 2. Drop-seq data summary
a) Summary of Drop-seq data showing PCR pool, genotype, sorting strategy, time after 

recombination (n = 14 biologically independent animals) and number of cells captured after 

filtering (pIpC = polyinosinic-polycytadylic acid). b) Number of unique molecular 

identifiers (UMIs) and genes detected per cell barcode per sample. c) Overview of number 

of genes detected as a function of the number of UMIs per cell barcode. Red dots = cell 

barcodes with mitochondrial content > 20%; blue dots = cell barcode with lower than 

expected complexity (lower than two standard deviations from linear fit); dashed red line = 

linear fit. d) Percentage of cell barcodes removed per sample (n = 14 biologically 

independent animals) after filtering out low complexity barcodes and barcodes with 

mitochondrial UMIs > 20%. e) Percentage of mitochondrial UMIs per cell per sample (n = 

14 biologically independent animals) after filtering.
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Extended Data Fig. 3. Quality control of joint embedding across single cell technologies
a) Left panel: Uniform Manifold Approximation and Projection (UMAP) dimensionality 

reduction showing joint embedding of WT (17,702 cells; n = 7 mice), Tet2 KO (18,651 

cells; n = 7 mice), Dnmt3a KO (13,858 cells, n = 4 mice) and Idh2-R140Q (9,883 cells, n = 

3 mice) lineage-negative hematopoietic progenitors. Right panels: UMAP embedding 

obtained for each scRNA-seq method is shown separately. b) Gene expression correlation 

between cells obtained by different scRNA-seq methods (Chromium v2, Chromium v3 and 

Drop-seq) that were mapped to the same cell cluster. The gene expression frequency was 

calculated as the number of unique molecular identifiers (UMIs) mapping to a given gene 

relative to the total number of UMIs detected for a given cluster, and multiplied by a factor 

of 105. The log2 of the pseudo-bulk gene expression is shown (R2 values were obtained from 

Pearson correlation; red dots highlight the top gene markers for each cluster). c) Gene 
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expression correlation between WT cells and expression profiles from the Mouse Cell 

Atlas64 dataset, as obtained by scMCA65 (see online methods).
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Extended Data Fig. 4. Cluster annotation, supporting evidence for HSC self-renewal and 
Lineage-negative, c-Kit+ cells validation in Tet2 KO
a) Differentially expressed genes for WT cluster HSC-1 (492 cells), HSC-2 (288 cells) or 

HSC-3 (384 cells), relative to the remaining HSC clusters from Chromium data (n = 4 mice; 

logistic regression with Bonferroni correction; FDR < 0.05). b) Drop-seq data for Lin−, c-

Kit positive cells for WT (2,986 cells, n = 2 mice) or Tet2 KO (1,425 cells, n = 2 mice) 

progenitors 4 weeks after recombination (HSCs = Hematopoietic stem cells; IMP = 

Immature myeloid progenitors; MD = Monocytic-dendritic progenitors; NP = Neutrophil 

progenitors; EP = Erythroid progenitors; MkP = Megakaryocyte progenitors; CLP = 

Common lymphoid progenitors; Ba = Basophil progenitors; Eo = Eosinophil progenitors; B-

cellP = B-cell progenitors; T-cellP = T-cell progenitors). c) Frequency changes for HSCs, 

MDs and EPs 4 weeks after recombination (Permutation test on 1,425 randomly sampled 

cells from each genotype, with 105 iterations). d) Quiescence score per cell cycle category 

(above/below median) in WT HSCs (n = 1,982 cells; two-sided Wilcoxon rank sum test). e) 

Flow cytometry of cell cycle in LT-HSCs as measured by Mki67 expression for WT (n = 4 

mice) or Tet2 KO (n = 3 mice) 4 weeks after recombination (two-sided Student t-test). f) 
Serial re-plating colony-formation assays for WT (n = 11) and Tet2 KO (n = 7) Lin−, c-Kit+ 

bone marrow hematopoietic (CFU = colony formation unit; dots represent the mean; error 

bars represent standard deviation; two-sided Students t-test). g) Differentially expressed 

genes per WT cluster Mono-1 (n = 344 cells), Mono-2 (n = 345 cells) or Mono-3 (n = 284 

cells), relative to the remaining monocyte clusters. Differentially expressed genes were 

defined from Chromium data (n = 4 mice; logistic regression with Bonferroni correction; 
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FDR < 0.05). h) Expression of Ly6c2 and H2-Ab1 in WT Mono-1 (n = 344 cells), Mono-2 

(n = 345 cells) and Mono-3 (n = 284 cells) clusters (logistic regression with Bonferroni 

correction).
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Extended Data Fig. 5. Flow cytometry validation, peripheral blood counts, in vitro colony-
forming assay and 20 weeks post pIpC validations of Tet2 KO frequency changes
a) Frequency changes for Lin− Tet2 KO (18,651 cells, n = 7 mice) relative to WT (17,702 

cells, n = 7 mice) 4 weeks after recombination. Red dots indicate significant frequency 

changes; red error bars represent standard deviation; dashed line indicates WT reference 

frequencies; grey shadow region indicates +/− standard deviation (LMM followed by 

ANOVA; * P < 0.05; ** P < 0.01; *** P < 0.001). b) Flow cytometry for WT (n = 15) and 

Tet2 KO (n = 23) mice 4 weeks after recombination (two-sided Students t-test; bars 

represent the mean value, error bars represent the standard deviation; LT-HSC = long-term 

hematopoietic stem cell; MPP = Multi-potent progenitor; HPC = Hematopoietic progenitor 

cell; CMP = common myeloid progenitor; GMP = Granulocyte-monocyte progenitor; MEP 

= megakaryocyte-erythrocyte progenitor). c) Peripheral blood cell counts from WT (n = 10) 

or Tet2 KO (n = 10) mice, either 4 or 20 weeks after Cre-mediated recombination (two-sided 

Students t-test; bars represent the mean and error bars represent the standard deviation. Each 
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dot represents a mouse replicate; RBC = red blood cells; MCV = mean corpuscular volume). 

d) Erythroid colony-forming assay for WT (n = 4) or Tet2 KO (n = 4) mice, 4 weeks after 

recombination (two-sided Student t-test; bars represent the mean number of colonies for 

each genotype; error bars represent standard deviation). e) Drop-seq data showing 2,478 

randomly sampled cells from Lin− cells for WT (2,757 cells) or Tet2 KO (2,875 cells) 20 

weeks after recombination (HSCs = Hematopoietic stem cells; IMP = Immature myeloid 

progenitors; MD = Monocytic-dendritic progenitors; NP = Neutrophil progenitors; EP = 

Erythroid progenitors; MkP = Megakaryocyte progenitors; CLP = Common lymphoid 

progenitors; Ba = Basophil progenitors; Eo = Eosinophil progenitors; B-cellP = B-cell 

progenitors; T-cellP = T-cell progenitors). f) Frequency changes for monocyte (Mono 1–3) 

and erythroid (Ery 1–3) progenitor clusters (permutation test).
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Extended Data Fig. 6. Validation of cell cluster frequency changes in Idh2-R140Q mutant mice 
and Dnmt3a KO mice
a) Frequency changes for Lin− Idh2-R140Q (n = 3) relative to WT (n = 6) mice 4 weeks 

post-recombination (linear mixed model (LMM) followed by ANOVA; *P < 0.05; ***P < 

0.01). b) E/B and Ery 1–3 frequencies 4 weeks after recombination for WT (n = 6) and Idh2-
R140Q (n = 3) mice. Error bars represent standard error of the mean (SEM; LMM followed 

by ANOVA). c) Ratio between erythroid (E/B, Ery-1 and ERy-2) and monocytic (IMP-1 and 

Mono-1) clusters for WT (n = 6) and Idh2-R140Q (n = 3) mice 4 weeks post-recombination. 

Error bars indicate SEM (LMM followed by ANOVA). d) Flow cytometry of hematopoietic 

progenitors from WT (n = 10) and Idh2-R140Q (n = 8) mice 4 weeks post-recombination 

(two-sided Students t-test; LT-HSC = long-term hematopoietic stem cell; MPP = Multi-

potent progenitor; HPC = Hematopoietic progenitor cell; CMP = common myeloid 

progenitor; GMP = Granulocyte-monocyte progenitor; MEP = megakaryocyte-erythrocyte 

progenitor). e) Peripheral blood monocytes for WT (n = 22) or Idh2-R140Q (n = 8) mice 4 
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weeks post-recombination (two-sided Students t-test). f) Differential gene expression 

between WT (n = 2,150 cells) and Idh2-R140Q (n = 1,184 cells) HSC 1–3 clusters. Red dots 

represent differentially expressed genes (permutation test followed by Benjamini-Hochberg 

(BH) correction, P < 0.05 and absolute log2 fold change > 1). g) Frequencies for Lin− 

Dnmt3a KO (n = 4) relative to WT (n = 4) mice, 4 weeks post-recombination (LMM 

followed by ANOVA; *P < 0.05; ***P < 0.001). h) Flow cytometry of WT (n = 5) and 

Dnmt3a KO (n = 8) mice 4 weeks post-recombination (two-sided Students t-test). i) 
Peripheral blood measurements for WT (n = 8) or Dnmt3a KO (n = 8) mice 4 weeks post-

recombination (two-sided Students t-test; RBC = red blood cell; MCV = mean corpuscular 

volume). j) Frequency changes in HSCs (Hlf+), erythroid (Car1+) and monocyte (Ly6c2+; 

Irf8+) progenitors for WT (n = 6), Tet2 KO (n = 6) and Dnmt3a KO (n = 4) mice clustered 

independently for each technology. For bar plots, bars represent mean values, dots represent 

mouse replicates and error bars represent standard deviation unless indicated otherwise. For 

radar plots, red dots indicate significant frequency changes; red error bars represent standard 

deviation; dashed line indicates WT reference frequencies and shadow region indicates +/− 

standard deviation.
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Extended Data Fig. 7. Gene module analysis
a) Schematic representation of the process for gene module identification. b) Correlation 

between gene module scores in HSC clusters (HSC 1–3), as calculated by the number of 

unique molecular identifiers (UMIs) mapping to the genes from each module per 10,000 

total UMIs in the cell (Pearson correlation). c) Transcriptional priming values per biological 

replicate for Tet2 KO (n = 2,989 cells; n = 7 mice), WT (n = 2,150 cells; n = 7 mice) and 

Dnmt3a KO (n = 1,325 cells; n = 4 mice). Dots represent the mean value; error bars show 

the 95% confidence interval.
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Extended Data Fig. 8. Mean CpG frequencies per base of erythroid and monocytic transcription 
factor binding motifs.
a) Schematic representation of the process for mean CpG frequency per base calculation for 

transcription factor binding motif position weight matrix. b) Scatter plot showing the 

correlation between the ratio of transcription factor regulon66 activity change between Tet2 
KO (n = 7 mice) and WT (n = 7 mice), as calculated by the total number of molecules 

mapping to the genes comprising the regulons for the HSC 1–3 clusters per 10,000 UMIs in 

the cluster, and the product of the CpG frequency in the transcription factor motif and 

enrichment score as determined by SELEX15 (two-sided Students t-test). c) Mean CpG 

frequency per base differences between erythroid- and monocytic-associated transcription 

factors according to different thresholds used for expression change between clusters (n = 7 

biologically independent animals; two-sided Wilcoxon rank sum test; FC = fold change). d) 

Examples of motif CpG content and methylation for Klf1 and Spi1 transcription factors as 

obtained from the MethMotif database67.
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Extended Data Fig. 9. Mean CpG frequency per base correlates with methylation of motifs at 
accessible enhancer regions
a) Gating for cell sorting for ATAC-Bseq experiments (LSK = lineage negative; Sca1 

positive; c-Kit positive). b) Correlation between biological replicates for ATAC-Bseq 

experiments. Reads were downsampled to 30 x 106 reads per sample and the average read 

count per 10 kbp genomic windows was calculated (Pearson correlation). c) Examples of 

Homer output for de novo motif enrichment for either erythroid- or myelo-monocytic-

associated accessible peaks within 10 kb of the closest transcriptional start site. d) 

Correlation between mean CpG frequency per base and the number of differentially 

(FDR<0.25, absolute methylation difference > 5%) hyper- or hypo-methylated CpGs 

between WT and Tet2 KO (n = 104,829 CpG sites) or Dnmt3a KO (250,353 CpG sites) 

respectively, per 100 motifs at accessible enhancers (upper panel) or accessible promoters 

(two-sided Students t-test; bottom panel; Spearman correlation). e) Number of 

hypermethylated CpGs per 10,000 motifs for erythroid- or monocyte-associated 
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transcription factor motifs. 100 iterations of sampling without replacement were performed, 

sampling 10,000 motif sites each iteration, and measuring the number of differentially 

(FDR<0.25, absolute methylation difference > 5%) hypermethylated or hypomethylated 

sites captured in Tet2 KO (n = 2 mice) and Dnmt3a KO (n = 2 mice), respectively (two-sided 

Students t-test). f) Correlation between the percentage of hyper- or hypo-methylated CpGs 

between WT (n = 2 mice) and Tet2 KO (n = 2 mice) or Dnmt3a KO (n = 2 mice), 

respectively from total CpGs captured for each transcription factor DNA binding motif site 

and the mean CpG frequency per base, for motifs in accessible enhancers (middle panel) or 

accessible promoters (bottom panel; Spearman correlation; two-sided Students t-test).
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Extended Data Fig. 10. Single cell RNA and methylation reveals increased heterogeneity and 
links enhancer methylation with transcriptional priming
a) LT-HSCs cell cycle scores for WT (n = 178 cells), Tet2 KO (n = 182 cells) and Dnmt3a 
KO (N =50 cells) as calculated by the number of UMIs mapping to the gene set per 10,000 

total UMIs for each of the mapped clusters (two-sided Wilcoxon rank sum test). b) Single 

cell methylation percentage of CpG islands (CpGi), exon, intron and promoter regions for 

WT (n = 178 cells), Tet2 KO (n = 182 cells) or Dnmt3a KO (n = 50 cells) LT-HSCs. CpGi 

were robust to Tet2 deletion-induced hypermethylation, as previously reported69,70. c) 

Correlation between erythroid-to-monocytic transcriptional priming and mean enhancer 

methylation in WT (n = 178), Tet2 KO (n = 182) and Dnmt3a KO (n = 50) LT-HSCs 

(Spearman correlation; two-sided Students t-test). d) Average single cell enhancer 

methylation comparison between erythroid (n = 151 cells) or monocytic (n = 166 cells) 

primed LT-HSCs across genotypes (two-sided Wilcoxon rank sum test). e) CD34+ 

hematopoietic bone marrow progenitors from normal7 (n = 1,035 cells) or DNMT3A-F755S 

mutant affected (n = 7,338 cells) subjects. f) Clusters for the clonal hematopoiesis sample 

(HSC = hematopoietic stem cell; IMP = immature myeloid progenitor; Neu = neutrophil/

granulocyte progenitor; Ery = erythroid progenitor; M/D = monocyte-dendritic progenitor; 

CLP = common lymphoid progenitor; MkP = megakaryocyte progenitor; cc = high cell 
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cycle cluster; mt = high mitochondrial gene expression cluster). g) Differentially expressed 

genes per cluster (FDR < 0.05; logistic regression with Bonferroni correction; 

Supplementary Table 2) per cluster are shown. h) Gene marker expression from erythroid 

(GATA1, CA1), monocyte (IRF8, LGALS1), megakaryocyte (PF4, PLEK) and neutrophil 

(MPO, ELANE) cells. i) Frequency of GATA1+ cells for normal (n = 1,035 cells) and 

DNMT3A-F755S (n = 7,338 cells) clonal hematopoiesis subject. Cells were defined as 

positive when at least one UMI was detected for GATA1 (two-sided Fisher exact test).
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Figure 1. Experimental design and single cell RNA sequencing data integration and clustering.
a) Experimental design for scRNA-seq experiments, showing the number of mice used for 

each genotype (pIpC = polyinosinic-polycytadylic acid; FACS = Fluorescence-assisted cell 

sorting, Lin− = Lineage negative, DAPI− = negative for DAPI staining). b) Single cell 

expression profiles from 200 randomly sampled cells from each of the cell clusters from WT 

mice (HSC = Hematopoietic stem cell; IMP = Immature myeloid progenitor, Mono = 

Monocyte progenitor, Neu = Neutrophil/granulocyte progenitor; E/B = Erythroid/basophil 

progenitor; Ery = Erythroid progenitor; MkP = Megakaryocyte progenitor; CLP = Common 

lymphoid progenitor; Ba = Basophil progenitor; Eo = Eosinophil progenitor; B-cell-P = B-

cell progenitor; T-cell-P = T-cell progenitor). Examples of genes used for classification are 

shown. c) Uniform Manifold Approximation and Projection (UMAP) dimensionality 

reduction (n = 68,613 cells) d) Top three differentially expressed genes (FDR < 0.05, logistic 

regression with Bonferroni correction) when comparing each cell cluster with the remaining 

clusters corresponding to the same cell type in WT (N = 4 mice from Chromium 

technology). HSCs = Hematopoietic stem cells (n = 1,164 cells); MDs = Monocytic-

dendritic progenitor, (n = 917 cells); EPs = Erythroid progenitors (n = 1,169 cells); NPs = 

Neutrophil progenitors (n = 2,421 cells). The dot size encodes the fraction of cells within the 

cluster that show detectable expression of the gene (UMIs > 0), while the color encodes the 

average expression level across all cells within a cluster.
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Figure 2. Tet2 KO promotes HSC expansion and skews myelo-monocytic vs. erythroid 
progenitor frequencies.
a) Changes in cluster frequencies for lineage negative Tet2 KO (18,651 cells, n = 7 mice) 

relative to WT (17,702 cells, n = 7 mice). Red dots indicate significant frequency changes; 

red error bars represent standard deviation; dashed line indicates WT reference frequencies; 

shadow region indicates +/− standard deviation. Statistical comparison was performed by 

linear mixed model (LMM) followed by ANOVA; * P < 0.05; ** P < 0.01; *** P < 0.001). 

b) HSC 1–3 cluster frequencies for WT (n = 7 mice) and Tet2 KO (n = 7 mice; LMM 

followed by ANOVA. c) Left panel: comparison of cell cycle signature for WT (n = 1,136 

cells, n = 7 mice) and Tet2 KO (n = 1,728 cells; n = 7 mice; two-sided Wilcoxon rank sum 

test). Right panel: quiescence score for each cell for WT (n = 1,136 cells, n = 7 mice) and 

Tet2 KO (n = 1,728 cells; n = 7 mice; two-sided Wilcoxon rank sum test). d) Mono 1–3 

cluster frequencies for WT (n = 7 mice) and Tet2 KO (n = 7 mice; LMM followed by 

ANOVA). e) Bone marrow monocyte precursor cell frequency as measured by flow 

cytometry for WT (n = 18) and Tet2 KO (n = 13) mice (two-sided Student t-test; error bars 

represent standard deviation). f) E/B and Ery 1–3 cluster frequency for WT (n = 7 mice) and 

Tet2 KO (n = 7 mice; LMM followed by ANOVA) g) Ratio between WT (n = 7 mice) and 

Tet2 KO (n = 7 mice) early erythroid (E/B, Ery-1 and Ery-2) and monocytic (IMP-1 and 

Mono-1) cluster frequencies. (LMM followed by ANOVA). h) Overview of relative changes 

in cluster frequencies for lineage-negative Dnmt3a KO (n = 4 mice) relative to technology-

matched WT (n = 4 mice) progenitors. Red dots indicate significant frequency changes; red 

error bars indicate standard deviation; dashed line indicates WT reference frequencies; 

shadow region indicates +/− standard deviation (LMM followed by ANOVA; * P < 0.05, *** 

P < 0.001). i) HSC 1–3 cluster frequency for WT (n = 4 mice) and Dnmt3a KO (n = 4 mice; 
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LMM followed by ANOVA). j) Mono 1–3 cluster frequencies for WT (n = 4 mice) and 

Dnmt3a KO (n = 4 mice; LMM followed by ANOVA). k) Flow cytometry measurement of 

Ly6c+ monocyte precursors for WT (n = 6) and Dnmt3a KO (n = 7) mice (two-sided 

Students t-test; error bars represent standard deviation). l) MkP-1 cluster frequency for WT 

(n = 4 mice) and Dnmt3a KO (n = 4 mice; LMM followed by ANOVA). m) E/B and Ery 1–3 

cluster frequency for WT (n = 4 mice) and Dnmt3a KO (n = 4 mice; LMM followed by 

ANOVA). n) Ratio between WT (n = 4 mice) and Dnmta3 KO (n = 4 mice) early erythroid 

(E/B, Ery-1 and Ery-2) and monocytic (IMP-1 and Mono-1) cluster frequencies (LMM 

followed by ANOVA). All experiments in this figure were performed 4 weeks after 

recombination. For all barplots, bars indicate the mean frequencies; dots indicate biological 

replicates and error bars represent standard error except indicated otherwise.
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Figure 3. Erythroid-to-myeloid committed progenitor frequency changes are concordant with 
skewed HSC transcriptional priming.
a) UMAP highlighting the selected HSC clusters (HSC 1–3, left panel). Differential gene 

expression between WT (n = 2,150 cells) and Tet2 KO (n = 2,989 cells, central panel) or WT 

and Dnmt3a KO (n = 1,325 cells, right panel) HSC 1–3 clusters. Red dots represent 

differentially expressed genes (permutation test followed by Benjamini-Hochberg (BH) 

correction, FDR < 0.05, see online methods) with an absolute log2 fold change higher than 

0.5. Pathway enrichment was performed with EnrichR57. b) Top panel: heatmap showing 

single cells from HSC 1–3 clusters. Bottom panel: Generalized additive model fit for 

erythroid, myelo-monocytic and stem scores from WT (n = 7 mice) HSC 1–3 clusters (n = 

7,648 cells). Grey areas represent the 95% confidence interval. c) For each genotype, 1,225 

cells from the HSC 1–3 clusters were randomly sampled and density plots were generated. 

The percentage of cells with either erythroid or myelo-monocytic priming is shown. d) 

Transcriptional priming scores for HSC 1–3 cells for Tet2 KO (2,989 cells; n = 7 mice), WT 

Izzo et al. Page 38

Nat Genet. Author manuscript; available in PMC 2020 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2,150 cells; n = 7 mice) and Dnmt3a KO (1,225 cells, n = 4 mice) progenitors (two-sided 

Wilcoxon rank sum test followed by Bonferroni correction). e) Posterior probabilities of 

Gaussian mixture model fit for myelo-monocytic transcriptional priming for 1,225 randomly 

sampled cells from the HSC 1–3 clusters for WT (n = 4), Tet2 KO (n = 3) or Dnmt3a KO (n 

= 4) from Chromium samples (Binomial test). f) In vitro colony-forming assay using 

purified LT-HSCs from WT (n = 282 colonies), Tet2 KO (n = 391 colonies) or Dnmt3a KO 

(n = 209 colonies; two-sided Fisher exact test; CFU-GM = colony-forming unit 

granulocytic/monocytic; BFU-E = burst-forming unit erythroid; CFU-GEMM = colony-

forming unit granulocytic/erythroid/monocyte/megakaryocyte, see online methods). g) 

Schematic representation of the procedure for visualization of the differentiation topology. 

h) Differentiation topologies derived from scRNA-seq data.
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Figure 4. Tet2 KO and Dnmt3a KO promote differential methylation of accessible transcription 
factor binding sites, favoring CpG rich erythroid motifs.
a) Schematic representation of modulation of transcription factor activity through mutation 

in Tet2 or Dnmt3a, as a function of the CpG enrichment of the binding motif. Filled circle = 

methylated CpGs, unfilled circles represent unmethylated CpGs. b) Fold change in 

transcription factor expression between Ery 1–3 and IMP 1–2 in WT (n = 7 mice) clusters. 

Erythroid and myelo-monocytic transcription factors with FDR < 0.05 and absolute log2 fold 

change > 0.3 are highlighted in red and blue, respectively (permutation test followed by 

Benjamini-Hochberg (BH) correction). Inset: examples of CpG frequency per motif position 

are shown as grey bars. Mean CpG frequency per base for the motifs are shown as black 

bars. c) Mean CpG frequency per base of the DNA binding motifs of myelo-monocytic- (n = 

8) and erythroid-associated (n = 11) transcription factors (two-sided Students t-test). d) 

Schematic representation of ATAC-Bseq experimental protocol. e) Mean CpG frequency per 

base for de novo discovered transcription factor binding motifs in peaks associated with 
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erythroid (n = 20 motifs) or myelo-monocytic (n = 20 motifs) genes (two-sided Students t-

test). f) Differential ATAC-Bseq accessibility between WT (n = 2 mice) and Tet2 KO (n = 2 

mice) or WT and Dnmt3a KO (n = 2 mice). g) Differential methylation (FDR < 0.05 and 

absolute methylation difference higher than 5%) at accessible regions for Tet2 KO and 

Dnmt3a KO mice, as calculated with MethylKit60 (Chi-squared with sliding linear model 

correction). h) Number of hyper-methylated CpGs (FDR < 0.25 and methylation difference 

> 5%) for Tet2 KO (n = 104,829 total CpG sites; left panel) or hypo-methylated CpGs (FDR 

< 0.25 and methylation difference < −5%) for Dnmt3a KO (250,353 total CpG sites; right 

panel) per 100 motifs in ATAC-Bseq peaks for erythroid, myelo-monocytic or other fates is 

shown in red, blue and grey, respectively (Pearson correlation; two-sided Students t-test; 

grey area represents the 95% confidence interval of the linear fit). i) Methylation values of 

accessible sites containing the DNA binding motif for Tal1 were divided into quartiles, and 

the distribution for WT (n = 1,669 motifs; n = 2 biologically independent mice), Tet2 KO (n 

= 880 motifs; n = 2 mice) and Dnmt3a KO (n = 1,226 motifs; n = 2 mice) is shown (two-

sided Fisher exact test between first and fourth quartiles).
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Figure 5. Single-cell ATAC-seq reveals shifts in motif accessibility
a) Uniform Manifold Approximation and Projection (UMAP) for snATAC-seq data (n = 

20,029 cells). HSC = hematopoietic stem cell; MEP = megakaryocyte-erythrocyte 

progenitor; MPP = multi-potent progenitor; IMP = immature myeloid progenitor; CLP = 

common lymphoid progenitor; LMPP = lymphoid-primed multi-potent progenitor; CMP = 

common myeloid progenitor. b) Single cell scores for available bulk ATAC-seq profiles from 

the ImmGen Database61 of FACS-sorted hematopoietic progenitors (see online methods). c) 

Single cell motif accessibility deviation scores as a proxy of transcription factor binding 

activity62 for Tal1 and Spi1 transcription factors for WT (n = 5,810 cells), for each of the 

defined clusters as calculated by chromVar63 for the DNA binding motifs available from the 

HOCOMOCO v11 database46. d) Motif accessibility correlation between single cells. Mean 

accessibility for each transcription factor was calculated using chromVar63, followed by cell-

to-cell Pearson correlation of motif accessibility calculated for WT cells from the HSC 
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cluster (n = 1,410 cells) e) Motif accessibility deviation scores comparison between WT (n = 

1,410 cells), Tet2 KO (n = 1,173) and Dnmt3a KO (n = 1,305 cells) cells mapped to the HSC 

cluster (two-sided Wilcoxon rank sum test). f) Mean CpG frequency per base of de novo 
motifs divided into quartiles based on the CpG content for Tet2 KO (n = 27 motifs) or 

Dnmt3a KO (n = 27 motifs).
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Figure 6. Single-cell multi-omics links enhancer methylation and transcriptional priming, and 
identifies transcriptional priming skews within a human clonal hematopoiesis sample.
a) Schematic representation of the scRRBS+RNA protocol. b) Frequency of WT (n = 178 

cells), Tet2 KO (n = 182 cells) and Dnmt3a KO (n = 50 cells) LT-HSCs mapped by 

maximum likelihood to the clusters shown in Figure 1b (two-sided Fisher exact test). c) Left 

panel: Cell cycle analysis of scRNA-seq data for LT-HSCs, comparing WT (n = 178 cells), 

Tet2 KO (n = 182 cells) and Dnmt3a KO (n = 50 cells) progenitors (two-sided Wilcoxon 

rank sum test). Right panel: Quiescence score for WT, Tet2 KO and Dnmt3a KO LT-HSCs 

(two-sided Wilcoxon rank sum test). d) Transcriptional priming scores for WT (n = 178 

cells), Tet2 KO (n = 182 cells) and Dnmt3a KO (n =50 cells) LT-HSCs (two-sided Wilcoxon 

rank sum test). e) Single cell average enhancer methylation for WT (n = 178 cells), Tet2 KO 

(n = 182 cells) and Dnmt3a KO (N =50 cells) LT-HSCs (two-sided Wilcoxon rank sum test). 

f) Transcriptional priming scores per average enhancer methylation quartile for WT (n = 178 

cells), Tet2 KO (n = 182 cells) and Dnmt3a KO (N =50 cells) progenitors (first quartile vs. 
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fourth quartile; two-sided Wilcoxon rank sum test). g) Mean CpG frequency per base for 

either Mus musculus or Homo sapiens transcription factor binding motifs (n = 335 motifs) 

extracted from the HOCOMOCO v1146 database (two-sided Students t-test). h) Mean CpG 

frequency per base correlation between Mus musculus and Homo sapiens transcription 

factor binding motifs (Pearson correlation). i) Schematic representation of the procedure to 

link single cell genotypes to scRNA-seq profiles. j) Intra-sample transcriptional priming for 

the clonal hematopoiesis sample, comparing WT and DNMT3A-F755S CD34+ bone 

marrow progenitor cells (two-sided Students t-test).
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