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Abstract

Health disparities are commonplace and of broad interest to policy makers, but are also

challenging to measure and communicate. The Health Disparity Calculator software

(HD*Calc, v1.2.4) offers Monte Carlo simulation (MCS)-based confidence interval (CI) esti-

mation of eleven disparity measures. The MCS approach provides accurate CI estimation,

except when data are scarce (e.g., rare cancers). To address sparse data challenges to CI

estimation, we propose two solutions: 1) employing the gamma distribution in the MCS and

2) utilizing a zero-inflated Poisson estimate for Poisson sampling in simulation experiments.

We evaluate each solution through simulation studies using female breast, female brain,

lung, and cervical cancer data from the Surveillance, Epidemiology, and End Results

(SEER) program. We compare the coverage probabilities (CPs) of eleven health disparity

measures based on simulated datasets. The truncated normal distribution implemented in

the MCS with the standard Poisson samples (the default setting of HD*Calc) leads to less-

than-optimal coverage probabilities (<95%). When both the gamma distribution and the esti-

mated mean from the zero-inflated Poisson are used for the MCS, the coverage probabilities

are close to the nominal level of 95%. Simulation studies also demonstrate that collapsing

age categories for better CI estimation is not a pragmatic solution.

Introduction

Health disparities are commonplace and have received considerable attention in recent years.

Better understanding the magnitude of health disparities and how they change over time has

been challenging for policy makers and researchers interested in identifying effective interven-

tions to reduce or eliminate health disparities [1, 2]. To support that goal, statistical software

called HD�Calc [3] calculates eleven health disparity measures on both absolute and relative

scales to measure the magnitude and trend in health disparities for specific cancer or other

health outcomes. Thus far, a number of papers employed HD�Calc and have reported on the

trend of disparities for a diverse range of disease outcomes [4–6]. Recently, two new disparity
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indices called extended relative concentration index and the absolute concentration index

with directly standardized rates and their statistical inferences were developed and will be

added to the next version of the HD�Calc [7].

When it comes to estimating confidence intervals (CI), HD�Calc offers two numerical

approaches: the analytic approach and a Monte Carlo simulation (MCS)-based approach. The

current version of the analytic Taylor-series expansion approach for relative risks, absolute

risks, and Index of Disparity measures may lead to conservative confidence intervals because

the dependence between the two groups being compared is neglected when deriving partial

derivatives [8]. Although the MCS method performs relatively better with no such issue, its

coverage probability can deviate from the nominal value (0.95) in situations with sparse data.

We note that inadequate simulation procedures can result in such poor performance given

that the MCS is a simulation based approach. A possible reason for this shortcoming is that a

truncated normal distribution is employed in sampling age-adjusted rates (AARs) to ensure

positive AARs during the Monte Carlo simulation. When the truncated normal distribution

does not represent the true distribution of AARs, CI estimation will depart from the truth. In

addition, Ahn et al. (2018) demonstrated that CI estimation tends to perform inaccurately

when more than 25% of age-groups have cancer incidence rates of zero, often referred to as

structural zeros. In this circumstance, with the standard Poisson distribution, the simulated

counts are repeatedly be zero because the mean and the variance are identically zero by con-

struction. Ahn et al. (2018) added a 1/populationagegroup to the Poisson mean; however, this

is an ad-hocmodification and does not produce the true population mean. In addition, this

approach often fails to address the problem of rare events. Ahn et al. (2018) also suggest col-

lapsing age categories (e.g., 10-year rather than 5-year age groups) as a tentative solution when

data are scarce, which is commonly used in categorical data analyses. However, details are

lacking on: 1) how to combine age categories when different social groups have different fre-

quencies of events and 2) the empirical performance of such a collapsing strategy.

To bridge these gaps, we propose: 1) employing a gamma distribution instead of the trun-

cated normal distribution for the MCS-based method; and 2) using the estimated mean from a

zero-inflated Poisson distribution for Poisson simulation experiments when there is an excess

of zero incidence among age-groups. Through simulation studies, we illustrate how the pro-

posed approaches perform compared to the original MCS approach. We use female breast,

female brain, lung, and cervical cancer data from Surveillance, Epidemiology, and End Results

(SEER) program (https://seer.cancer.gov/). We also explore the practicality of the age-category

collapsing strategy by conducting exploratory simulation studies.

Materials and methods

0.1 Variance estimation using the Monte Carlo simulation-based method

For the MCS approach, HD�Calc simulates age-adjusted rates (AAR), ynewj , for each social

group j using a left-truncated normal distribution, where the mean and variance are estimated

using the sample mean and variance of the normal distribution. In the current version of

HD�Calc, the generation of the truncated normal samples can be inefficient in that sampling

from the normal distribution is repeatedly performed until a positive value is drawn. Alterna-

tively, a gamma distribution assures a positive value and is more flexible in terms of asymmetry

compared to the normal or truncated normal distribution. For very rare disease incidence or

when the distribution of corresponding AARs is skewed to the left near zero, the truncated

normal distribution may be less plausible. Instead the Gamma distribution can be used as an

alternative for sampling AARs. In applications, the shape and scale parameters of the gamma

distribution will be determined corresponding to the observed sample mean and variance of
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AARs. Under the Monte Carlo simulation, ynewj per each social group j is repeatedly simulated

to obtain B simulated yðbÞj ; b ¼ 1; . . . ;B (B is set at 1, 000 as a default in HD�Calc). Once each

health disparity measure is obtained for all b = 1, . . ., B-th iterations, then the estimated health

disparity measures are sorted and selected for the upper and lower bound for the CI by percen-

tile. For example, for 95% CI the 2.5 and 97.5 percentile values are chosen.

0.2 Simulation studies

We aimed to assess the performance of: 1) the gamma distribution in comparison to the trun-

cated normal distribution under the MCS approach and 2) the zero-inflated Poisson mean for

the Poisson distribution in generating simulation datasets. To do so, we conducted a simula-

tion study considering four schemes: (1) the truncated normal distribution with standard

Poisson sampling (say TNP, default ub HD�Calc, where the Poisson mean is adjusted by 1/

populationagegroup); (2) the truncated normal distribution with Poisson sampling using the esti-

mated mean from zero-inflated Poisson (TNZP); (3) the gamma distribution with standard

Poisson sampling (GP); and (4) the gamma distribution with Poisson sampling using the esti-

mated mean from zero-inflated Poisson (GZP).

For reference, we used the NCI’s SEER Program data. Without a loss of generality, we

focused on female breast cancer data from Kentucky and female brain, lung, and cervical can-

cer from Iowa where HD�Calc has been shown to provide inaccurate CIs attributable to exces-

sive proportions of zeros (>25%)(8). Data characteristics in terms of the number of social

groups, minimum and maximum of age-adjusted rates, minimum and maximum variance of

AAR, average event count per social group, proportion of zero event counts, and population

size are summarized in Table 1. These four cancer types represent ordered/unordered social

groups as well as a varying the number social groups used to calculate the summary measure

of disparity. For example, lung cancer data comprise household income decile groups (J = 10)

whereas female brain data comprise six unordered racial groups (J = 6).

For the sampling design, we use the following terminology. Let xjk denote event counts for

j-th social group and k-th age group And let yj be the age-adjusted rate for j-th social group.

When xjk is zero for j-th social group and k-th age group, then simulating xnewjk from Poisson
(xjk) always leads to zero. In such a case, this can become a structural zero problem.

To address this situation, we propose to exploit the estimates of a zero-inflated Poisson distri-

bution to simulate xjk [9]. To be specific, the zero-inflated Poisson can be expressed as a mixture

distribution, i.e., Pr(xjk = 0) = πjk + (1 − πjk)exp(−λjk) and Prðxjk ¼ xÞ ¼ ð1 � pjkÞ
lxjkexpð� ljkÞ

x! ; x �
1 where πjk is the weight probability of extra zeros at k-th age group and social group j and λjk is

the population-adjusted Poisson mean. Using SEER data from 13 states for a specific cancer

allows us to observe some non-zero events at a given age group k. In this case, we are able to

obtain estimates p̂ jk and l̂ jk using zeroinfl() function in R package version 3.11. With estimated

p̂ jk and l̂ jk, we consider a maximum of ð1 � p̂ jkÞl̂ jk and 1/populationagegroup = 1/njk as the

Poisson mean in order to avoid structural zeros. That is, when xjk = 0, we sample xnewjk from the

Poisson max 1

njk
; ð1 � p̂ jkÞl̂ jk

� �� �
rather than conventional Poisson 1

njk

� �
. Resulting density plots

of the proportions of zeros for four cancer types after employing this approach are illustrated in

S1 Fig.

For the gamma distribution in the MCS approach, we used the scale and shape parameter

corresponding to the mean and variance parameters obtained using the normal distribution.

We repeated this procedures 10,000 times to generate xnewjk and obtain ynewj . We used HD�Calc

to calculate the eleven health disparity measures implemented in the current version (v1.2.4).
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Results

Table 2 reports the simulation results in terms of the coverage probabilities (CPs) of the eleven

health disparity measures using the aforementioned four schemes. The TNP yields permissive

CPs (less than 95% nominal level) in most of the eleven measures across all four cancer types,

and approximately 70% to 80% CPs are observed for female brain cancer. The poor perfor-

mance for female brain may seem quite surprising; however, we should note that female

brain cancer data suffer from 66% zero cancer events across all age groups. There are subtle

improvements in CPs with the TNZP compared to the TNP; however, the improvements are

not consistently better for most health disparity measures. For example, TNZP increased the

CPs for 8 out of 11 measures for female breast cancer by 0.5% to 1.6%; however, CPs for Range

Difference (RD), Range Ratio (RR) and Index of Disparity (IDisp), decreased by more than

3%. The GP yields relatively better CPs than those of the TNZP and TNP by reducing the dis-

tance from 95% nominal levels across all four cancer types. For example, for lung cancer, the

CPs from the GP become closer to 95% with a few exceptions (e.g., Between Group-Variance

(BGV) and Theil’s Index (T)). The GZP produces CPs consistently close to 95% in most mea-

sures in the three cancer types, except for female brain cancer. Overall, the GZP appears to

produce better CPs than the other three approaches, while GP outperforms TNZP. For female

brain cancer data, however, all four schemes demonstrate inaccurate CI estimation.

Analogous to approaches for contingency tables with zero count cells, collapsing age

boundaries can serve as an alternative strategy to reduce zero incidence age groups. To evalu-

ate whether collapsing categories can resolve the incorrect CI calculation, we conducted an

exploratory study by re-analyzing previously generated simulation datasets using the TNP and

GP under the MCS approach. Considering that each SEER data set consists of 19 standard

5-year window age groups, it is conceivable that younger age groups are more likely to have

zero cancers. We computed the tally of cancer events in consecutive age groups for each cancer

type and then we used four broad age groups (0-39, 40-54, 55-69, 70 or higher) to generate at

least one cancer events in each age group. We also considered eight different age groups (0-19,

20-34, 35-50, 51-54, 55-59, 60-64, 65-74, 75 or higher) to assess sensitivity of the results to the

number of collapsed age groups.

Table 1. Five years (2008 to 2012) SEER data characteristics for female breast cancer from Kentucky and female brain, cervical, lung cancer from Iowa or Kentucky

are summarized based on the number of social groups, minimum and maximum of AAR, minimum and maximum variance of AAR, average event count per social

group, proportion of zero event counts among age groups across J social groups, population size. Each data set consists of 19 standard age groups based on 5-year

intervals. For female breast and female brain cancer, six racial/ethnic groups (Hispanic (reference), White, Black, Asian, Asian Pacific Islander, and Unknown) were used.

For cervical cancer and lung cancer, two ethnic groups (Spanish Hispanic Latino and Non-Spanish Hispanic Latino (reference)) and ten groups based on household deciles

income in 2008 (the lowest decile group is the reference) were used, respectively.

Cancer Female Breast Female Brain Cervical Lung

States Kentucky Iowa Iowa Iowa

Number of Groups 6 6 2 10

Min AAR† 136.58 12.96 68.83 57.45

Max AAR† 1332.25 74.4 124.21 73.45

Min Var† 10.325 2.841 3.174 1.18

Max Var† 75.159 52.613 27.018 69.97

Avg. Count 165.15 5.51 14 69.97

Prop. of zeros among age-groups 0.43 0.66 0.37 0.43

Population 11,028,460 7,693,357 7,693,357 15,239,059

†Values are multiplied by 106.

https://doi.org/10.1371/journal.pone.0219542.t001

Improved confidence intervals for health disparity measures

PLOS ONE | https://doi.org/10.1371/journal.pone.0219542 July 11, 2019 4 / 8

https://doi.org/10.1371/journal.pone.0219542.t001
https://doi.org/10.1371/journal.pone.0219542


We evaluated the impact of the two strategies for collapsing age groups by comparing two

summary measures, that is, averaged relative changes |HDk0 −HDk|/HDk, k = 19 (original esti-

mates), k0 = 4 or 8 and its mean squared error in Table 3. We found that approximately 5%

and 10% relative changes in health disparity point estimates for lung cancer and female breast

cancer, respectively. As expected, collapsing to eight age groups tended to produce heath dis-

parity measures that were closer to the original measures than those obtained from the four

age group collapsing strategy in both lung and female breast cancer. For female brain and cer-

vical cancer, however, collapsing age groups led to large departures from the original measures

regardless of the number of age groups. This inconsistency suggests that collapsing age groups

is unlikely to be a reliable strategy for improving CI estimates for measures of health disparity.

Conclusion

This article focuses on the situation in which the Monte-Carlo simulation-based approach

implemented in the HD�Calc fails to accurately estimate CIs in the context of rare cancers or

cancers with excess zeroes for some age groups. We demonstrated that the gamma distribution

Table 2. The coverage probabilities (CP) are compared with nominal coverage .95 for 11 health disparity measures under the four scenarios: The truncated normal

distribution with standard Poisson sampling (TNP), the truncated normal distribution with zero-inflated mean implemented Poisson sampling (TNZP), the

gamma distribution with standard Poisson sampling (GP), and the gamma distribution with zero-inflated mean implemented Poisson sampling (GZP).

Female Breast Cancer (J = 6) Female Brain (J = 6)

Measures† TNP TNZP GP GZP TNP TNZP GP GZP

RD 0.929 0.897 0.926 0.937 0.834 0.821 0.795 0.784

BGV 0.923 0.932 0.937 0.948 0.735 0.755 0.769 0.744

ACI 0.927 0.942 0.936 0.947 0.798 0.804 0.811 0.806

SII 0.927 0.942 0.936 0.947 0.798 0.804 0.811 0.806

RR 0.904 0.859 0.927 0.939 0.723 0.776 0.796 0.783

IDisp 0.908 0.838 0.931 0.944 0.743 0.774 0.792 0.739

MLD 0.912 0.917 0.924 0.938 0.702 0.734 0.751 0.754

T 0.924 0.929 0.933 0.945 0.705 0.731 0.751 0.746

RCI 0.926 0.942 0.936 0.948 0.797 0.803 0.811 0.806

RII 0.926 0.942 0.936 0.948 0.797 0.803 0.811 0.806

KMI 0.926 0.942 0.936 0.948 0.797 0.805 0.811 0.809

Lung Cancer (J = 10) Cervical Cancer (J = 2)

Measures TNP TNZP GP GZP TNP TNZP GP GZP

RD 0.841 0.973 0.948 0.951 0.929 0.931 0.943 0.940

BGV 0.903 0.896 0.912 0.913 0.931 0.932 0.944 0.950

ACI 0.940 0.941 0.947 0.949 0.930 0.932 0.944 0.947

SII 0.940 0.941 0.947 0.949 0.928 0.931 0.943 0.946

RR 0.842 0.961 0.949 0.949 0.971 0.943 0.977 0.966

IDisp 0.945 0.914 0.947 0.938 0.970 0.943 0.976 0.966

MLD 0.911 0.910 0.915 0.917 0.954 0.937 0.959 0.963

T 0.907 0.906 0.911 0.912 0.941 0.932 0.949 0.954

RCI 0.939 0.940 0.949 0.951 0.933 0.935 0.946 0.947

RII 0.939 0.940 0.949 0.951 0.933 0.935 0.946 0.947

KMI 0.939 0.940 0.949 0.951 0.936 0.928 0.941 0.953

†Range Difference (RD), Between Group-Variance (BGV), Absolute Concentration Index (ACI), Slope Index of Inequality (SII), Range Ratio (RR), Index of Disparity

(IDisp), Mean Log Deviation (MLD), Theil’s Index (T), Relative Concentration Index (RCI), Relative Index of Inequality (RII), Kunst-Mackenbach Relative Index

(KMI)

https://doi.org/10.1371/journal.pone.0219542.t002
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in the MCS approach and Poisson sampling with the zero-inflated Poisson mean for simula-

tion experiments can improve CI estimation in HD�Calc. When the gamma distribution and

the zero-inflated Poisson mean estimates are employed simultaneously, we observed consis-

tently better performance compared with HD�Calc’s current approach, which is based on the

truncated normal distribution. However, when cancer events are rare (e.g., female brain can-

cer), the proposed solutions could not fully resolve the problem of under-coverage.

Discussion

Although we demonstrated that utilizing the zero-inflated Poisson mean estimates for Poisson

sampling alleviates inaccurate CI estimation issues to some degree, this approach may not be

practical in every situation. This is because the zero-inflated Poisson approach requires data

for a specific cancer from multiple populations (e.g., counties and states) in order to obtain the

empirical estimate of the weight that should be placed on zero events. In addition, contrary to

the gamma distribution that can be easily implemented in HD�Calc, the zero-inflated Poisson

approach can be applied through simulation experiments manually. When the zero-inflated

Poisson approach is not applicable, the gamma distribution, in place of the truncated normal

distribution for the MCS, can be used alone. As illustrated in Table 3, reducing the number

of age categories can yield huge variability in HD measures and resultant HD measures are

Table 3. The averaged relative changes (mean squared errors) are shown by four cancer types and the number of age-groups using the truncated normal distribution

(top) and the gamma distribution (bottom) under the MCS.

Lung Cancer Breast (Female) Cancer Female Brain Cancer Cervical Cancer

Truncated Normal distribution sampling under the MCS

measures 4 groups 8 groups 4 groups 8 groups 4 groups 8 groups 4 groups 8 groups

RD 0.098 (0.167) 0.068 (0.163) 0.013 (0.01) 0.009 (0.01) 0.316 (0.877) 0.193 (0.636) 1.068 (382.15) 1.496 (681.037)

BGV 0.128 (0.128) 0.03 (0.093) 0.117 (0.069) 0.005 (0.049) 0.122 (0.282) 0.072 (0.208) 2.725 (303.14) 4.367 (1092.86)

ACI 0.064 (0.034) 0.004 (0.027) 0.103 (0.439) 0.101 (0.851) 0.443 (5.194) 0.739 (6.671) 0.278 (3.729) 0.499 (5.512)

SII 0.064 (0.034) 0.004 (0.027) 0.103 (0.439) 0.101 (0.851) 0.695 (20.517) 1.288 (76.939) 0.933 (391.751) 1.357 (705.161)

RR 0.015 (0.013) 0.011 (0.013) 0.326 (1.606) 0.304 (1.471) 0.409 (3.249) 0.434 (2.491) 0.007 (0.097) 0.061 (0.113)

IDisp 0.086 (0.132) 0.055 (0.125) 0.451 (2.79) 0.433 (2.501) 0.404 (4.154) 0.584 (4.495) 1.122 (423.892) 1.558 (759.088)

MLD 0.012 (0.017) 0.03 (0.007) 0.101 (0.097) 0.026 (0.081) 0.101 (0.618) 0.177 (0.602) 0.126 (0.643) 0.269 (0.918)

T 0.005 (0.011) 0.024 (0.006) 0.087 (0.07) 0.022 (0.059) 0.063 (0.271) 0.085 (0.234) 0.168 (0.92) 0.352 (1.474)

RCI 0.061 (0.033) 0.019 (0.028) 0.046 (0.163) 0.067 (0.182) 0.101 (0.677) 0.32 (1.078) 0.174 (1.075) 0.321 (1.342)

RII 0.061 (0.033) 0.019 (0.028) 0.082 (0.416) 0.107 (0.864) 0.573 (13.028) 0.93 (16.138) 0.492 (42.962) 0.775 (69.81)

KMI 0.014 (0.002) 0.002 (0.002) 0.001 (0.006) 0.003 (0.007) 0.036 (0.104) 0.073 (0.144) 7.884 (58577.526) 4.365 (1709.717)

Gamma distribution sampling under the MCS

measures 4 groups 8 groups 4 groups 8 groups 4 groups 8 groups 4 groups 8 groups

RD 0.055 (0.041) 0.014 (0.037) 0.068 (0.131) 0.045 (0.13) 0.58 (13.53) 0.536 (9.144) 0.985 (267.024) 1.601 (1015.294)

BGV 0.06 (0.044) 0.011 (0.034) 0.071 (0.148) 0.046 (0.132) 0.523 (22.326) 0.488 (6.876) 0.742 (118.101) 1.04 (300.649)

ACI 0.056 (0.044) 0.011 (0.037) 0.07 (0.144) 0.043 (0.142) 0.441 (6.677) 0.436 (6.602) 0.714 (200.212) 1.015 (75.524)

SII 0.054 (0.04) 0.011 (0.036) 0.065 (0.152) 0.048 (0.153) 0.487 (27.836) 0.489 (19.132) 1.447 (390.293) 2.019 (663.53)

RR 0.059 (0.043) 0.013 (0.035) 0.068 (0.162) 0.05 (0.151) 0.472 (14.584) 0.558 (30.808) 0.832 (213.158) 1.647 (1062.309)

IDisp 0.056 (0.043) 0.011 (0.036) 0.07 (0.158) 0.05 (0.136) 0.425 (12.284) 0.411 (6.095) 1.641 (2025.783) 1.161 (152.202)

MLD 0.052 (0.041) 0.01 (0.035) 0.063 (0.137) 0.042 (0.126) 0.496 (9.955) 0.475 (10.131) 1.035 (322.02) 1.533 (1024.282)

T 0.06 (0.046) 0.013 (0.035) 0.063 (0.13) 0.047 (0.124) 0.358 (2.777) 0.353 (3.319) 0.605 (54.28) 0.901 (112.737)

RCI 0.056 (0.041) 0.013 (0.036) 0.06 (0.126) 0.041 (0.122) 0.454 (8.037) 0.504 (13.701) 0.698 (90.573) 1.11 (160.108)

RII 0.059 (0.044) 0.014 (0.035) 0.065 (0.128) 0.044 (0.121) 0.455 (7.248) 0.442 (5.488) 0.776 (127.05) 1.425 (362.019)

KMI 0.062 (0.045) 0.016 (0.038) 0.064 (0.127) 0.043 (0.123) 0.427 (6.13) 0.435 (7.286) 0.772 (96.267) 1.316 (346.669)

https://doi.org/10.1371/journal.pone.0219542.t003
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sensitive to which age groups are combined. Both of these problems make the category-col-

lapsing approach undesirable for better estimating CIs.

Problems with scarce events are likely to occur in the context of rare diseases and when

sampling is in less-populated areas. As discussed [8], when more than 25% of age groups have

zero disease incidence, HD�Calc users are advised to be cautious in making inferences from

health disparity measures, including interpreting 95% confidence intervals of disparity mea-

sures. HD�Calc users may conduct simulation studies in advance to examine the validity of the

confidence intervals or standard errors and then make inferences about the presence/trend of

health disparities. If a sampling zero problem persists, it may helpful to reevaluate age group

boundaries. And we may perform a sensitivity analysis to evaluate the effect of re-grouping

age-groups and see how results varying with changes.

Supporting information

S1 Fig. Density plots of the proportions of zeros for female breast, female brain, lung, and

cervical cancer data. The blue line represents the density when zero-inflated Poisson (ZIP)

mean estimates is used for Poisson sampling while the red line represents the density when the

standard 1/population is used for Poisson sampling.
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