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Abstract

Background: Many coral reef organisms are photosynthetic or have evolved in tight symbiosis with photosynthetic
symbionts. As such, the tissues of reef organisms are often exposed to intense solar radiation in clear tropical waters and
have adapted to trap and harness photosynthetically active radiation (PAR). High levels of ultraviolet radiation (UVR)
associated with sunlight, however, represent a potential problem in terms of tissue damage.

Methodology/Principal Findings: By measuring UVR and PAR reflectance from intact and ground bare coral skeletons we
show that the property of calcium carbonate skeletons to absorb downwelling UVR to a significant extent, while reflecting
PAR back to the overlying tissue, has biological advantages. We placed cnidarians on top of bare skeletons and a UVR
reflective substrate and showed that under ambient UVR levels, UVR transmitted through the tissues of cnidarians placed on
top of bare skeletons were four times lower compared to their counterparts placed on a UVR reflective white substrate. In
accordance with the lower levels of UVR measured in cnidarians on top of coral skeletons, a similar drop in UVR damage to
their DNA was detected. The skeletons emitted absorbed UVR as yellow fluorescence, which allows for safe dissipation of
the otherwise harmful radiation.

Conclusions/Significance: Our study presents a novel defensive role for coral skeletons and reveals that the strong UVR
absorbance by the skeleton can contribute to the ability of corals, and potentially other calcifiers, to thrive under UVR levels
that are detrimental to most marine life.
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Introduction

Photosynthesis is a common pervasive characteristic of shallow

tropical marine habitats with organisms being photosynthetic or

involved in a tight symbiosis with photosynthetic symbionts. In the

latter case, the intimate association of animals such as corals and

these primary producers plus the efficient recycling of nutrients

underpins their success in the generally nutrient poor waters of the

tropics. In this respect, reef-building corals rely greatly on

photosynthates produced by their symbiotic photosynthetic

dinoflagellate, Symbiodinium [1], which can harnesses the abundant

solar energy in the tropics to fix carbon and translocate organic

carbon for coral respiration [2]. In return, Symbiodinium gains

access to the inorganic nutrients flowing from the catabolic

processes of the coral host. The autotrophic energy provided by

Symbiodinium to the coral host results in carbon fixation by coral

reefs that is six times higher than that in neighbouring oligotrophic

waters [3,4], allowing for the formation of complex reef structures

which provide niches for a diverse range of organisms.

The symbiosis between scleractinian corals and Symbiodinium

probably arose in the late Triassic [5]. Corals have evolved to

optimise the photosynthetic activities of the resident Symbiodinium

through changes to their morphologies [6,7,8] or through changes

in tissue composition [9] or population density of Symbiodinium

[10,11]. As a result of these evolutionary pressures, corals have

evolved into highly efficient light-harvesting organisms [12]. They

can utilise light six times more efficiently than plants [10] due to

multiple scattering of photons within the skeleton and the tissue-

water interface [13], thereby increasing photonic path lengths and

subsequently the chance of interception by a photosystem [13].

This enhancement of Photosynthetically Active Radiation (PAR)

allows the coral to increase its photosynthetic yields. However, as

solar radiation also contains Ultraviolet Radiation (UVR), an

increase in PAR could be accompanied with side effects of a

considerable increase in harmful UVR.

UVR photons contain enough energy that upon absorption they

break chemical bonds. The most sensitive of the organic molecules

are aromatic compounds [14] such as DNA, proteins and

membranes. Direct damage caused by the absorption of a UV

photon by DNA can manifest in the formation of cyclobutane

pyrimidine dimers (CPDs), which can make up 75% of UV-

induced DNA lesions [15], 6–4 photoproducts (6–4PPs) or the

Dewar valence isomer of the 6-4(PP). UV can also act indirectly

and create lesions such as oxidised or hydrated bases, single-strand

breaks and more [16]. CPDs, the greater part of the DNA damage

observed and the focus of our study, are formed between two

adjacent pyrimidine bases in DNA exposed to UVR and are

known to induce cell death [17,18]. Thus, while exposure to solar

radiation is fundamental for coral growth, avoiding UVR damage

is just as vital.
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Around 15% of net reef productivity is used to generate the

carbonate skeletons of corals, which ultimately results in the reef

framework [3]. Calcium carbonate skeletons serve multiple roles

such as protection and structural strength, and the highly reflective

white skeleton can scatter light back into the overlying tissue,

increasing the chance of photons interacting with the photosyn-

thetic Symbiodinium [10,13]. The coral skeleton is extracellular and

located at the base of coral tissue. The skeleton is made out of

calcium carbonate (CaCO3) crystallised in aragonite (orthorhom-

bic system) along with minute amounts of organic matter (,0.1%

of total weight) [19] and trace metals [20,21].

The discovery of fluorescent banding in coral skeletons

irradiated by UVR [22], has led to numerous studies utilizing

this phenomenon in the study of sclerochronology [23]. But

despite its frequent use as a record of past processes and events,

why skeletal fluorescence occurs is not well understood. Emissions

from coral skeletons irradiated by UVR involve both fluorescence

and phosphorescence [24]; and will be referred to hereafter as

luminescence. While generally believed to be related to environ-

mental conditions, higher luminescence does not necessarily

correlate with skeletal density [25], and there is considerable

debate over whether it correlates with weather patterns [26,27].

Luminescent bands are prevalent in many coral species, through

the geological records, at inshore and offshore reefs and at

different locations worldwide. Luminescence in corals can result

from both organic and inorganic sources. Organic luminescence

stems primarily from the incorporation of naturally luminescent

humic acids, the major constituent of dissolved organic matter

(DOM) in the sea [28]. Inorganic luminescence comes from the

chemical properties of the carbonate skeleton. An intrinsic blue

luminescence has been observed in carbonates, including arago-

nite, but it is weak and overshadowed by extrinsic luminescence

when activator elements are incorporated into the crystal [29].

Transition metal ions occupy the Ca2+ site of the carbonate and

this results in a strong yellow luminescence [30]. Such inorganic

luminescence occurs in corals when trace elements are incorpo-

rated in the coral skeleton (such as Mg, Mn, Zn, Sr and Cu).

Though not luminescent, ferric iron absorbs strongly in the UV

and can also be a common trace element in coral skeletons [31].

We have been examining the luminescent properties of coral

skeletons and hypothesise that these properties of coral skeletons

can serve as a UV defence protecting the overlying coral tissue by

reducing UVR levels that might otherwise have been amplified by

the highly reflective coral skeleton. We suggest that the absorption

of the UVR photon by the skeleton and its remission in a ‘‘safe’’

longer wavelength can result in the reduction of the amount of

UVR that the coral tissue is exposed to. We tested this hypothesis

by placing symbiotic anemones (which have similar tissue

properties to those of symbiotic corals) on top of coral skeletons

and measured the incidence of UV inflicted DNA damage they

accumulated in comparison with anemones grown on a substrate

that reflected UVR as well as PAR.

Results

While being highly reflective for photosynthetically active

radiation, coral skeletons do not reflect UVR to any real extent

(Figs. 1A, 1B). Grinding the skeletons to a fine powder did not

reduce the average UVR reflectance of skeletal material (paired t-

test, p.0.8, n = 10; Fig. 1B), indicating that the UV luminescence

is a fundamental property of coral aragonite and not due to

structure larger than 100 mm. Skeletons illuminated with UVR

(280–360 nm) showed a weak yellow fluorescence (Figs. 2A, 2B).

The substrate material (skeleton or polytetrafluoroethylene, PTFE)

had a highly significant affect on the UV reflectance (One-Way

ANOVA, F(3,8) = 82, p,0.001, Fig. 3A). The level of UVR

reflected from PTFE was 4 times higher than that reflected from

the Echinopora sp. skeleton (Tukey HSD, p,0.001). The UV

reflected from anemones placed on PTFE was significantly higher

than that from anemones placed on top of skeletons (Tukey HSD,

p = 0.001), indicating that less UVR passed through the tissue of

anemones placed on top of the skeleton compared to their

counterparts placed on top of the UV reflective PTFE.

There were significantly fewer CPDs in the anemones placed

over skeletal material under both ambient and high UVR

compared to the damage levels in anemones placed on top of

PTFE tape (Fig. 3B). UV-inflicted DNA damage was seven times

higher in anemones on top of the PTFE reflector than in those

placed on top of the coral skeleton when exposed to UVR levels

of shallow coral reef environments (Factorial ANOVA

F(1,16) = 49.4, p,0.001). Under higher doses of UVR, UV-

inflicted DNA damage was overall higher (F(1,16) = 445.5,

Figure 1. Derived absorbance of the coral skeleton. A) Derived absorbance spectrum of the white Echinopora sp. skeleton under full sunlight.
Shaded areas correspond to the UVR (250–400 nm) and visible (558–595 nm) peaks used in this study. Maximal absorption occurred at 330 nm. R is
reflectance measured from the PTFE reflector and S is reflectance from the skeleton. Slightly negative absorbance values .600 nm are due to a lower
reflectivity of PTFE in that range (Fig. 5). B) Average (n = 10) reflectance of downwelling UVR (AU, arbitrary units) measured from PTFE (blue),
Stylophora pistillata skeletons (green) and S. pistillata skeletons crushed to a fine powder (grey). Error bars are standard deviations from the mean.
doi:10.1371/journal.pone.0007995.g001

Coral Skeletons as UV Shields
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p,0.001), but remained lower in anemones placed on top of

skeletons compared to those on top of PTFE. We did not detect a

significant interaction between substrate type and UV level on

resulting DNA damage indicating that damage was reduced

under both ambient and high UVR levels over the skeleton

compared to the reflector.

The substrate material had no significant affect on visible light

reflectance (One-Way ANOVA, F(3,8) = 3.88, p.0.05, Fig. 1A).

The reflected visible light from the skeleton was on average 20%

less compared to the PTFE reflector, but the difference was not

found to be statistically significant. The reflected visible light

through the anemones was 60% that reflected from the adjacent

substrate (skeleton or PTFE), indicating significant absorbance of

visible light by the anemone tissue.

Discussion

Reef-building corals face a dilemma akin to that of a ‘‘Catch 22’’

[sensu 32]. While being exposed to full solar radiation is

advantageous in terms of their energy budget, it has very negative

consequences in terms of increased exposure to harmful UVR. We

have shown that coral skeletons have high absorbance in UVR,

emitting a weak yellow fluorescence as a result. This is consistent

with observations of previous studies [e.g. 22,33]. By emitting

potentially harmful UVR as safe yellow light, coral skeletons

dampen the amplification of the UVR while amplifying and

increasing harvesting efficiency of the PAR that is necessary for

growth and survival [10,12]. In this respect, coral skeletons reflected

PAR at a level that was similar to reflective white PTFE tape.

Figure 2. Luminescence of the coral skeleton. A) A long exposure photograph of a Stylophora pistillata skeleton irradiated with mid range UVR,
photographed through a barrier UV filter, showing characteristic yellow fluorescence A photograph of an (B ..skeleton taken in the same manner .sp
Echinopora.
doi:10.1371/journal.pone.0007995.g002

Figure 3. Defence from UVR in overlying tissue. A) Mean (n = 3) and SD of UVR reflected from PTFE, Skeleton, anemones on top of PTFE and
anemones on top of a skeleton (see Fig. 6 for schematic) in W m22 nm21, PTFE reflected 4 times more UVR than the skeleton, resulting in a
significantly lower transmittance of UVR through the anemone tissues on top of the skeleton compared with those on top of the PTFE. B) DNA
damage in the form of CPDs (mean6SEM, n = 6) in relative units (RU) for Aiptasia pulchella on PTFE (white bars) and coral skeleton (grey) as a
substrate under ambient and high UVR levels. A. pulchella placed on top of a skeleton had significantly fewer CPDs than those placed on top of PTFE,
under both ambient and high UVR levels.
doi:10.1371/journal.pone.0007995.g003

Coral Skeletons as UV Shields
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Cnidarian tissue were exposed to significantly lower levels of

UVR when placed on top of a bare coral skeleton as opposed

to a white reflector. Had the coral skeleton reflected UVR as

well as it does visible light, the overlying tissues would be

exposed to significantly higher levels of lethal UVR. The

extent to which the skeleton reduces UVR in overlying tissues

of live corals is hard to predict as the attachment of coral tissue

to the skeleton is complex and placing Aiptasia on top of coral

skeletons did not simulate this attachment fully. Nonetheless, it

is clear from our results that skeletons reduce UVR in

overlying tissues to a significant extent. The ability to uncouple

PAR and UVR appears to be crucial to the success of corals in

the highly sunlit waters of the tropics and explains how corals

have evolved to trap light so efficiently.

Corals are just one group of marine calcifiers. Calcification

spans kingdoms and carbonate skeletons are deposited by

stromatoporids, echinoderms, most molluscs, algae, foraminifera,

cocolithophores and many others. There is a strong link between

photosynthesis and calcification. The majority of the organisms

that deposit aragonite or calcite skeletons photosynthesise [34].

These organisms would favour high PAR environments and would

have to remain exposed to PAR, and consequently to harmful

UVR in order to survive. For this reason, it is possible that

possessing calcium carbonate skeletons might impart advantages in

terms of uncoupling of the exposure of tissues to PAR and UVR.

While speculative at this point, further exploration of this potential

evolutionary driver of calcium carbonate skeletons is warranted in

our opinion.

In most organisms studied previously, the potential functions of

UV luminescence in animals are not well understood, and are

usually attributed to social and behavioural cues [35]. Similarly to

coral skeletons, scorpion cuticles fluoresce at the visible spectrum

(400–700 nm) if irradiated by UV light [36,37] as do wasps [38],

spiders [39] and mantis shrimp [35]. Frost et al. [40] have

suggested that in scorpions, luminescence might have provided

survival advantage, serving as a sun block, a relict feature from

when scorpion habits were more diurnal. Fisher [41] proposed

that biomineralisation served to defend pre-Cambrian cyanobac-

terial mats from UVR. Here we provide the first evidence

supporting these hypotheses.

The skeleton greatly reduced the amount of UVR in the tissue

above it but it did not eliminate UVR altogether. Furthermore, the

skeleton is deposited below the tissue, so UVR photons must pass

through the tissue at least once, ensuing other methods must be

employed by the coral to protect against UVR damage. Corals

deal with UVR in many ways. One mechanism to defend their

tissues from UVR is to use sunscreen molecules, (mycosporine like

amino-acids, MAAs [42,43]). This pathway, however, requires a

large energy input to produce and maintain the pigment molecules

involved [44]. Corals also have an efficient DNA repair

mechanism that rapidly targets UV-inflicted DNA damage when

it occurs [18]. In combination, these pathways provide a high level

of protection against UVR and contribute to the ability of corals to

thrive under ultraviolet levels that can be lethal to other coral reef

epifauna [45].

We found that grinding the skeleton to a fine powder did not

significantly change its absorbance properties, leading us to believe

that the absorbance is mostly a property of the skeletal material

and not dependant on structure greater than 100 mm. Organic

luminescence such as from humic acids can be incorporated into

the skeleton during periods of terrestrial runoff [28,46]. Strongly

UV absorbent, iron-rich clay is common in the ocean, even in

clear tropical waters and minute quantities of clay can be

incorporated into the coral’s aragonite skeleton [47], this too can

be dependent on sediment input. Olson and Pierson [48] have

demonstrated that inorganic iron, when present in the soil even in

minute quantities, can provide UV protection to the mat forming

phototrophic bacteria Chloroflexus aurantiacus. Inorganic lumines-

cence can be dependant on skeletal density [33] and on changes to

the skeletal chemistry. Incorporation of trace elements into coral

skeleton affects its luminescent properties and is dependant on

both ambient water conditions (such as temperature and pH)

[49,50] and physiological processes of the coral [51,52]. The newly

discovered function of the skeleton as a UV defence for the

overlying tissue denotes that any changes to skeletal luminescence,

due to changes in skeletal density, chemical composition or

incorporation of organic substances can potentially change coral

sensitivity to UVR.

Materials and Methods

Reflectance Measurements
UV radiation was emitted from a 4W Sankyo G4T5E UV-B

lamp (Sankyo Denki Co. Ltd. Kanagawa, Japan), which emits

UVB as well as some visible light (Fig. 4). Reflectance was

measured using a USB2000 spectrometer (Ocean Optics,

Dunedin, FL, USA) with a bandwidth of 200–850 nm and an

attached optic fibre with a core diameter of 1000 mm. The sensing

end of the fibre-optic was held at a constant distance of 2 cm

above the surface, positioned so as not to cause self-shading.

Reflected light spectra from the coral skeleton were compared to

those from a reflector at the same distance and angle. We used

white polytetrafluoroethylene tape as a reflector (PTFE, or

plumbing tape). The reflectance of this material was .99%

between 250–800 nm, but slightly lower in the visible range (only

,95%, Fig. 5). Reflectance measurements were made on intact

and finely ground (,100 mm) Stylophora pistillata skeletons. In

addition, reflectance measurements of natural sunlight as well as of

a UV lamp were made on an Echinopora sp. skeleton as described

below.

Determining the Influence of Coral Skeletal Structure on
UV Absorbance

We measured UV reflectance from 10 intact Stylophora pistillata

skeletons and repeated the measurement after crushing the

skeletons to a fine powder (,100 mm) using a mortar and pestle.

Figure 4. UV lamp spectrum. Downwelling irradiance (in arbitrary
units) measured at the skeleton surface from the 4 W UV-B lamps used
in this study. Shaded areas correspond to the UV peak (250–400 nm)
and the visible peak (558–595 nm) used in this study.
doi:10.1371/journal.pone.0007995.g004

Coral Skeletons as UV Shields
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Reflectance was measured as described above. UV absorption was

measured as the negative logarithm of reflectance from the

skeleton divided by reflectance from the reflector. The data was

tested using a two-tailed paired t-test.

Testing the Effect of UV Fluorescence on the Overlaying
Tissue

Aiptasia pulchella, a cryptic symbiotic tropical anemone were

placed on top of a plating coral skeleton (Echinopora sp.). Aiptasia

have been used as a model organism for cnidarian biology for over

30 years [53] and are very similar biologically to corals with the

exception of the carbonate skeleton, as anemones lack a skeleton.

Half of the coral skeleton was covered in three layers of white

PTFE tape and half was left uncovered. Anemones were

distributed evenly between the two halves and were anesthetised

using 0.18 M MgCl2 in seawater to keep tentacles open and

immobilise the anemones throughout the experiment. The PTFE

tape simulated the high reflectance of the coral skeleton but over

the entire spectrum (including UV). The anemones were placed

under two different levels of UV-B light (ambient, 2.25 W m22

and high, 4 W m22) for 25 minutes, then snap frozen in liquid N2

and processed for DNA damage. Ambient UVR levels were

comparable to those expected at the Great Barrier Reef from the

libRadtran model [54] and were achieved by using one G4T5E

UV-B lamp (Sankyo Denki Co. Ltd. Kanagawa, Japan), while high

UVR was achieved by using two such lamps. In each experiment 3

anemones were placed on a skeleton and 3 were placed on a

reflector, this was repeated twice (n = 6 for each treatment). Data

was evaluated for normality and homogeneity of variance and a

factorial ANOVA was performed to test for differences in DNA

damage using R version 2.8.1 [55].

An absorbance spectrum under full sunlight was calculated for

the Echinopora sp. skeleton in order to determine its absorbance

properties. Reflectance was measured from the skeleton (S) and

the reflector (R) as above, both blanked against a black standard

(which showed 0 reflectance throughout the spectrum) and the

derived absorbance was calculated as 2log(S/R) [56]. To

understand why damage might be reduced over skeletal

material, the reflective properties of the coral skeleton (S), the

reflector (R), and the anemones on top of the skeleton (AS) and

the reflector (AR; Fig. 6) under the UV lamp were measured for

3 anemones in each treatment with methods described above.

UV reflectance was then calculated as the sum of reflected

irradiance between 250–400 nm and was calculated by per-

forming a cubic spline interpolation on the spectral irradiance

data (splinefun, between 250–400 nm) followed by integration to

get the area under the curve (AUC) [55]. For the visible light

peak, the AUC was calculated between 558 and 595 nm (Fig. 4),

in this range light absorption by the skeleton was not detected

(Fig. 1A).

Quantification of DNA Damage
DNA was isolated and damage quantified following the method

described in [18]. Briefly, anemones were homogenised in

extraction buffer (100mM EDTA, 10mM Tris, 1% SDS, pH 7.5)

and incubated at 65uC for an hour. Proteinase K was added to a

final concentration of 500 mg/ml and incubated at 37uC overnight.

Samples were extracted once with phenol chloroform isoamyl

alcohol (1:24:1), once with chloroform, then ethanol precipitated

twice and redissolved in TE (0.01 M Tris-HCl, pH 7.5, 0.001 M

EDTA). The different samples were all brought to a concentration

of 0.02 ng ml21 DNA in 16 PBS (Phosphate Buffer Saline). The

DNA was then bound to standard ELISA plates and probed with

the primary antibody TDM-2, which binds to the UV-induced

CPDs present in the DNA [57]. Absorbance at 492 nm for each

sample was read using a plate reader, with increased absorbance

corresponding to increased amounts of DNA damage.
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Figure 5. PTFE reflectance. Natural solar irradiance in arbitrary units
reflected off PTFE (red) compared with downwelling irradiance (blue)
measured between 200–850 nm at 0.3 nm intervals using a USB2000
spectrometer (Oceanoptics, USA). In the UV region a one to one
correlation was found and over the visible wavelengths, reflectance was
.95%. Shaded areas correspond to the UV peak (250–400 nm) and the
visible peak (558–595 nm) used in this study.
doi:10.1371/journal.pone.0007995.g005

Figure 6. Schematic of the reflectance light measured from the
different substrates. Reflectance collected and measured off a coral
skeleton (S), a reflector (R), and the anemones on top of the skeleton
(AS) and the reflector (AR). Measurements were made in the UV range
(250–400 nm) as well as the visible (558–595 nm). The irradiance source
was one or two 4 W UV-B lamps (Fig. 4).
doi:10.1371/journal.pone.0007995.g006
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