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Abstract

Groundwater is one of the most important freshwater resources, especially in arid and semi-

arid regions where the annual amounts of precipitation are small with frequent drought dura-

tions. Information on qualitative parameters of these valuable resources is very crucial as it

might affect its applicability from agricultural, drinking, and industrial aspects. Although geo-

statistics methods can provide insight about spatial distribution of quality factors, applica-

tions of advanced artificial intelligence (AI) models can contribute to produce more accurate

results as robust alternative for such a complex geo-science problem. The present research

investigates the capacity of several types of AI models for modeling four key water quality

variables namely electrical conductivity (EC), sodium adsorption ratio (SAR), total dissolved

solid (TDS) and Sulfate (SO4) using dataset obtained from 90 wells in Tabriz Plain, Iran;

assessed by k-fold testing. Two different modeling scenarios were established to make sim-

ulations using other quality parameters and the geographical information. The obtained

results confirmed the capabilities of the AI models for modeling the well groundwater quality

variables. Among all the applied AI models, the developed hybrid support vector machine-

firefly algorithm (SVM-FFA) model achieved the best predictability performance for both

investigated scenarios. The introduced computer aid methodology provided a reliable tech-

nology for groundwater monitoring and assessment.

1. Introduction

Humans depend mainly on groundwater for both drinking, agricultural, and industrial pur-

poses [1, 2]. It is, therefore, necessary to perfectly understand the geochemical processes that

regulate the chemical composition of groundwater as it will improve the understanding of the
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hydro chemical systems in different regions around the world [3]. Such information can also

improve groundwater resource management and utilization by highlighting the relationships

between groundwater quality, aquifer lithology, and recharge type [4, 5]. With the traditional

approaches of water resource management, surface water and groundwater systems are con-

sidered as two separate entities; however, both systems have been proven to affect each other

from both qualitative and quantitative perspective based on the recent development in land

and water resources analysis [6, 7]. Nevertheless, groundwater contamination, either by

anthropogenic activities, or by inherent aquifer material composition, reduces groundwater

supply capacity or restricts its exploitation [8, 9]. The quality of groundwater could also be

influenced by agricultural activities, such as the use of fertilizers and pesticides even though

other geological and anthropogenic activities can also influence groundwater quality [10, 11]

since it is a component of physical and chemical parameters that is affected by human and geo-

logical activities [12–14].

Normally, the traditional approach to groundwater quality analysis depends mainly on

mathematical modeling such as time series analysis, probability statistics, etc. These methods

assume the existence of a linear relationship between the dependent and independent vari-

ables; hence, the overall accuracy of such models is usually low [15, 16]. Considering the pre-

vailing issues in simulating groundwater quality [17, 18], there is a need for new

computational approaches to this problem. The advancement of AI models in the field of

hydrology and environment has received a massive attention over the past decade [19–23]. In

this regard, some studies have been focused on the development of some computational

approaches to groundwater quality simulation; for instance, Yesilnacar et al. [24] developed an

artificial neural network (ANN) model for the prediction of groundwater nitrate concentra-

tion in Harran Plain in Turkey. The study reported that the developed model succeeded in

achieving a cost-effective management of groundwater resources. Furthermore, Liu et al. [25]

tested support vector machine (SVM) model that relies on eight assessment indicators for

water quality assessment. It was determined that the proposed SVM model performed well in

determining water quality grade as recommended by the Groundwater Quality Assessment

Standard. The proposed method also succeeded in solving complex nonlinear relationships

that exists between water quality grade and assessment factor; the model also achieved a high

level of prediction accuracy and provided a feasible and reasonable performance as an assess-

ment method. An ANN model has been developed by Yesilnacar and Sahinkaya [13] for

groundwater sulfate (SO4) and Sodium Adsorption Ratio (SAR) concentration prediction. The

outcome of the study revealed the possibility of managing groundwater resources in an easier

and cost-effective manner with the proposed model. A Bayesian neural network (BNN) model

has been developed by Maiti et al. [26] for evaluation of groundwater quality. The study also

proved that the model could provide useful constrain (based on uncertainty and statistical

analyses) that could be useful in assessing and monitoring the quality of groundwater.

The evaluation of the quality of surface and ground water in rural areas of the Silesian Low-

lands has been presented by Orzepowski et al. [27], under variable climatic conditions. The

outcome of the study showed that the ANN modeling method based on statistical analysis

served as a useful tool for water content estimation in soils under various climatic conditions.

The study by Khaki et al. [28] employed Adaptive Neuro-fuzzy Inference System (ANFIS) and

ANN for the simulation of total dissolved solids (TDS) and electrical conductivity (EC) levels.

Both techniques demonstrated effectiveness in interpreting the behavior of water quality

parameters. The potential of ANN model in predicting SAR, magnesium absorption ratio,

residual sodium carbonate, Kellys ratio and percent sodium (%Na) in groundwater has been

evaluated by Wagh et al. [29]. The outcome of the study proved the effectiveness of the devel-

oped ANN model in making accurate prediction that contribute to the irrigation suitability
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indices. Barzegar and Moghaddam [30] comparted the performance of three ANN algorithms

including Multi-Layer Perceptron (MLP), radial basis function neural network (RBFNN) and

generalized regression neural network (GRNN) in predicting the salinity of groundwater as

expressed by the electrical conductivity [EC (μS/cm)]. From the modeling results, the three

models performed well in predicting salinity of groundwater. The capability of SVM model for

nitrate concentration prediction has been evaluated by Arabgol et al. [31] in Arak plain

groundwater, Iran. The SVM model succeeded in predicting the nitrate concentration based

on a set of groundwater quality variables that could be easily measured, such as the water tem-

perature, groundwater depth, electrical conductivity, dissolved oxygen, pH, total dissolved sol-

ids, land use, and season of the year. The study also showed that the SVM model is a fast,

reliable, and cost-effective AI technique. The feasibility of AI techniques in groundwater qual-

ity simulation has been evaluated by numerous scholars and such studies have produced effi-

cient performances [32–40].

Gholami et al. [34] presented an advanced form of the ANFIS model for groundwater qual-

ity simulation; the proposed model was described as coactive-ANFIS (CANFIS) integrated

with geographic information system (GIS). The training and validation of the proposed model

was performed by considering a case study of Mazandaran Plain in the northern region of

Iran. The outcome of the study demonstrated the efficiency of incorporating AI model with

GIS. The study by Azimi et al. [41] presented ANN and modified fuzzy clustering models for

the evaluation of decreases in the quality of drinking water. The performance of the models

was evaluated on real instances of the southeast aquifers in the central region of Iran. The

study reported the capability of the modified clustering method to improve the prediction effi-

ciency of the model when compared to the previous reports. The feasibility of ANN and multi-

ple linear regression (MLR) models in modeling the Canadian Water Quality Index (CWQI)

of groundwater has been evaluated by Nathan et al. [42]; the study optimized the input model-

ing parameters using Hierarchical Cluster Analysis (HCA) approach and clustering procedure.

From the analysis of the results, both MLR and ANN models were found as reliable methods

of predicting the CWQI. The study further indicated that the research finding could assist

decision makers in addressing water quality-related problems.

Furthermore, efforts are still dedicated to the development of novel AI predictive models

that could reliably handle the diversity, non-linearity, and non-stationarity of the groundwater

quality pattern. The study by Barzegar et al. [43] investigated the feasibility of using extreme

learning machine (ELM) model as a new and advanced version of ANN model for the predic-

tion of the level of fluoride contamination in groundwater. Upon validation against the classi-

cal AI models, the ELM was proven capable of predicting the level of fluoride contamination.

Different studies have tried using hybridized AI models for groundwater quality simulation;

among the studied AI models are the nature-inspired optimization algorithms like particle

swarm optimization, differential evolution, genetic algorithm, ant colony algorithm, firefly

algorithm, etc. [44–47].

The study by Sepahvand et al. [48] focused on the performance of four AI models in pre-

dicting SAR; the evaluated models are M5P model tree, RF, implementing bagging algorithm

on M5P, and group method for data handling (GMDH). From the results of the study, bagging

M5P model tree model achieved higher accuracy in SAR prediction compare to the rest of the

models in a given study area. Another study evaluated Gaussian Process (GP), M5P, RF and

random tree (RT) model for the prediction of nitrate and strontium contamination in ground-

water [49]. The study showed that GP model achieved better performance compared to the

other models in terms of nitrate and strontium concentrations prediction.

Owing to the need for studies on the modeling of groundwater quality for diverse geosci-

ence engineering applications, various studies have been dedicated to this course over the past
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decade. Based on the research adopted in Scopus database “Keywords search: Groundwater

water artificial intelligence”, the search finding indicated there are 131 research articles pub-

lished in this domain covering the time period 1988–2021. Based on the literature analysis con-

ducted on the collected database using VOSviewer, the intersection occurrence keywords are

268 with 6 clusters visualization (Fig 1). Also, the literature indicated 41 countries were estab-

lished research on this research domain. Based on the results presented in Fig 1, Iran region is

the second top countries after USA is focusing on the simulation of the groundwater quality.

Fig 1. The literature review analysis for the groundwater quality simulation using the capacity of the AI models over the past two

decades and the counties who conducted research on this research domain.

https://doi.org/10.1371/journal.pone.0251510.g001
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In addition, Fig 1 signified that there is no established research on the hybridized AI models in

this research domain.

Although substantial studies have been performed to estimate groundwater quality parame-

ters using soft computing methods, a comprehensive study that can evaluate the abilities of

those models using both quality parameters and geographical information is still rare in litera-

ture. Hence, the present study aimed to predict four important groundwater quality parame-

ters in Tabriz Plain, Iran using eight soft computing approaches. Tabriz Plain is located in the

vicinity of Lake Urmia (the second great saline lake of the globe), which has experienced sever

water level down during a couple of recent decades. Given that the groundwater table level has

been decreased in the wells, it is usually assumed that there is a hydraulic interaction between

the lake and surrounding aquifer (of Tabriz Plain) that may cause salt water intrusion into the

aquifer. This might reduce its quality for different agricultural, domestic and industrial cus-

tomers. Nonetheless, numerous agricultural and industrial activities have been carried out in

this plain that can contribute to variations in water quality parameters. Therefore, having

robust tools for spatially simulation of the groundwater quality parameters is of crucial impor-

tance in this region. Nevertheless, the proposed protocol might be translated to other regions

where the necessary information for model feeding is available.

2. Materials and methods

2.1. Study area

The study area covers the Tabriz Plain in Northwestern Iran that has been located between the

latitudes of 45˚300 and 46˚150 N and altitudes 37˚560 and 38˚170 E, with a total catchment area

of more than 700 km2 [50]. Tabriz area lies in east Azerbaijan province, which is structurally

part of the central Iran unit. It is wedged between the Zagros and Alborz mountain systems.

The area includes formations of Devonian to Quaternary age affected by various geologic

movements, most strongly those of Alpine origin. The Tabriz area formations are composed of

Miocene faces that have covered alluvial sediments unevenness and have formed steep strata

east to west. Miocene bedrock in this area is high, so alluvial sediment is very thin. The altitude

ranges from 1247 to 3600 m.a.s.l. The average annual precipitation of the area is about 230

mm, with an average annual temperature value of 12.8 oC. The climatic context of the studied

area is cold and dry based on to the Emberger climate classification index [50]. Observational

data from 90 wells were collected including different groundwater quality parameters. The

location of the study area and Tabriz Plain presented in (Fig 2, https://www.diva-gis.org/

gdata). A brief description of the utilized parameters is presented in Table 1. A brief descrip-

tion of the utilized parameters has been presented in Table 1. The major perennial river of the

plain is Ajichai River. Data from 90 observational wells across the plain were used for evaluat-

ing the adopted methodology. The data have been received from Regional Water Company of

East Azarbaijan, where the data have been thoroughly analyzed and screened for any inconsis-

tency. The water quality records included various parameters, e.g. Ca, Mg, Cl, SO4, EC, etc

have been measured during a 15 years period (monthly records are available between 2005–

2019).

2.2. Artificial intelligence models

In this study, several types of AI models are used to predict groundwater quality parameters. It

is worth noting that in all of the applied models, prior to entering the input data, the dataset

has been standardized and confined in the [0,1] range. The applied models can be categorized

as i) network-based models (Artificial Neural Network, ANN, and Adaptive Neuro-fuzzy

Inference System, ANFIS), ii) classification-based analysis (Support Vector Machine, SVM),
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Fig 2. The selected case study at the Tabriz Plain, Iran.

https://doi.org/10.1371/journal.pone.0251510.g002
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iii) regression-based analysis (Multivariate Adaptive Spline Regression, MARS), iv) ensemble

tree-based technique (Random Forests, RF), and v) integrative models (embedded Firefly

Algorithm with ANN and SVM, ANN-FA and SVM-FA). In the following, a concise descrip-

tion of these models is provided.

2.2.1. Multi-Layer Perceptron neural networks. Multi-Layer Perceptron (MLP) neural

networks are basic types of Feed Forward Neural Networks (FFNN), which are parallel layered

structure networks. In an FFNN, the network calculation flows forward from the first layer to

the last one. The layers in an MLP network are fully connected with the previous and the next

layer. Normally, an MLP network consists of three layers, namely the input layer, the hidden

layer, and the output layer. The input layer gets the input parameters and acts as an entrance

to the network. The calculation process in the hidden and output layers is based on several

interconnected processors called neurons (see Fig 3). In other words, in a typical MLP model,

Table 1. Statistical characteristics of the utilized groundwater quality parameters.

Parameter min max mean SD CV CSX

EC (mmhos/cm) 267.25 11261.33 2322.006 2224.309 0.957 1.485

SAR (-) 0.668 27.174 6.416 5.587 0.870 1.823

SO4 (meq/l) 0.227 12.632 4.048 3.110 0.768 0.702

TDS (mg/l) 163.92 6880.727 1475.033 1423.711 0.965 1.407

Ca (meq/l) 1.054 28.466 5.949 5.664 0.952 2.191

Mg (meq/l) 0.595 15.733 4.774 3.968 0.831 0.920

Na (meq/l) 0.606 81.423 11.966 15.069 1.259 2.025

Cl (meq/l) 0.29 91.156 14.178 18.777 1.324 1.770

TH (mg/l) 99.25 2087.964 511.593 432.098 0.844 1.518

K (meq/l) 0.425 0.545 0.212 0.119 0.563 0.874

Note: CV = coefficient of variation; CSX = Skewness coefficient

https://doi.org/10.1371/journal.pone.0251510.t001

Fig 3. Schematic structure of a four-layer MLP neural network.

https://doi.org/10.1371/journal.pone.0251510.g003
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each neuron in a layer receives information from all the neurons in the previous layer and

accordingly dispatches information to the neurons in the next layer. The calculated infor-

mation moves based on the synaptic weights and biases in the network. In the MLP, two

functions − summation and activation functions − are used to transmit the input calculated

information of a neuron and prepare it to be sent to the neurons in the next layer. Eq (1)

shows how the summation function (Sj) of the jth neuron acts by receiving the input variables

(Ii) to a specific neuron.

Sj ¼
Xn

i¼1

wijIi þ bj ð1Þ

In Eq (1), n denotes the total number of inputs, wij are the connection (synaptic) weights,

and βj shows the bias value. Having the outcome of Eq (1), the activation function (e.g., the sig-

moid activation function, fjðxÞ ¼ 1=ð1þ e� SjÞ for the hidden layer, and linear function for the

output layer, fj(x) = Sj) calculates the output value of the neuron. In the end, the final output is

attained based on Eq (2):

yi ¼ fi
Xn

i¼1

wijIi þ bj

 !

ð2Þ

After constructing the structure of the network, the adjustable parameters, including the

connection weights and biases, should be tuned. Hence, during the training phase of the net-

work, a learning algorithm such as gradient descent algorithm is used to update the adjustable

parameters. Detailed information about the MLP networks can be found in several studies

[51–53]. In this work, we used the following parameters for forming the final architecture of

the MLPNN: the number of hidden layers = 2, number of hidden nodes = 17, activation func-

tion for the hidden layer nodes = tangent hyperbolic; activation function for the output layer

node = tangent hyperbolic.

2.2.2. Support Vector Machine (SVM). Derived from the statistical learning theory, the

SVM has attained a lot of attention during the last decades in simulating engineering prob-

lems. Similar to the MLP network, the SVR, which is the regressive version of the support vec-

tor machine (SVM), is considered as a supervised machine learning algorithm; however, the

methodology applied is different. In order to construct an SVM, the data is separated into sev-

eral regressive subclasses using a decision surface so-called a hyperplane. The hyperplane

transforms the nonlinear input space to a high dimensional area [54].

Each class has similar features, which make the SVM capable of capturing the nonlinearities

of a complex system and extend it to predict response values. Those marginal data which are

close to the hyperplane form support vectors. The support vectors are critical elements for

training the SVM model [55].

By extending the SVM method for simulating and predicting problems, the SVR network

can be introduced as below [56]:

f ðxÞ ¼
Xn

i¼1

aikðx; xiÞ þ b ð3Þ

where x is the input dataset and n is the number of input data. α and β are the Lagrange multi-

plier and bias, respectively. k() denotes the kernel function.

The performance of an SVM highly depends on the utilized kernel function. There are sev-

eral available kernel functions that might be used in an SVR; however, four types of them are
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more common than the others, such as the linear, polynomial, radial basis function (RBF), and

sigmoid kernel functions [57, 58]. In this research, the RBF kernel function is applied for creat-

ing the SVM models.

kðxi; xÞ ¼ expðgkxi � xk2
Þ ð4Þ

where γ represses the width value of the RBF kernel.

2.2.3. Integrative firefly machine learning models (ANN-FA and SVM-FA). Using

metaheuristic algorithms, such as the Genetic Algorithm (GA) algorithms, is an alternative

approach for training the machine learning models i.e., ANN and SVM. In this research, the

Firefly Algorithm (FA) is embedded in the MLP and SVM models to create the integrative

models of MLP-FA and SVM-FA. The FA algorithm is inspired by the natural behavior of fire-

flies in attracting each other based on their flashing mechanism [59]. Mathematically speaking,

each firefly represents a possible solution. The objective function is introduced by the light

intensity of each firefly. Fireflies with lower light intensity (xj) follow those with higher light

intensity (xi). The following formula shows this movement mechanism:

xi ¼ xi þ bðxj � xiÞ þ aðu � 0:5Þ ð5Þ

b ¼ b0½expð� l:r2

ijÞ� ð6Þ

In the above formulae, λ denotes the absorption coefficient. The Euclidean distance

between the i and j fireflies is shown as rij. β and β0 define the firefly’s attractiveness and maxi-

mum possible attractiveness. U is a random number within the range of null and unity, and α
represents the random movement of the fireflies, which is named as the trade-off constant.

Following the above movement mechanism, all the fireflies move toward the firefly with the

highest light intensity (best firefly). The best firefly explores the search space randomly [60].

In this study, the FA algorithm is employed to update the tuning parameters of the standard

SVM model, including the hyperplane parameters, as well as weights and biased in the MLP

neural network [61]. By using this algorithm, the attraction coefficient was set as 1, light

absorption coefficient as 0.4 and a cooling factor of 0.9.

2.2.4. Multivariate Adaptive Regression Splines (MARS). The MARS model is a data-

driven model based on the concepts of forward and backward stepwise regression analysis. At

the first step (forward part), a suitable set of explanatory variables is selected. Afterward, with a

combination of the selected variables and presenting the location of knots, some linear func-

tions are constructed in the solution space [62].

At the backward procedure, the unnecessary variables are removed, which have been previ-

ously selected at the forward step [63]. Hence, the variable X would be updated to the variable

Y according to one of the following relations:

Y ¼ maxð0;X � cÞ ð7Þ

Y ¼ maxð0; c � XÞ ð8Þ

c is known as the threshold value.

2.2.5. Random Forests (RF). The RF consist of many decision/regression trees (as weak

learners) which uses an extended version of the bagging technique to create a strong ensemble

model. The trees are built on random subsets (different samples) of data. Thus, equivalent to

the number of training samples, several decision/regression trees grow [64]. After growing the

trees, the final output is calculated according to the ensemble technique i.e., voting for the clas-

sification and averaging for the regression problems (Fig 4). Generally, in the RF model, three
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types of tuning parameters should be determined, such as the number of trees (here it ranged

between 100 to 150), the maximum depth of the trees, and the number of selecting features

(here, 6 for the first scenario and 2 for the second scenario) upon every split [65].

2.2.6. Adaptive Neuro-Fuzzy Inference System (ANFIS-GP and ANFIS-SC). ANFIS are

simulative/predictive machine learning systems that are composed of ANNs, as the network

structure of the ANFIS, and a Takagi-Sugeno Fuzzy Inference System (FIS), as the fuzzy logic

theory (fuzzification and defuzzification procedures) of the model. In FIS, several fuzzy rules

are produced, which allow for an appropriate study of a complex and nonlinear system. The

neural network structure of the ANFIS updates the tuning parameters of the FIS i.e., the geo-

metric parameters of the introduced Membership Functions (MFs) [66]. The ANIFS architec-

ture involves five layers, including the fuzzification layer (the first layer), the rule layer (the

second layer), the normalization layer (the third layer), the defuzzification layer (the fourth

layer), and finally the output layer.

Developing an ANFIS model takes two major steps. At the first step, namely the construct-

ing step, the general architecture of the network, i.e., the number and the types of the MFs and

the rule-based FIS, is determined. In this study we used trapezoidal shape membership func-

tions to construct 3 numbers of rules. The second step refers to the training phase of the

ANIFS. The learning procedure of the ANIFS is a hybrid method that uses the back-propaga-

tion technique for the nonlinear premise parameters (the parameters of MFs) and the least

square error for the linear consequent parameters (coefficients of the fuzzy if-then rules). It

should be mentioned that in this study, two different approaches, such as General Partitioning

and (GP) and Subtractive Clustering (SC) techniques, are employed to construct the ANFIS

models (ANFIS-GP and ANIFS-SC). Detailed information regarding these models has been

given in Benmouiza and Cheknane and Wang et al. [67, 68].

2.3. Modeling flowchart

Two modeling scenarios were adopted here for modeling the target parameters:

1. First scenario: Different groundwater quality parameters (Ca, Mg, Na, Cl, total hardness

and K) were applied as input parameters for simulating the target parameters, e.g., total dis-

solved solids (TDS), electrical conductivity (EC), Sulphate (SO4) and sodium adsorption

Fig 4. The schematic architecture of an RF model.

https://doi.org/10.1371/journal.pone.0251510.g004
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ratio (SAR). The input variables were selected on the basis of correlation analysis as well as

chemical judgment.

2. Second scenario: The geographical coordinates of the studied wells were used as input vari-

ables to simulate the target parameters. Hence, instead of the influential parameters on each

target parameter, the locations coordinates were introduced, and the models simulated the

spatial distribution of the targets based on this information. Application of soft computing

models with this scenario is similar to the geo-statistics approaches, where the spatial coor-

dinates are used for interpolating the values of parameters in any specified region. This

would be very important step forward, because ground quality parameters can be estimated

in regional scale by having only coordinate information. This will be exclusively important

for the regions with data scarcity.

With any adopted scenario, a major task with applying soft computing models is partition-

ing the available patterns into training and testing data. Here, a k-fold testing type data man-

agement strategy was adopted, and the models were trained each time using “k-1” blocks of

data and then tested using the remaining one block patterns. The process was repeated until all

available patterns were participated in both the training and testing stages. A simpler way

might be dividing all patterns into 2 blocks as it is common in such kinds of studies. However,

such simple data assignment does not allow a through scanning of all the available patterns, so

the obtained results would be partially valid. Hence, applying k-fold testing would provide

enough detailed information about the models’ capability/stability in mapping the nonlinear

relationships between the input and target variables. Using the k-fold testing strategy (with

k = 1), all available patterns were divided into 90 blocks (each block contained all available pat-

terns of a single well) and each model was trained and tested 90 times for simulating each

parameter. With each soft computing model, the process was repeated 90 times for each target

parameter, so total 90 training-testing procedures were conducted for simulating each target

parameter by each model. Hence, a total 360 training-testing processes were fulfilled for simu-

lating 4 target parameters in the first scenario. In case of the second scenario, similar protocol

was adopted, where the k-fold testing strategy (with k = 1) was used for assessing the models

performance. Hence, the total available patterns of a single well were reserved each time as test-

ing patterns, while the models were trained using the total patterns of the rest of the wells (89

wells). The process was repeated until the data from all the wells participated in training-test-

ing stages. With the second scenario, total 360 training-testing processes were established, too.

2.4. Evaluation criteria

Three statistical evaluation criteria, namely, the determination coefficient (R2), the scatter

index (SI) and the Nash-Sutcliffe coefficient (NS) were used to assess the employed models

[69]:

SI ¼
RMSE

�x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Pn
i¼1
ðxio � yioÞ

2
q

�x
ð9Þ

NS ¼ 1 �

Pn
i¼1
ðxio � yioÞ

2

Pn
i¼1
ðxio � �xÞ2

ð10Þ

where, xio and yio are the observed and estimated values of each parameter at the ith time step,

respectively. �x stands for the mean observed values and n is the number of available patterns

(locations). NS is an indicator of analyzing the variance of the simulated and observed values,
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where NS = 1 shows the perfect fit. For the adopted data management strategy, the applied

indices were computed per test stage as well as for the all available patterns.

3. Results and discussion

The present paper aimed at modeling four important groundwater quality parameters, e.g.,

EC, SAR, TDS and SO4 values through employing eight different soft computing techniques

with two modeling scenarios. In the next subsections, the overall statistical analysis of the mod-

el’s performance accuracy is presented for both the adopted scenarios.

3.1. First modeling scenario results

Table 2 sums up the global statistical indices of the applied models that have been computed

by making a global simulation vector of the complete data set (data from all wells for the test

period). For obtaining these results for the first scenario, a global matrix was built at each well

comprising the observed and corresponding simulated values of target parameters of all test

stage. Then, the statistical indicators were computed for each well. Finally, the global indicators

were obtained through averaging the indicators of all studied wells. For the second scenario, as

the test patterns belonged to a single way at each k-fold testing stage, average values of the indi-

cators, which have been computed for each well, were computed and reported as global indica-

tor values.

In case of the EC modeling, the most accurate results belonged to the hybrid SVM-FFA

model (with the lowest SI and the highest NS), followed by the ANN-FFA, MARS and RF mod-

els. However, the highest R2 values were observed for MARS model in comparison with the

other established predictive models. This could be explained through exclusive specification of

this index that captures only the linear dependency between tow set of events and can take

higher values (around unity) even with higher error magnitudes. Therefore, this can’t be solely

Table 2. Global statistical indices of the applied predictive models.

EC SAR TDS SO4

First modeling scenario
R2 SI NS R2 SI NS R2 SI NS R2 SI NS

MARS 0.996 0.139 0.978 0.915 0.251 0.915 0.999 0.019 0.999 0.946 0.178 0.945

RF 0.974 0.153 0.973 0.952 0.234 0.926 0.901 0.425 0.803 0.941 0.185 0.940

ANFIS-GP 0.985 0.226 0.943 0.906 0.264 0.906 0.999 0.026 0.999 0.846 0.302 0.843

ANFIS-SC 0.986 0.203 0.954 0.893 0.285 0.891 0.999 0.014 0.999 0.858 0.291 0.854

ANN 0.942 0.260 0.925 0.895 0.282 0.893 0.999 0.023 0.999 0.900 0.240 0.900

ANN-FFA 0.982 0.131 0.980 0.930 0.232 0.928 0.999 0.026 0.999 0.943 0.184 0.941

SVM 0.982 0.210 0.951 0.905 0.276 0.898 0.991 0.119 0.984 0.842 0.305 0.839

SVM-FFA 0.986 0.111 0.986 0.935 0.219 0.935 0.999 0.023 0.999 0.949 0.174 0.947

Second modeling scenario
MARS 0.923 0.266 0.962 0.916 0.245 0.965 0.937 0.286 0.957 0.893 0.289 0.952

RF 0.916 0.307 0.950 0.917 0.252 0.963 0.917 0.325 0.944 0.887 0.296 0.949

ANFIS-GP 0.824 0.400 0.915 0.883 0.302 0.947 0.867 0.386 0.922 0.830 0.364 0.924

ANFIS-SC 0.903 0.308 0.950 0.905 0.276 0.956 0.901 0.326 0.944 0.891 0.301 0.948

ANN 0.749 0.485 0.876 0.872 0.342 0.932 0.833 0.402 0.915 0.815 0.372 0.920

ANN-FFA 0.910 0.297 0.953 0.938 0.211 0.972 0.933 0.249 0.967 0.933 0.262 0.960

SVM 0.890 0.316 0.947 0.890 0.294 0.950 0.880 0.364 0.930 0.864 0.339 0.934

SVM-FFA 0.949 0.226 0.973 0.948 0.207 0.975 0.939 0.239 0.970 0.946 0.209 0.974

https://doi.org/10.1371/journal.pone.0251510.t002
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applied as a verification index of modeling performance as has been advised by Legates and

McCabe (1999) [70].

The coupled SVM-FFA model has improved the performance accuracy of the SVM model

by 9.9% and 3.5% reduction/increase in the SI and NS values, respectively. Similarly,

ANN-FFA model has made 12.9% reduction and 5.5% increase in SI and NS values, respec-

tively. Regarding the SAR simulation models, again, the SVM-FFA outperformed the rest of

the models, followed by the ANN-FFA, RF and MARS models. SVM-FFA improved the per-

formance accuracy of the SVM models by 5.7% reduction in SI value and 3.7% increase in NS
value. Comparing with the EC simulation models, the overall performance accuracy of the

models in this case was low (ΔSI = 0.11 for the SVM-FFA model). Attending to the TDS and

SO4 estimation models the same observations were made where the coupled SVM-FFA sur-

passed the other applied models and differences between the error magnitudes of models were

considerable in some cases.

Overall, it was observed that when the models relied on some groundwater quality parame-

ters to spatially estimate the EC, SAR, TDS and SO4 values, the SAR estimation models gave

less accurate results than the models established for simulating other three parameters.

Although all four parameters are related to groundwater qualitative aspects, such differences

might be explained through the vectors that have participated in forming these parameters.

The main factors affecting the SAR values are Na+, Ca2+ and Mg2+ that are easily soluble cat-

ions in the soil (especially, the sodium solubility is very high), so they can be leached from soil

horizons during the precipitation or irrigation events that deliver considerable amounts of

water and make deep percolation [71]. Such high variations through the soil vertical profile

might affect the modeling accuracy and make the interpolations among different locations

difficult.

3.2. Second modeling scenario results

The statistical indexes of the models established on the basis of the geographical coordinates of

the wells (second scenario) have been listed in Table 2. First, the performance accuracy of the

models has been decreased when relying on geographical coordinated in comparison with the

models developed on groundwater quality parameters, as could be anticipated. This might be

due to the inclusion of interrelationships between the input-target parameters in the first sce-

nario. However, the overall accuracies of the models developed using the second scenario are

almost comparable and practically sound. In similarity to the previous cases, the SVM-FFA

and ANN-FFA models presented their superiority over the rest of the applied models in

modeling all studied parameters, while ANN provided the less accurate results. However,

unlike to the previous scenario, the models simulating the SAR values presented the most accu-

rate results, although as discussed, inclusion of Na+, Ca2+ and Mg2+ can make its interpolations

difficult.

The overall performance accuracy of SAR simulation models has been improved by using

geographical coordinates of the wells. This might be due to the exclusion of other qualitative

parameters that interact with SAR (and its governing vectors) from the input matrix and

substituting by only geographical information, most likely to the mechanism followed by geo-

statistical approaches. Fig 5 illustrates the improvements obtained through using SVM-FFA

model by the second scenario in terms of SI reduction and NS increase for all studied

parameters.

The maximum improvements belonged to EC simulation models by an average SI reduc-

tion of 11.3% and NS increase of 3.7%, while the lowest improvement values were observed for

SAR modeling (ΔSI = 6.85% and ΔNS = 1.96%). In all the cases, the maximum SI and NS

PLOS ONE Well groundwater quality simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0251510 May 27, 2021 13 / 24

https://doi.org/10.1371/journal.pone.0251510


differences were observed between ANN and SVM-FFA models. For more informative evalua-

tion of the predictive models on the water quality simulation, Figs 6–9 presented the observed

and simulated values in the form of scatter plots of the studied parameters using the second

scenario. The presented scatter plots reported an acceptable deviation from the ideal line of the
o45, this is confirming degree of the correlation between the observed and simulated dataset.

However, in some cases, the high values of the SAR, TDS and SO4 failed to be simulated accu-

rately using the standalone predictive models. Yet, the developed hybrid models revealed bet-

ter degree of correlation as it can be observed for the SVM-FFA and ANN-FFA models.

The values presented here belong to the simulated/observed values of all test stages putted

together. In case of EC simulations, the models have provided reasonable results for the lower

EC magnitudes (good matches between the observed and simulated values), while some scat-

ters are observed for higher values. The most scattered values are corresponded to the EC val-

ues between 2000–6000 mmhos/cm, while the values beyond 6000 gave better

correspondence. Similar trend can be also observed for TDS modeling, too. For the SAR simu-

lation models (Fig 7), all the applied models experienced difficulties with estimating lower val-

ues (especially SAR<5), which can be linked to lower sodium magnitudes in the soil that are

leached through infiltration or deep percolation processes and make higher variations in their

quantity. For the SO4 simulations, the lower values showed obvious scatters between the

observed and simulated values, where similar values were obtained for different target values.

As mentioned, the SVM-FFA and ANN–FFA provided the most accurate outcomes.

An additional analysis was also performed using the SI variations of SVM-FFA model “as a

superior predictive model” among different test stages, as presented in Fig 10. Based on the

results presented in Fig 10, SI values showed a clear variation among the different test stages

for all variables. The maximum SI range (difference between its maximum and minimum val-

ues) was observed for TDS (ΔSI = 0.351) followed by EC, SAR and SO4 with 0.316, 0.263 and

Fig 5. Improvements obtained through using SVM-FFA model by the second scenario in terms of SI reduction and NS increase.

https://doi.org/10.1371/journal.pone.0251510.g005
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Fig 6. The scatterplots of predicted EC using the applied AI models.

https://doi.org/10.1371/journal.pone.0251510.g006
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Fig 7. The scatterplots of the predicted SAR using the applied AI models.

https://doi.org/10.1371/journal.pone.0251510.g007
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Fig 8. The scatterplots of the predicted TDS using the applied AI models.

https://doi.org/10.1371/journal.pone.0251510.g008
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Fig 9. The scatterplots of the predicted SO4 using the applied AI models.

https://doi.org/10.1371/journal.pone.0251510.g009
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0.227 SI ranges, respectively. This is clearly an evidence for the adopted k-fold testing data

management strategy in assessing the soft computing models, without which, a deep through

scanning of the models’ performances can’t be fulfilled.

4. Discussion

In Summary, it can be concluded that the applied models could simulate the spatial variations

of the studied parameters with reasonable performance accuracies and meanwhile, SVM-FFA

and ANN-FFA models outperformed the rest of the applied models with lower error magni-

tudes. Nonetheless, adoption of the robust k-fold testing strategy for assessing the applied

models is a crucial task for avoiding the models’ over-fitting as well as getting more accurate

insight about the performance accuracies of the applied models. The developed hybrid

SVM-FFA and ANN-FFA models confirmed their applicability for simulating the groundwa-

ter quality owing to the robust learning process achieved through optimization algorithms

used for the hyperparameters tuning of the model. This is an evidence with the established

research over the literature. For instance, an artificial intelligence predictive model was estab-

lished for groundwater quality parameters based on the hybridization of fuzzy c-means data

clustering (FCM) with grid partition (GP), and ANN model hybridized using particle swarm

optimization (PSO) [72]. The proposed hybrid FCM-GP reported better results in comparison

with the ANN-PSO model. The application of computer aided models such as the one pro-

posed one in the current research can be sufficiently applicable for geo-science engineering

monitoring and control. Decision makers and environmental engineers could substantially

benefit from knowing the future pattern of the groundwater quality in which an appropriate

determination can take place for groundwater usage and sustainability.

For future research direction, the data, models and input parameters uncertainties could be

further analyzed and discussed [73, 74]. Finally, global comparison of both the adopted scenar-

ios revealed that, although considerable differences were not observed between the scenarios,

the second scenario could provide promising outcomes in simulating groundwater quality

parameters. As the second scenario considers only the geographical information as input

parameters, this performance accuracy is exclusively important in practical problems, where

the available data are not sufficient or reliable. One may tackle this issue with criticizing the

Fig 10. SI variations of the SVM-FFA model among the test stages (second scenario).

https://doi.org/10.1371/journal.pone.0251510.g010
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comparative superiority of one scenario over the other one, but it should be noted that, the

goal with this research was assessing the capabilities of soft computing techniques in estimat-

ing groundwater quality parameters through using limited easily accessible data, so informa-

tion around the reasons of any scenario’s superiority is not discussible/accessible there. Just

the point that might be discussed would be the ability of the applied models in simulating the

spatial variations of those parameters through using the geographical data.

5. Conclusion

A modeling study was performed here by using eight soft computing approaches for spatial

modeling of four important groundwater quality parameters, viz. EC, SAR, TDS and SO4

using data from 90 observation wells in Northwest Iran. Two modeling protocols were fol-

lowed for simulation of the target variables: first, other quality parameters were used to esti-

mates the targets and second, only the geographical information (coordinates) was introduced

as inputs. Based on the obtained results, all applied models could simulate the target values

with acceptable accuracy although the coupled SVM-FFA surpassed the others with the highest

performance accuracy. Nevertheless, the models showed good ability to simulate the target val-

ues when relying on geographical inputs. Finally, the importance of adopting a k-fold testing

strategy was confirmed to make a through scanning of the applied models, because consider-

able fluctuations of the models’ performance accuracy were observed with respect to the

selected test stages. The outcomes of the present paper encourage making further comparative

studies among soft computing approaches using data from other regions with different cli-

matic contexts and data availability to strengthen the obtained conclusions.
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2. Jiménez-Madrid A, Gogu R, Martinez-Navarrete C, Carrasco F. Groundwater for human consumption

in karst environment: vulnerability, protection, and management. Karst Water Environment. Springer;

2019. pp. 45–63. https://doi.org/10.1128/AEM.00403-19 PMID: 30926732

3. Awadh SM, Al-Mimar H, Yaseen ZM. Groundwater availability and water demand sustainability over the

upper mega aquifers of Arabian Peninsula and west region of Iraq. Environment, Development and

Sustainability. 2020. https://doi.org/10.1007/s10668-019-00578-z

4. Ostovari Y, Sh Z, Harchegani H, Asgari K. Effects of geological formation on groundwater quality in Lor-

degan Region, Chahar-mahal-va-Bakhtiyari, Iran. International Journal of Agriculture and Crop Sci-

ences. 2013; 5: 1983–1992.

5. Naganna SR, Beyaztas BH, Bokde N, Armanuos AM. ON THE EVALUATION OF THE GRADIENT

TREE BOOSTING MODEL FOR GROUNDWATER LEVEL FORECASTING. Knowledge-Based Engi-

neering and Sciences. 2020; 1: 48–57.

6. Ali1* SH, Alfalahi AHR, Hachim YA. A Miniaturized Compact Wideband Partial Ground Antenna Used

in RFID Systems. Tikrit Journal of Engineerning Sciences. 2020; 27.

7. Farjad B, Pooyandeh M, Gupta A, Motamedi M, Marceau D. Modelling interactions between land use,

climate, and hydrology along with stakeholders’ negotiation for water resources management. Sustain-

ability. 2017; 9: 2022.

8. Machiwal D, Jha MK, Singh VP, Mohan C. Assessment and mapping of groundwater vulnerability to

pollution: Current status and challenges. Earth-Science Reviews. 2018; 185: 901–927.

9. Yadav KK, Kumar S, Pham QB, Gupta N, Rezania S, Kamyab H, et al. Fluoride contamination, health

problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and

environmental safety. 2019; 182: 109362. https://doi.org/10.1016/j.ecoenv.2019.06.045 PMID:

31254856

10. Shareef MA. Assessment of Tigris River Water Quality Using Multivariate Statistical Techniques. Tikrit

Journal of Engineering Sciences. 2019; 26: 26–31.

11. Ray SPS, Elango L. Deterioration of Groundwater Quality: Implications and Management. Water Gov-

ernance: Challenges and Prospects. Springer; 2019. pp. 87–101.

12. Subramani T, Elango L, Damodarasamy SR. Groundwater quality and its suitability for drinking and

agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology. 2005; 47: 1099–

1110.

13. Yesilnacar MI, Sahinkaya E. Artificial neural network prediction of sulfate and SAR in an unconfined

aquifer in southeastern Turkey. Environmental Earth Sciences. 2012; 67: 1111–1119.

14. Al-Aboodi AH, Hashim ZN. Assessment of Groundwater Vulnerability Using Lulc Map and DRASTIC

Technique in Bahr AL-Najaf Area, Middle of Iraq. Tikrit Journal of Engineering Sciences. 2019; 26: 1–9.

15. Luo D, Guo Q, Wang X. Simulation and prediction of underground water dynamics based on RBF neural

network. Acta Geoscientia Sinica. 2003; 24: 475–478.

16. Pan C, Ng KTW, Richter A. An integrated multivariate statistical approach for the evaluation of spatial

variations in groundwater quality near an unlined landfill. Environmental Science and Pollution

Research. 2019; 26: 5724–5737. https://doi.org/10.1007/s11356-018-3967-x PMID: 30612362

17. Omran E-SE. A proposed model to assess and map irrigation water well suitability using geospatial

analysis. Water. 2012; 4: 545–567.

18. Kalhor K, Ghasemizadeh R, Rajic L, Alshawabkeh A. Assessment of groundwater quality and remedia-

tion in karst aquifers: A review. Groundwater for sustainable development. 2019; 8: 104–121. https://

doi.org/10.1016/j.gsd.2018.10.004 PMID: 30555889

PLOS ONE Well groundwater quality simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0251510 May 27, 2021 21 / 24

https://doi.org/10.1128/AEM.00403-19
http://www.ncbi.nlm.nih.gov/pubmed/30926732
https://doi.org/10.1007/s10668-019-00578-z
https://doi.org/10.1016/j.ecoenv.2019.06.045
http://www.ncbi.nlm.nih.gov/pubmed/31254856
https://doi.org/10.1007/s11356-018-3967-x
http://www.ncbi.nlm.nih.gov/pubmed/30612362
https://doi.org/10.1016/j.gsd.2018.10.004
https://doi.org/10.1016/j.gsd.2018.10.004
http://www.ncbi.nlm.nih.gov/pubmed/30555889
https://doi.org/10.1371/journal.pone.0251510


19. Sharafati A, Tafarojnoruz A, Motta D, Yaseen ZM. Application of nature-inspired optimization algorithms

to ANFIS model to predict wave-induced scour depth around pipelines. Journal of Hydroinformatics.

2020;

20. Salih SQ, Alakili I, Beyaztas U, Shahid S, Yaseen ZM. Prediction of dissolved oxygen, biochemical oxy-

gen demand, and chemical oxygen demand using hydrometeorological variables: case study of

Selangor River, Malaysia. Environment, Development and Sustainability. 2020; 1–20.

21. Jamei M, Ahmadianfar I, Chu X, Yaseen ZM. Prediction of surface water total dissolved solids using

hybridized wavelet-multigene genetic programming: New approach. Journal of Hydrology. 2020; https://

doi.org/10.1016/j.jhydrol.2020.125335

22. Sharafati A, Haji Seyed Asadollah SB, Motta D, Yaseen ZM. Application of newly developed ensemble

machine learning models for daily suspended sediment load prediction and related uncertainty analysis.

Hydrological Sciences Journal. 2020; https://doi.org/10.1080/02626667.2020.1786571

23. Hadi SJ, Tombul M, Salih SQ, Al-Ansari N, Yaseen ZM. The Capacity of the Hybridizing Wavelet Trans-

formation Approach With Data-Driven Models for Modeling Monthly-Scale Streamflow. IEEE Access.

2020; https://doi.org/10.1109/access.2020.2998437

24. Yesilnacar MI, Sahinkaya E, Naz M, Ozkaya B. Neural network prediction of nitrate in groundwater of

Harran Plain, Turkey. Environmental Geology. 2008; 56: 19–25.

25. Liu JP, Chang MQ, Ma XY. Groundwater quality assessment based on support vector machine. HAIHE

River Basin Research and Planning Approach-Proceedings of 2009 International Symposium of HAIHE

Basin Integrated Water and Environment Management, Beijing, China. 2009. pp. 173–178.

26. Maiti S, Erram VC, Gupta G, Tiwari RK, Kulkarni UD, Sangpal RR. Assessment of groundwater quality:

a fusion of geochemical and geophysical information via Bayesian neural networks. Environmental

monitoring and assessment. 2013; 185: 3445–3465. https://doi.org/10.1007/s10661-012-2802-y PMID:

22899457

27. Orzepowski W, Paruch AM, Pulikowski K, Kowalczyk T, Pokładek R. Quantitative and qualitative

assessment of agricultural water resources under variable climatic conditions of Silesian Lowlands

(Southwest Poland). Agricultural Water Management. 2014; 138: 45–54.

28. Khaki M, Yusoff I, Islami N. Application of the Artificial Neural Network and Neuro-fuzzy System for

Assessment of Groundwater Quality. CLEAN–Soil, Air, Water. 2015; 43: 551–560.

29. Wagh VM, Panaskar DB, Muley AA, Mukate SV, Lolage YP, Aamalawar ML. Prediction of groundwater

suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra,

India. Modeling Earth Systems and Environment. 2016; 2: 1–10.

30. Barzegar R, Moghaddam AA. Combining the advantages of neural networks using the concept of com-

mittee machine in the groundwater salinity prediction. Modeling Earth Systems and Environment. 2016;

2: 26.

31. Arabgol R, Sartaj M, Asghari K. Predicting nitrate concentration and its spatial distribution in groundwa-

ter resources using support vector machines (SVMs) model. Environmental Modeling & Assessment.

2016; 21: 71–82.

32. Sakizadeh M, Mirzaei R, Ghorbani H. Geochemical influences on the quality of groundwater in eastern

part of Semnan Province, Iran. Environmental Earth Sciences. 2016; 75: 917.

33. Sakizadeh M, Rahmatinia H. Statistical Learning Methods for Classification and Prediction of Ground-

water Quality Using a Small Data Record. International Journal of Agricultural and Environmental Infor-

mation Systems (IJAEIS). 2017; 8: 37–53.

34. Gholami V, Khaleghi MR, Sebghati M. A method of groundwater quality assessment based on fuzzy

network-CANFIS and geographic information system (GIS). Applied Water Science. 2017; 7: 3633–

3647.

35. Nourani V, Alami MT, Vousoughi FD. Self-organizing map clustering technique for ANN-based spatio-

temporal modeling of groundwater quality parameters. Journal of Hydroinformatics. 2016; 18: 288–309.

36. Jafari R, Torabian A, Ghorbani MA, Mirbagheri SA, Hassani AH. Prediction of groundwater quality

parameter in the Tabriz plain, Iran using soft computing methods. Journal of Water Supply: Research

and Technology—AQUA. 2019; 68: 573–584.

37. Wagh V, Panaskar D, Muley A, Mukate S, Gaikwad S. Neural network modelling for nitrate concentra-

tion in groundwater of Kadava River basin, Nashik, Maharashtra, India. Groundwater for Sustainable

Development. 2018; 7: 436–445.

38. Kadam AK, Wagh VM, Muley AA, Umrikar BN, Sankhua RN. Prediction of water quality index using arti-

ficial neural network and multiple linear regression modelling approach in Shivganga River basin, India.

Modeling Earth Systems and Environment. 2019; 5: 951–962.

PLOS ONE Well groundwater quality simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0251510 May 27, 2021 22 / 24

https://doi.org/10.1016/j.jhydrol.2020.125335
https://doi.org/10.1016/j.jhydrol.2020.125335
https://doi.org/10.1080/02626667.2020.1786571
https://doi.org/10.1109/access.2020.2998437
https://doi.org/10.1007/s10661-012-2802-y
http://www.ncbi.nlm.nih.gov/pubmed/22899457
https://doi.org/10.1371/journal.pone.0251510


39. Aryafar A, Khosravi V, Zarepourfard H, Rooki R. Evolving genetic programming and other AI-based

models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran. Environmental

earth sciences. 2019; 78: 69.

40. Gholami A, Bonakdari H, Ebtehaj I, Akhtari AA. Design of an adaptive neuro-fuzzy computing technique

for predicting flow variables in a 90˚ sharp bend. Journal of Hydroinformatics. 2017; jh2017200. https://

doi.org/10.2166/hydro.2017.200

41. Azimi S, Moghaddam MA, Monfared SAH. Prediction of annual drinking water quality reduction based

on Groundwater Resource Index using the artificial neural network and fuzzy clustering. Journal of con-

taminant hydrology. 2019; 220: 6–17. https://doi.org/10.1016/j.jconhyd.2018.10.010 PMID: 30471981

42. Nathan NS, Saravanane R, Sundararajan T. Application of ANN and MLR Models on Groundwater

Quality Using CWQI at Lawspet, Puducherry in India. Journal of Geoscience and Environment Protec-

tion. 2017; 5: 99.

43. Barzegar R, Moghaddam AA, Adamowski J, Fijani E. Comparison of machine learning models for pre-

dicting fluoride contamination in groundwater. Stochastic Environmental Research and Risk Assess-

ment. 2017; 31: 2705–2718.

44. Maroufpoor S, Shiri J, Maroufpoor E. Modeling the sprinkler water distribution uniformity by data-driven

methods based on effective variables. Agricultural Water Management. 2019; 215: 63–73. https://doi.

org/10.1016/j.agwat.2019.01.008

45. Kisi O, Azad A, Kashi H, Saeedian A, Hashemi SAA, Ghorbani S. Modeling groundwater quality param-

eters using hybrid neuro-fuzzy methods. Water resources management. 2019; 33: 847–861.

46. Yan B, Yu F, Xiao X, Wang X. Groundwater quality evaluation using a classification model: a case study

of Jilin City, China. Natural Hazards. 2019; 99: 735–751.

47. Li J, Abdulmohsin HA, Hasan SS, Kaiming L, Al-Khateeb B, Ghareb MI, et al. Hybrid soft computing

approach for determining water quality indicator: Euphrates River. Neural Computing and Applications.

2019; 31: 827–837.

48. Sepahvand A, Singh B, Sihag P, Samani AN. Assessment of the various soft computing techniques to

predict sodium absorption ratio (SAR). Journal of Hydraulic Engineering ISSN: 2019;5010. https://doi.

org/10.1080/09715010.2019.1595185

49. Bui DT, Khosravi K, Karimi M, Busico G, Khozani ZS, Nguyen H, et al. Enhancing nitrate and strontium

concentration prediction in groundwater by using new data mining algorithm. Science of The Total Envi-

ronment. 2020; 136836. https://doi.org/10.1016/j.scitotenv.2020.136836 PMID: 32007881

50. Barzegar R, Fijani E, Asghari Moghaddam A, Tziritis E. Forecasting of groundwater level fluctuations

using ensemble hybrid multi-wavelet neural network-based models. Science of the Total Environment.

2017; 599–600: 20–31. https://doi.org/10.1016/j.scitotenv.2017.04.189 PMID: 28463698

51. Gardner M., Dorling S. Artificial neural networks (the multilayer perceptron)—a review of applications in

the atmospheric sciences. Atmospheric Environment. 1998; 32: 2627–2636. https://doi.org/10.1016/

S1352-2310(97)00447-0

52. Zounemat-Kermani M, Kermani SG, Kiyaninejad M, Kisi O. Evaluating the application of data-driven

intelligent methods to estimate discharge over triangular arced labyrinth weir. Flow Measurement and

Instrumentation. 2019; 68: 101573.

53. Mahdavi-Meymand A, Scholz M, Zounemat-Kermani M. Challenging soft computing optimization

approaches in modeling complex hydraulic phenomenon of aeration process. ISH Journal of Hydraulic

Engineering. 2019; 1–12.

54. Ehteram M, Salih SQ, Yaseen ZM. Efficiency evaluation of reverse osmosis desalination plant using

hybridized multilayer perceptron with particle swarm optimization. Environmental Science and Pollution

Research. 2020; https://doi.org/10.1007/s11356-020-08023-9 PMID: 32077030

55. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995; 20: 273–297. https://doi.org/

10.1023/A:1022627411411

56. Awad M, Khanna R, Awad M, Khanna R. Support Vector Regression. Efficient Learning Machines.

2015. https://doi.org/10.1007/978-1-4302-5990-9_4

57. Zendehboudi A, Baseer MA, Saidur R. Application of support vector machine models for forecasting

solar and wind energy resources: A review. Journal of cleaner production. 2018; 199: 272–285.

58. Adnan RM, Liang Z, Heddam S, Zounemat-Kermani M, Kisi O, Li B. Least square support vector

machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin

using hydro-meteorological data as inputs. Journal of Hydrology. 2019; 124371. https://doi.org/10.

1016/j.jhydrol.2019.124371

59. Naganna S, Deka P, Ghorbani M, Biazar S, Al-Ansari N, Yaseen Z. Dew Point Temperature Estimation:

Application of Artificial Intelligence Model Integrated with Nature-Inspired Optimization Algorithms.

Water. 2019; https://doi.org/10.3390/w11040742

PLOS ONE Well groundwater quality simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0251510 May 27, 2021 23 / 24

https://doi.org/10.2166/hydro.2017.200
https://doi.org/10.2166/hydro.2017.200
https://doi.org/10.1016/j.jconhyd.2018.10.010
http://www.ncbi.nlm.nih.gov/pubmed/30471981
https://doi.org/10.1016/j.agwat.2019.01.008
https://doi.org/10.1016/j.agwat.2019.01.008
https://doi.org/10.1080/09715010.2019.1595185
https://doi.org/10.1080/09715010.2019.1595185
https://doi.org/10.1016/j.scitotenv.2020.136836
http://www.ncbi.nlm.nih.gov/pubmed/32007881
https://doi.org/10.1016/j.scitotenv.2017.04.189
http://www.ncbi.nlm.nih.gov/pubmed/28463698
https://doi.org/10.1016/S1352-2310%2897%2900447-0
https://doi.org/10.1016/S1352-2310%2897%2900447-0
https://doi.org/10.1007/s11356-020-08023-9
http://www.ncbi.nlm.nih.gov/pubmed/32077030
https://doi.org/10.1023/A%3A1022627411411
https://doi.org/10.1023/A%3A1022627411411
https://doi.org/10.1007/978-1-4302-5990-9%5F4
https://doi.org/10.1016/j.jhydrol.2019.124371
https://doi.org/10.1016/j.jhydrol.2019.124371
https://doi.org/10.3390/w11040742
https://doi.org/10.1371/journal.pone.0251510


60. Yang X-S. Firefly algorithm. Nature-inspired metaheuristic algorithms. 2008; 20: 79–90.

61. Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK. Support vector regression with chaos-based

firefly algorithm for stock market price forecasting. Applied Soft Computing. 2013; 13: 947–958. https://

doi.org/10.1016/j.asoc.2012.09.024

62. Friedman JH. Multivariate Adaptive Regression Splines. The Annals of Statistics. 1991; 19: 1–67.

https://doi.org/10.1214/aos/1176347963

63. Alizamir M, Kim S, Kisi O, Zounemat-Kermani M. A comparative study of several machine learning

based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey

regions. Energy. 2020; 117239.

64. Breiman L. Random forests. Machine Learning. 2001; 45: 5–32. https://doi.org/10.1023/

A:1010933404324

65. Zounemat-Kermani M, Stephan D, Barjenbruch M, Hinkelmann R. Ensemble data mining modeling in

corrosion of concrete sewer: A comparative study of network-based (MLPNN & RBFNN) and tree-

based (RF, CHAID, & CART) models. Advanced Engineering Informatics. 2020; 43: 101030. https://doi.

org/10.1016/j.aei.2019.101030

66. Maroufpoor S, Maroufpoor E, Bozorg-Haddad O, Shiri J, Mundher Yaseen Z. Soil moisture simulation

using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey

wolf optimizer algorithm. Journal of Hydrology. 2019; 575: 544–556. https://doi.org/10.1016/j.jhydrol.

2019.05.045

67. Wang L, Kisi O, Zounemat-Kermani M, Zhu Z, Gong W, Niu Z, et al. Prediction of solar radiation in

China using different adaptive neuro-fuzzy methods and M5 model tree. International Journal of Clima-

tology. 2017; 37: 1141–1155. https://doi.org/10.1002/joc.4762

68. Benmouiza K, Cheknane A. Clustered ANFIS network using fuzzy c-means, subtractive clustering, and

grid partitioning for hourly solar radiation forecasting. Theoretical and Applied Climatology. 2019; 137:

31–43.

69. Tiyasha, Tung TM, Yaseen ZM. A survey on river water quality modelling using artificial intelligence

models: 2000–2020. Journal of Hydrology. 2020. https://doi.org/10.1016/j.jhydrol.2020.124670

70. Legates DR, McCabe GJ. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydrocli-

matic model validation. Water Resources Research. 1999; 35: 233–241. https://doi.org/10.1029/

1998WR900018

71. Legates DR, Mccabe GJ. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydrocli-

matic model validation. water resources research. 1999; 35: 233–241.

72. Smedema LK, Vlotman WF, Rycroft DW. Modern Land Drainage: Planning, Design and Management

of Agricultural Drainage systems. 2004;

73. Maroufpoor S, Jalali M, Nikmehr S, Shiri N, Shiri J, Maroufpoor E. Modeling groundwater quality by

using hybrid intelligent and geostatistical methods. Environmental Science and Pollution Research.

2020; https://doi.org/10.1007/s11356-020-09188-z PMID: 32415439

74. Yaseen ZM, Ebtehaj I, Kim S, Sanikhani H, Asadi H, Ghareb MI, et al. Novel hybrid data-intelligence

model for forecasting monthly rainfall with uncertainty analysis. Water (Switzerland). 2019; https://doi.

org/10.3390/w11030502

PLOS ONE Well groundwater quality simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0251510 May 27, 2021 24 / 24

https://doi.org/10.1016/j.asoc.2012.09.024
https://doi.org/10.1016/j.asoc.2012.09.024
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1016/j.aei.2019.101030
https://doi.org/10.1016/j.aei.2019.101030
https://doi.org/10.1016/j.jhydrol.2019.05.045
https://doi.org/10.1016/j.jhydrol.2019.05.045
https://doi.org/10.1002/joc.4762
https://doi.org/10.1016/j.jhydrol.2020.124670
https://doi.org/10.1029/1998WR900018
https://doi.org/10.1029/1998WR900018
https://doi.org/10.1007/s11356-020-09188-z
http://www.ncbi.nlm.nih.gov/pubmed/32415439
https://doi.org/10.3390/w11030502
https://doi.org/10.3390/w11030502
https://doi.org/10.1371/journal.pone.0251510

