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ABSTRACT: Ring polymers are an intriguing class of polymers with
unique physical properties, and understanding their behavior is
important for developing accurate theoretical models. In this study,
we investigate the effect of chain stiffness and monomer density on the
static and dynamic behaviors of ring polymer melts using molecular
dynamics simulations. Our first focus is on the non-Gaussian
parameter of center-of-mass displacement as a measure of dynamic
heterogeneity, which is commonly observed in glass-forming liquids.
We find that the non-Gaussianity in the displacement distribution
increases with the monomer density and stiffness of the polymer
chains, suggesting that excluded volume interactions between centers
of mass have a strong effect on the dynamics of ring polymers. We then analyze the relationship between the radius of gyration and
monomer density for semiflexible and stiff ring polymers. Our results indicate that the relationship between the two varies with chain
stiffness, which can be attributed to the competition between repulsive forces inside the ring and from adjacent rings. Finally, we
study the dynamics of bond-breakage virtually connected between the centers of mass of rings to analyze the exchanges of
intermolecular networks of bonds. Our results demonstrate that the dynamic heterogeneity of bond-breakage is coupled with the
non-Gaussianity in ring polymer melts, highlighting the importance of the bond-breaking method in determining the intermolecular
dynamics of ring polymer melts. Overall, our study sheds light on the factors that govern the dynamic behaviors of ring polymers.
KEYWORDS: ring polymers, glassy dynamics, dynamic heterogeneity, non-Gaussianity, intermolecular correlations

■ INTRODUCTION
The dynamic properties of polymer melts are governed by
structural features, such as the chain length N and “topological
constraints” (TCs).1,2 In linear polymer melts, entanglement is
a common TC and plays a key role in describing the N
dependence of diffusion constant D. However, defining and
characterizing TCs in ring polymers is still challenging due to
the absence of chain ends.3−8

In ring polymer melts, the simple picture of TCs is that they
inhibit each other’s dynamics due to inter-ring “thread-
ings”.9−12 As N increases, the number of threading
configurations also increases, making it more difficult for the
system to find the equilibrium configuration to relax the
threading. The threading event of large N rings suggests a
slowing-down of the dynamics, similar to the slow dynamics in
glass-forming liquids, where cage effects are imposed by the
local density environment.13 The concept of a “topological
glass” has been used to understand the dynamics of ring
polymer melts, highlighting the unique role of TCs in these
systems compared to the entanglements in linear poly-
mers.14−24 Interestingly, techniques such as random pin-
ning16,17 and activeness21,22,24 have been introduced to

enhance the glassiness in ring polymers through molecular
dynamics (MD) simulations.
Dynamic heterogeneity (DH) is a key concept used to

describe the significant slowing-down of glass-former liquids as
they approach the glass transition temperature.25−27 The
slowing-down is accompanied by the collective structural
relaxation of spatially heterogeneous regions that exceeds the
molecular size.28−31 DH is conventionally measured by the
non-Gaussian parameter (NGP), i.e., the degree of the
deviation from the Gaussian distribution for the molecular
displacement within a given time interval.29,32−36 The NGP
was utilized to quantify the non-Gaussianity in supercooled
linear polymer melts.37−39 In addition, we conducted
calculations on the NGP for linear polymer melts by MD
simulations using the Kremer−Grest (KG) bead-spring
model.40 The chain lengths varied from N = 5 to 400, and
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the monomer density was set at ρ = 0.85 (in the unit of σ−3 by
using the size of the bead σ). Our findings revealed a notable
increase in the peak of the NGP as N increases. This suggests
that the dynamics of the system becomes spatially heteroge-
neous. However, note that the mechanism of non-Gaussianity
in linear polymer melts is due to the enhanced mobility of
chain ends, which is different from the cage effects observed in
glass-forming liquids.
Michieletto et al. conducted MD simulations of ring

polymers using the KG model and analyzed the center-of-
mass (COM) displacement distribution.17 They found that the
non-Gaussian behavior was pronounced even in the absence of
random pinning fields when the monomer density ρ increased
with the chain length N = 500. A parallel observation of the
non-Gaussian behavior was also reported for ring polymers.41

This finding is consistent with the experimental observation of
poly(ethylene oxide) ring melts by Braś et al.42 However, our
previous study, which also used the same model for MD
simulations of ring polymer melts, showed that the NGP
remained quite small at all time regimes, even when the chain
length was increased up to N = 400.40 It should be noted that
the chain stiffness differed between the two studies.
Specifically, the bending potential εθ(1 + cos θ) (in the unit
of energy scale in the Lennard-Jones potential) acts on the
bending angle θ formed by three consecutive monomer beads
along the polymer chain (eq 3). Michieletto et al. utilized a stiff
ring chain with a bending energy of εθ = 5 for densities up to ρ
= 0.4. More recently, the glass-like slow dynamics has also been
demonstrated at low densities by increasing the chain stiffness
up to εθ = 20.

43 By contrast, we simulated semiflexible ring
chains with εθ = 1.5 at a higher density of ρ = 0.85, which is the
same as that used in the MD study by Halverson et al.44−46

Thus, there is still much to be explored regarding the
influence of chain stiffness on DH in ring polymer melts. To
address this gap, we performed MD simulations using the KG
model by varying the εθ and ρ. Our analysis began by
examining the NGP, and the analysis characterized the effect of
chain stiffness on the DH in ring polymer melts. We also
investigated the conformation of ring chains by analyzing the
radius of gyration, as well as asphericity and prolateness based
on the diagonalization of the gyration tensor. Additionally, we
introduced the concept of intermolecular bonds virtually
connected by ring COM positions, which enabled us to
investigate the rearrangement of intermolecular connectivity of
ring polymers. By combining the results obtained from these
analyses, we aim to identify similarities and differences in the
effects of chain stiffness and monomer density on ring polymer
dynamics.

■ MODEL AND METHODOLOGY
We employed MD simulations for ring polymer melts utilizing
the KG model.47 Each ring polymer was represented by N
monomer beads of mass m and diameter σ. Our system
consisted of M polymer chains contained within a three-
dimensional cubic box with a volume of V and periodic
boundary conditions. All monomer beads were subject to three
types of interparticle potentials, namely, the Lennard-Jones
(LJ) potential, which acted between all pairs of monomer
beads,
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Here r and εLJ represent the distance between two monomer
beads and the energy scale of the LJ potential, respectively.
The LJ potential was truncated at the cutoff distance of rc =
21/6σ, and the constant C ensured that the potential energy
shifted to zero at r = rc. Additionally, two adjacent monomer
beads along the chain also interacted via the bond potential
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for r < R0, where K and R0 represent the spring constant and
the maximum length of the bond, respectively. Note that eqs 1
and 2 define the finitely extensible nonlinear elastic (FENE)
bond potential of the KG model. We adopted values of K =
30εLJ/σ2 and R0 = 1.5σ. Lastly, we controlled the chain stiffness
by incorporating a bending potential

U ( ) 1 cos( )bend 0= [ ] (3)

where the bending angle θ is formed by three consecutive
monomer beads along the polymer chain. In this study, we
explored two bending energy cases: a semiflexible chain with εθ
= 1.5εLJ and a stiff chain with εθ = 5εLJ, both with an
equilibrium angle of θ0 = 180°.
We conducted MD simulations using the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS).48

Hereafter, the length, energy, and time are conventionally
represented in units of σ, εLJ, and m( / )2

LJ
1/2, respectively.

Moreover, the temperature is also presented in units of εLJ/kB,
where kB is the Boltzmann constant.
We fixed the temperature T, chain length N, and number of

chains M as T = 1.0, N = 400, and M = 100, respectively.
During all simulations, the temperature was controlled by
using the Nose−́Hoover thermostat, with a time step of Δt =
0.01. We varied the monomer density ρσ3 (= NMσ3/V) as 0.1,
0.3, 0.4, 0.5, and 0.55 both for the semiflexible and stiff chains.
In addition, we adopted the monomer density ρ = 0.85 for the
semiflexible chain with εθ = 1.5, which was a common choice
for MD simulations both for linear49,50 and ring40,44−46,51

polymers. It should be noted that a stiff chain system with εθ =
5 displayed nematic ordering when the monomer densities
exceeded ρ = 0.55, which is in agreement with the recent MD
simulations reported in ref 52. Therefore, the system of εθ = 5
at ρ = 0.85 was excluded from the analysis. For each
combination of εθ and ρ with the chain length N = 1000, we
calculated the Kuhn length lk using lk = ⟨R2⟩/lb(N − 1), in
linear polymers.53 Here, ⟨R2⟩ represents the mean square end-
to-end distance of the chain, and lb ≃ 0.97 denotes the average
distance between two neighboring beads in the KG model.
Another important characteristic is the entanglement length
Ne, which we determined through the primitive path
analysis.54,55 The values of lk and Ne for linear polymers with
the chain length N = 1000 are listed in Table 1. Note that, in
previous studies, lk was reported to be lk ≃ 2.79 for εθ = 1.5 at
ρ = 0.85 and lk ≃ 10 for εθ = 5 at ρ = 0.1, respectively.17,44
Additionally, Ne was reported to be Ne ≃ 28 for εθ = 1.5 at ρ =
0.85 and Ne ≃ 40 for εθ = 5 at ρ = 0.1, respectively.16,56
However, we encountered difficulties in estimating Ne at the
density ρ = 0.1 for both εθ = 1.5 and 5 due to the absence of
entanglement effects with N = 1000.
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■ RESULTS AND DISCUSSION

Mean Square Displacement and Non-Gaussian Parameter

We first analyzed the mean square displacement (MSD) of the
COM of ring polymer chains and the NGP of the COM
displacement distribution. The mean value of the even power
of the COM displacement is defined by

r t
M

t nR R( )
1

( ) (0) , ( 1, 2, )n
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where Rm(t) represents the COM position of m-th polymer
chain at time t. Here, ⟨···⟩ denotes an average over the initial
time. The second order with n = 1 corresponds to the MSD.
Furthermore, the NGP for the COM displacement α2(t) is
defined by
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The NGP is a typical quantity to characterize DH in glass-
forming liquids, which measures the non-Gaussianity, i.e., the
degree of the deviation of the distribution function of the
COM displacement from the Gaussian form during the time
interval t.
The results of MSD and NGP are displayed in Figure 1 by

changing the monomer density ρ for εθ = 1.5 (a, c) and εθ = 5
(b, d), respectively. As the monomer density ρ increased, the
diffusion of ring polymer chains significantly slowed for both εθ
= 1.5 and 5. Moreover, at higher densities, the MSD exhibits a
subdiffusive behavior with ⟨ΔrCOM2 (t)⟩ ∼ t3/4, followed by
diffusion behavior observed at displacements larger than mean
square gyration of radius ⟨Rg2⟩. The mean square radius of
gyration ⟨Rg2⟩ will be discussed in the next subsection with
respect to Figure 2. The COM diffusion constant D was
determined from D r t tlim ( ) /6

t
COM
2= . The monomer

Table 1. Kuhn Length lk and Entanglement Length Ne Are
Obtained by Varying Bending Energy εθ and Monomer
Density ρ for Linear Polymers with the Chain Length N =
1000

εθ ρ lk Ne
1.5 0.1 4.1 a
1.5 0.3 3.8 121
1.5 0.4 3.7 85
1.5 0.5 3.0 60
1.5 0.55 3.0 59
1.5 0.85 2.8 28
5 0.1 10 a
5 0.3 7.8 32
5 0.4 7.2 24
5 0.5 6.4 19
5 0.55 6.4 15

aNo entanglement effects were observed.

Figure 1. Monomer density ρ dependence of MSD ⟨ΔrCOM2 (t)⟩ and NGP α2(t) for εθ = 1.5 (a, c) and for εθ = 5 (b, d), respectively. Note that the
MSD is scaled by the mean square gyration of radius ⟨Rg2⟩. In (a) and (b), the ballistic, subdiffusive, and diffusive behaviors, ⟨ΔrCOM2 (t)⟩ ∼ tα, are
represented by black lines with α = 2, 3/4, and 1, respectively. Insets of (a) and (b): semilog plots of the diffusion constant D as a function of the
monomer density ρ. Note that monomer density ρ = 0.85 was analyzed only for εθ = 1.5.
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density ρ dependence of D for εθ = 1.5 and 5 is shown in the
insets of Figure 1(a) and (b), respectively. The reduction in
diffusion was more pronounced for the stiff chains with εθ = 5
compared to semiflexible chains with εθ = 1.5 at time scales
corresponding to the onset of the diffusion process at the same
monomer density. These observations are consistent with the
calculations by Michieletto et al.17 and Halverson et al.45

As demonstrated in Figure 1(c), the NGP’s value of
semiflexible ring chains with εθ = 1.5 remained relatively
small (α2(t) ≲ 0.1) at all investigated times and densities. This
suggests that the distribution of the COM displacement |Rm(t)
− Rm(0)| follows a Gaussian distribution, which was previously
reported in our work.40 The observation of Gaussian behavior
in semiflexible ring polymers, even at the dense monomer
density of ρ = 0.85, is noteworthy and provides a unique
perspective on the dynamics of ring polymers. By contrast, for
stiff ring chains, the increase in α2(t) was more significant,
showing peaks in a long-time regime that approximately
corresponded to the onset time scale of the diffusive behavior
with ⟨ΔrCOM2 (t)⟩ ∼ t, as demonstrated in Figure 1(b) and (d).
Namely, the DH was found to be more pronounced in stiff ring
chains with εθ = 5, similar to common observations in glass-
forming liquids. An analogous glass-like DH was reported by
Michieletto et al., who analyzed the displacement distribution
of stiff ring chains with εθ = 5 up to ρ = 0.4 with N = 500.17

Therefore, the contracting observations in the NGP call for
further investigations into the COM mobility, which could
entail significant differences between semiflexible and stiff ring
chains.
Conformation of the Ring Chains: Radius of Gyration,
Asphericity, and Prolateness

It is important to examine the details regarding the
conformation of rings and its relationship with the DH both
for semiflexible and stiff chains. The radius of gyration provides
a measure of the size of the polymer chains. To gain a more
sophisticated understanding of the shapes, the principal
components of the gyration tensor I can be utilized, which
allows for examination of the asphericity and prolateness of the
polymer chains.57−60 The gyration tensor for each ring chain is
defined as Iαβ = N−1∑i=1

N ∑j=1
N (αi − αj)(βi − βj), where α

represents the α element of the i-th bead with α, β (= x, y, z).
Here, the square radius of gyration Rg2 can be calculated as the
summation of the eigenvalues λi (i = 1, 2, 3) of the gyration

tensor I as Rg2 = λ1 + λ2 + λ3, where the principal axes of inertia
are chosen such that the diagonal elements are ordered as λ1 ≥
λ2 ≥ λ3. Furthermore, the asphericity A and prolateness P were
calculated from the following equations:

A
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1 2
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The asphericity takes on values of 0 ≤ A ≤ 1, where A = 0
corresponds to a spherically symmetric object and A = 1
corresponds to a polymer that is fully extended to form a rod
shape. The prolateness P is bounded between −1 and 1, where
P = −1 represents a fully oblate object such as a disk and P = 1
represents a prolate object in the shape of a rod. The gyration
tensor was calculated for each chain, and the time evolutions of
Rg2, A, and P were computed. The mean values ⟨Rg2⟩, ⟨A⟩, and
⟨P⟩ were evaluated by taking the average of these quantities
over the time series data for each chain. It should be noted that
the analysis of the gyration tensor was performed in various
simulations of ring polymers.60−68

Reigh and Yoon reported a universal scaling behavior of ⟨Rg2⟩
∼ ρ−0.59 for long ring polymers by Monte Carlo simulation of a
lattice model.66 This exponent of −0.59 is significantly
different from the value of −0.25 observed for linear polymers,
which was a well-established prediction based on scaling
arguments. This observation suggests that ring chains form
more compact conformations than linear chains. More
recently, Cai et al. performed MD simulations of ring polymers
using the KG model by varying chain lengths N up to 5120 and
reported the same scaling behavior of ⟨Rg2⟩ ∼ ρ−0.59.67 The
master curve was then proposed heuristically and given by

R R/ 1 0.45( / )g
2

g
2 0.59° = [ + * ] (8)

where ⟨Rg°2⟩ denotes the mean square radius of gyration in the
dilute solutions. In addition, ρ* corresponds to the overlap
density defined by N R3 /(4 )g

2 3/2* = ° . They also
compared their simulation results with available experimental
data and found good agreement between simulations and
experiments. Note that the ring polymer chains in their

Figure 2. Monomer density ρ scaled by the overlap density ρ* dependence of chain conformation characteristics: (a) mean square radius of
gyration ⟨Rg2⟩/⟨Rg°2⟩, (b) asphericity A, and (c) prolateness P. In (a), the mean square radius of gyration is normalized by ⟨Rg°2⟩, which represents
the mean square radius of gyration at a density of ρ = 0.001. The raw data of ⟨Rg2⟩ as a function of ρ are also shown in the inset of panel (a). The
black dotted line in (a) is the master curve, R R/ 1 0.45( / )g

2
g

2 0.59° = [ + * ] . In each panel, the density is scaled density

N R3 /(4 )g
2 3/2* = ° .
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simulations were fully flexible, because they did not
incorporate any bending potentials.
Figure 2(a) shows the relative mean square radius of

gyration ⟨Rg2⟩/⟨Rg°2⟩ as a function of scaled density ρ/ρ*. We
estimated ⟨Rg°2⟩ as the value of mean square radius of gyration
⟨Rg2⟩ both for semiflexible and stiff chains at a density of ρ =
0.001. This density corresponds to a sufficiently low scaled
density (ρ/ρ* < 10−1), making it appropriate to consider ρ =
0.001 as a dilute solution both for semiflexible and stiff ring
polymers. The data for semiflexible rings with εθ = 1.5 follow
the master curve given by eq 8. However, a deviation from eq 8
was observed for stiff rings with εθ = 5, indicating that ⟨Rg2⟩ of
stiff ring chains decreases slower than that of semiflexible ring
chains as the density is increased beyond ρ/ρ* ≳ 10. The inset
in Figure 2 (a) shows the density ρ dependence of the mean
square radius of gyration ⟨Rg2⟩. This represents that the stiff
rings are larger than the semiflexible ones in all densities ρ.
Figure 2(b) and (c) show the average asphericity ⟨A⟩ and

average prolateness ⟨P⟩, respectively, as functions of ρ/ρ*.
Interestingly, we found that the values of ⟨A⟩ and ⟨P⟩
approached saturation regardless of the bending energy εθ. In
particular, the relatively small values of ⟨A⟩ ≃ 0.2−0.3 suggest
that the ring polymer adopts globular conformations, which
remain valid across the densities examined. However, slightly
large values of ⟨P⟩ ≃ 0.5 indicate that the rings extend
moderately in the direction of the longest inertia axis. These
imply that the shape of the rings is mostly spherical and
relatively insensitive to both εθ and ρ, provided that the chain
length is sufficiently long compared to the Kuhn length scale,

which was quantified for linear polymers with N = 1000 (see
Table 1).
Interpenetration of Ring Chains

As shown in Figure 2, while the shape of the polymer remained
largely unchanged on average, there was an increase in the
mean square radius of gyration ⟨Rg2⟩ when the chain stiffness
increased to εθ = 5. This suggests that the intermolecular
connectivity of ring chains may differ significantly between
semiflexible and stiff chains. To explore this further, we
calculated the radial distribution function for the COM of ring
chains g(r), and the results are presented in Figure 3 as a
function of the scaled length of r R/ g

2 1/2.
As observed in Figure 3, g(r) allowed us to characterize the

degree of interpenetration of ring polymers. In fact, we did not
observe a pronounced peak of g(r) but instead found finite
values at the length scale of r Rg

2 1/2< , indicating that there is
some degree of interpenetration between the ring chains. The
g(r) became broader with increasing monomer density,
suggesting that the chains are less separated from each other.
Similar results of g(r) were reported for flexible chains without
the bending potential by Cai et al.67 Additionally, as shown in
Figure 3(b), the degree of the interpenetration became more
significant as the bending energy increased to εθ = 5. This
observation is consistent with the larger mean square radius of
gyration ⟨Rg2⟩ of stiff rings with εθ = 5 compared to that of
semiflexible rings of εθ = 1.5 at the same monomer density ρ.
The extent of interpenetration needs to be stronger when the
ring is “larger”. The difference in ⟨Rg2⟩ is also evident in Figure

Figure 3. Radial distribution function g(r) for COM of ring polymers as a function of the scaled distance r R/ g
2 1/2. Results are shown for εθ = 1.5

(a) and εθ = 5 (b).

Figure 4. Probability distributions of the number of virtual bonds, f(Zb), for ring polymers of εθ = 1.5 (a) and εθ = 5 (b). The virtual bonds are
defined based on eq 9. Panel (c) shows the monomer density ρ dependence of the mean value of Zb.
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2, where the curve for εθ = 5 is shifted to higher values of ρ/ρ*
compared to εθ = 1.5. These results suggest that the
competition between repulsive forces inside the ring and
those from adjacent rings plays a crucial role in determining
the loop structure. While sufficiently semiflexible polymers
tend to be more compact because the repulsion between
neighboring rings overcomes the monomer bead repulsion
inside a single chain, the stiff polymers tend to expand due to
the long Kuhn length (see Table 1), leading to the
interpenetration of rings.
To analyze the number of intermolecular connectivity, we

considered virtually connected bonds between the COM of
ring chains. In particular, for two ring polymers i and j with the
COM positions ri and rj, they were considered to be virtually
bonded if

r A Rij 1 g
2 1/2< (9)

with the value of A1 = 1. Here, rij = |Ri − Rj| is the distance
between these COMs. For each polymer, the number of virtual
bonds Zb, which represents the static coordination number,
was counted. Figure 4 depicts the probability distribution f(Zb)
for ring polymers of εθ = 1.5 (a) and εθ = 5 (b) at varying
density ρ. In the case of semiflexible rings with εθ = 1.5, the
peak was observed at around 2 for most densities, except for ρ
= 0.1, where Zb was predominantly 0, indicating that each ring
chain was mostly isolated and did not correlate with each
other. However, for stiff rings with εθ = 5, we observed
progressive increases in the peak position and width of f(Zb) as
density ρ increased. The monomer density ρ dependence of
the mean value of Zb is shown in Figure 4(c). Here, ⟨Zb⟩ can
be evaluated by

Z r
N

g r r4 ( ) d
R

b
0

2g
2 1/2 i

k
jjj y

{
zzz=

(10)

In cases of g(r) = 1 and ⟨Rg2⟩ ∼ ρ−0.6, ⟨Zb⟩ may exhibit a
scaling behavior of Z Rb g

2 3/2 0.1 at a fixed chain
length N. This suggests that ⟨Zb⟩ increases slowly as the
density increases. However, the presence of g(r) < 1 for
r Rg

2 1/2< , as observed in Figure 3 both for εθ = 1.5 and 5,
leads to the deviation from the expected ⟨Zb⟩ ∼ ρ0.1. Notably,
as shown in Figure 2(a), ⟨Rg2⟩ of εθ = 5 does not follow the
ρ−0.6 scaling, resulting in a more pronounced increase in ⟨Zb⟩
with increasing the density.
Moreover, the spatial distribution of intermolecular

connectivity is visualized in Figure 5. For semiflexible ring
polymers with εθ = 1.5, bonds describing the connectivity of
COM are sparse irrespective of the monomer density ρ. In
contrast, as the density increases, ring polymers with higher
stiffness (εθ = 5) exhibit stronger percolation, indicating a
more interconnected network bond. It is noteworthy that there
exists a critical coordination number around 3, beyond which
the linked ring polymers percolate through the entire system.69

Rearrangements of Intermolecular Connectivity
To examine rearrangements of intermolecular connectivity of
ring polymers, we analyzed the time evolution of virtual bonds.
This reflects the exchange of initially bonded neighbors
because the COM motion breaks old bonds and forms new
ones. Although the average coordination number ⟨Zb⟩ may
remain constant, the neighboring COMs will be replaced with
new ones, thereby reshaping the cages around a tagged COM.
A similar methodology, known as the bond-breakage method,

is used to study the DH observed in glass-forming
liquids.30,70−73

The virtual bond between two polymers i and j which had
been counted to be formed at an initial time 0 through eq 9
was considered broken when

r t A R( )ij 2 g
2 1/2> (11)

after a time interval of t. To ensure bond-breaking that is
insensitive to thermal fluctuations, the threshold value of A2 =
1.2 was set slightly larger than A1 = 1. The total number of
surviving bonds, Nb(t), was calculated as the number of bonds
at time 0 counted with eq 9 subtracted by that through eq 11.
The bond correlation function, Fb(t) = ⟨Nb(t)/Nb(0)⟩, was
obtained by averaging over the configurations at t = 0. Figure 6
shows the results of Fb(t) for εθ = 1.5 (a) and εθ = 5 (b),
respectively. The characteristic time scale of Fb(t) is related to
that of the rearrangement of the local coordination by
neighboring COMs, according to the definition of the bond.
The Fb(t) was fitted to the stretched exponential function
F t t( ) exp ( / )b b= [ ] where the exponent β represents the
degree of the deviation from the exponential decay with β = 1.
The average relaxation time ⟨τb⟩ was then calculated from ⟨τb⟩
= ∫ 0∞Fb(t) dt, and estimated by ⟨τb⟩ = (τb/β)Γ(1/β) with the
Gamma function Γ(···). Figure 6(c) shows ⟨τb⟩ as a function of
monomer density ρ. Our results demonstrate the increase in
the average relaxation time ⟨τb⟩ of Fb(t) as monomer density ρ
increased, for both εθ = 1.5 and εθ = 5. The increase in ⟨τb⟩
apparently obeys an exponential trend as a function of ρ,

Figure 5. Visualization of virtual bonds (yellow lines) between the
COM of rings (blue spheres) for εθ = 1.5 (a, c, and e) and εθ = 5 (b,
d, and f). The monomer density ρ increases as ρ = 0.1, 0.3, and 0.5
from top to bottom.
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except at the dilute density of ρ = 0.1 for εθ = 1.5, where the
average coordination number ⟨Zb⟩ is less than 1, indicating
that the polymer rings are nearly isolated (see Figure 4(c)).
Furthermore, we observed a more pronounced increase in ⟨τb⟩
for stiff ring polymers with εθ = 5, which is in accordance with
the monomer density ρ dependence of ⟨Zb⟩ (see again Figure
4(c)).
Another significant time scale to consider is the diffusion

time, τd, defined as τd = ⟨Rg2⟩/6D, which corresponds to the
time at which the MSD reaches the length scale of the mean
square radius of gyration ⟨Rg2⟩. The monomer density
dependence of τd is illustrated in Figure 6(c). It is observed
that, for semiflexible rings with εθ = 1.5, τd increases in a
similar manner to ⟨τb⟩, while for stiff rings with εθ = 5, τd
exhibits a significant increase and becomes decoupled from
⟨τb⟩ as the density ρ increases. These observations suggest the
COM diffusion of stiff rings is not solely driven by local bond
rearrangements but requires a cooperative mechanism.
We then examined the collective effects of bond rearrange-

ments in ring polymers. For this purpose, the dynamic
susceptibility of bond-breakage was calculated by the
fluctuation function of the number of broken bonds at
different time intervals, t.71 The number of the breakage-
bond Bi(t) between two times 0 and t for the i-th polymer was
counted as the difference between Nb(t) and Nb(0) on the
basis of the conditions given in eqs 9 and 11. The degree of
bond-breakage correlations can be characterized by the
susceptibility χb(t), which is defined as

t
M

B t B t( )
1

( ) ( )
i

M

j

M

i jb
1 1

=
= = (12)

where δBi(t) = Bi(t)/2 − ⟨B(t)⟩ represents the deviation from
the average number of broken bonds. The average number of
broken bonds can be estimated as B t B t M( ) ( )/2 /i

M
i1= =

. Note that the factor of 1/2 avoided double-counting of the
bond-breakage between polymers i and j. Figure 7 illustrates
the susceptibility of bond-breakage, χb(t), for different values
of εθ and ρ. For semiflexible rings with εθ = 1.5, the χb(t)
shows relatively small values, whereas the peak of χb became
pronounced (χb ∼ 30) at the highest density ρ = 0.85
investigated. In contrast, for stiff rings with εθ = 5, the peaks
show significant development with increasing monomer
density, particularly at the time regimes where the MSD
nearly reaches diffusive behavior. At a density of ρ = 0.55, the
peak height reaches χb ∼ 90. Therefore, the observed NGP
behavior in Figure 1(c) and (d) is related to DH, which is also
characterized by the bond-breakage susceptibility, χb(t).
Interestingly, the results of α2(t) and χb(t) suggest that ring
polymers with εθ = 1.5 exhibit spatial homogeneous dynamics,
even in the subdiffusion regime. From this perspective, the
interchain interactions in semiflexible ring polymer melts
display notable characteristics, while stiff ring polymer melts
exhibit interactions reminiscent of “entanglements” in linear
polymer melts.
Mei et al. have recently developed the polymer interaction

site model (PRISM) as a microscopic theory for dense ring

Figure 6. Monomer density dependence of the bond correlation function Fb(t) for εθ = 1.5 (a) and εθ = 5 (b). The solid line represents the fitting
result obtained using the stretched exponential function, F t t( ) exp ( / )b b[ ]. Panel (c) shows the monomer density ρ dependence of the
average relaxation time ⟨τb⟩ of the bond correlation function Fb(t) and the diffusion time τd = ⟨Rg2⟩/6D.

Figure 7. Monomer density dependence of the dynamic susceptibility of bond-breakage χb(t) for εθ = 1.5 (a) and εθ = 5 (b).
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polymer melts.74,75 This theory proposes a partially inter-
penetrating, two-step fractal structure model for each ring
chain and provides a master curve for the chain length N
dependence of the COM diffusion constant D. Although the
PRISM theory has shown good agreement with MD
simulations data for semiflexible ring polymers with εθ =
1.5,45 deviations from the master curve have been observed for
stiff rings of εθ = 5.

17 To gain a deeper understanding of the
underlying mechanism of emergence of DH in ring polymer
melts, a combined effort between theory and simulation may
be necessary. In particular, our MD simulation results
analyzing DH can provide insights into the deviation from
the master curves reported in ref 75 and may facilitate a
generalization of the theory by incorporating an activated
hopping process.76

■ CONCLUSION
In conclusion, our MD simulations of ring polymer melts using
the KG model have provided insights into the dynamics of
semiflexible and stiff ring chains. By analyzing the NGP in the
distribution of the COM displacement, we have found that
more stiff ring chains exhibit a peak in the NGP in long-time
regimes, which increases with the monomer density. This
suggests that the dynamics of stiff ring chains are affected by
strong intermolecular interactions and that the motions of the
COMs are correlated with each other. In contrast, more
flexible ring polymers exhibit relatively small non-Gaussianity,
indicating that the COM mobility is almost uncorrelated with
those of the others. The difference in non-Gaussianity between
the two types of ring polymers suggests that the nature of the
intermolecular interactions changes significantly depending on
the degree of chain stiffness.
The behavior of the radius of gyration Rg in relation to ρ

depends on the stiffness of the ring polymer chains. In the case
of more semiflexible rings, the Rg follows a master curve
described by eq 8. However, this curve does not apply to stiff
ring polymer melts. The deviation from the master curve can
be explained by the competition between the shrinkage caused
by the excluded volume of neighboring polymers and the
expansion due to the chain stiffness. Specifically, semiflexible
ring polymers tend to adopt a compact globule conformation
due to the excluded volume interaction with their neighbors,
while more stiff rings expand due to the long Kuhn length.
We have also analyzed the dynamics of bond-breakage

between the COM of rings defined by using the averaged
radius of gyration, R g

2 1/2. The network of virtual bonds in stiff
rings is percolating, while those in semiflexible rings are
sparsely distributed. Furthermore, the results for the dynamic
susceptibility of bond-breakage are consistent with the non-
Gaussianity in the displacement distribution, indicating that
the DH of bond-breakage is coupled with the non-Gaussianity
in diffusion in ring polymer melts. In addition, it is crucial to
investigate the dynamics of ring-linear blend melts.55,77−80 In
practical terms, the analysis of the bond-breakage is particularly
well-suited for this system, enabling the assessment of the
interconnectivity dynamics of polymer chain COMs.
Threading is commonly discussed in ring polymer melts, but

the relationship with bond-breakage dynamics remains unclear.
Further investigation into the properties of threading in ring
polymer melts with varying chain stiffness is warranted. Finally,
we have found that semiflexible ring polymers exhibit
subdiffusion yet (near-)Gaussian distribution that is contrast

to linear and stiff ring chains. We suggest that the microscopic
theory based on PRISM for ring polymer melts will be useful
for understanding the diffusion mechanisms of these systems.
Drawing on another crucial insight from ref 69, we put forward
the notion that the value of ⟨Zb⟩ = 3 acts as a threshold for the
percolation of virtual bond networks and the emergence of DH
in ring polymers. To gain deeper insights, further analysis is
required, including the cluster size distribution by varying the
chain stiffness εθ and extending the study to a longer chain
length N. Currently, we are pursuing the application of
persistent homology analysis to explore this perspective
further.11
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