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The RNA-binding protein AKAP8 suppresses
tumor metastasis by antagonizing EMT-associated
alternative splicing
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Helen Piwnica-Worms 3, Kenneth L. Scott2 & Chonghui Cheng 1,2*

Alternative splicing has been shown to causally contribute to the epithelial–mesenchymal

transition (EMT) and tumor metastasis. However, the scope of splicing factors that govern

alternative splicing in these processes remains largely unexplored. Here we report the

identification of A-Kinase Anchor Protein (AKAP8) as a splicing regulatory factor that

impedes EMT and breast cancer metastasis. AKAP8 not only is capable of inhibiting splicing

activity of the EMT-promoting splicing regulator hnRNPM through protein–protein interac-

tion, it also directly binds to RNA and alters splicing outcomes. Genome-wide analysis shows

that AKAP8 promotes an epithelial cell state splicing program. Experimental manipulation of

an AKAP8 splicing target CLSTN1 revealed that splice isoform switching of CLSTN1 is crucial

for EMT. Moreover, AKAP8 expression and the alternative splicing of CLSTN1 predict breast

cancer patient survival. Together, our work demonstrates the essentiality of RNA metabolism

that impinges on metastatic breast cancer.
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Tumor metastasis is the most lethal attribute of breast cancer.
One of the key mechanisms that facilitates cancer metas-
tasis is the abnormal activation of a developmental process

termed epithelial–mesenchymal transition (EMT)1–3. Aberrant
activation of EMT enables primary epithelial cancer cells to
acquire advantageous mesenchymal properties, including invasion
and drug resistance, ultimately allowing the survival of cancer cells
within the circulatory system and subsequent colonization of
distant organs4–6. Whereas several transcription factors, such as
Twist, Snail, and Zeb1/2, and signaling pathways, including TGF-
β, have been characterized as potent inducers of EMT6,7, growing
evidence has suggested that alternative RNA splicing acts as a
critical layer of regulation impinging on EMT8–11.

Alternative RNA splicing is a fundamental mechanism of post-
transcriptional gene regulation. With 95% of human multi-exon
genes expressing more than one splice isoform, alternative spli-
cing contributes to the diversity and complexity of the human
proteome, and thus organ development and tissue identity12–14.
The regulation of alternative splicing relies on the precise binding
of splicing factors to the RNA consensus motifs located in vari-
able exons or their adjacent introns. Therefore, mutations in
either splicing factors or RNA motifs that perturb splicing factor
binding may result in developmental abnormalities and
diseases15,16. Although important observations connecting spli-
cing machinery and diseases are accumulating, our understanding
of the mechanisms and functions of splicing regulation that
impinges on diseases is still in its infancy.

The functional connection of alternative splicing to EMT and
cancer metastasis was established through the study of the CD44
gene, which is alternatively spliced to generate two families of
proteins, known as CD44v and CD44s. Following our initial
discovery that CD44 isoform switching is essential for EMT8,
other studies have also reported that epithelial cells that pre-
dominantly express CD44v demand an isoform switch to CD44s
in order for cells to undergo EMT and for cancer cells to
metastasize17–26. In addition to CD44, a handful of additional
alternative splicing events has subsequently been reported to play
a functional role in EMT27–30. EMT-associated splicing events are
controlled by splicing factors and, to a large extent, these splicing
factors act in a combinatorial manner to influence
splicing9,10,31,32. In the case of CD44 alternative splicing, the
heterogeneous nuclear ribonucleoprotein M (hnRNPM) pro-
motes the production of CD44s by binding to CD44 intronic
splicing motifs, resulting in an EMT phenotype and enhanced
metastasis10. The splicing activity of hnRNPM is partially
restricted by an epithelial-specific splicing factor ESRP1 through
competitive binding to the same RNA motifs, thus tightly con-
trolling the switch of CD44 splice isoforms and transition of cell
states during EMT9,10. In addition to this mode of direct com-
petition through binding to RNA substrates, it is conceivable that
hnRNPM-interacting splicing factors could also influence
hnRNPM’s activity and thus its function in promoting EMT. In
fact, several splicing factors were found to form a complex with
hnRNPM31,33,34, but the functional consequences in EMT and
cancer metastasis remained unexplored.

In this study, we report the identification of the A kinase
anchoring protein 8 (AKAP8) as an RNA-binding protein that
inhibits EMT and breast cancer metastasis through the reg-
ulation of alternative splicing. AKAP8 interacts with hnRNPM
and precludes the activity of hnRNPM to stimulate exon
skipping of CD44. Moreover, AKAP8 is capable of directly
binding to RNA and modulating alternative splicing events.
Functionally, AKAP8 is required to maintain epithelial-specific
alternative splicing patterns. Cells with loss of AKAP8 show
accelerated EMT and enhanced breast cancer metastatic
potential. We demonstrate that both AKAP8 and its splicing

target CLSTN1 accurately predict patient survival. These results
identify the splicing factor AKAP8 as a suppressor of EMT and
metastatic cancer and shed lights on the mechanisms of EMT
and tumor metastasis that are regulated at the level of alter-
native RNA splicing.

Results
AKAP8 interacts with hnRNPM and correlates with patient
survival. To identify splicing regulatory proteins that regulate
EMT and metastasis, we used hnRNPM as a bait to determine
hnRNPM-interacting splicing factors. As hnRNPM stimulates
mesenchymal-associated splicing and promotes cancer metas-
tasis, we reasoned that these hnRNPM-interacting splicing factors
likely affect EMT and tumor metastasis by synergizing with or
antagonizing hnRNPM’s activity. As depicted in Fig. 1a, we
applied a BioID technology that utilizes a biotin-ligase fused to
hnRNPM to capture hnRNPM-interacting proteins that are
ligated with biotin in live cells (Supplementary Fig. 1a). Mass
spectrometry analysis successfully revealed several previously
reported hnRNPM-interacting splicing factors, including RBFOX,
SFPQ, and PTBP131,35,36. From the top 50 hnRNPM-interacting
proteins, we selected 29 splicing factors (See Methods for details)
and performed a CD44v8 splicing minigene reporter assay
(Supplementary Fig. 1b and Supplemental Data 1). After co-
transfecting each of the 29 open-reading frame (ORFs) with the
CD44v8 minigene reporter to 293FT cells, we analyzed the levels
of CD44v8 splicing, depicted by the ratios of inclusion to skip-
ping. Several splicing factors showed notable effects, i.e., greater
than twofold upregulation and 2.5-fold downregulation of the
ratios (Fig. 1b). Among them, PTBP1, AKAP8, and hnRNPF
promoted CD44v8 inclusion, and RBM10, RBMX, and hnRNPR
promoted exon skipping. Immunoprecipitation validation
showed that, except for PTBP1, the remaining five splicing factors
interact with hnRNPM in an RNA-independent manner, and
some of them showed even stronger protein interactions in the
absence of RNA (Fig. 1c). Among the five splicing factors,
hnRNPF was previously reported to stimulate CD44v8 inclusion
and inhibit EMT37.

By examining the correlation between the above identified
splicing factors and important clinical outcomes, we found that
AKAP8 has the most significant correlation with metastasis and
patient survival (Fig. 1d). AKAP8 expression positively correlates
with distal metastasis-free survival in a cohort of 327 published
breast cancer samples analyzed by microarray38. The positive
correlation of AKAP8 expression and metastasis-free survival is
congruent with our experimental findings that AKAP8 promotes
CD44v8 inclusion and inhibits CD44s production, the isoform
that promotes EMT and tumor metastasis8,26,39. Further analysis
of the METABRIC breast cancer data set showed that AKAP8
expression positively correlates with overall survival (Fig. 1e),
most significantly in Luminal A, Luminal B, and HER2+
subtypes (Supplementary Fig. 1c–g). Analysis of AKAP8 expres-
sion levels in different subtypes of breast cancer revealed that
AKAP8 expression is highest in the Luminal A subtype, the least
aggressive breast cancer subtype that is epithelial in nature, and
AKAP8 expression is significantly lower in the Claudin low and
basal subtypes, which are more aggressive and mesenchymal
(Fig. 1f and Supplementary Fig. 1h). Similarly, AKAP8 is highly
expressed in the ER-positive breast tumors compared with the
ER-negative breast tumors (Supplementary Fig. 1i). These results
associate AKAP8 with an epithelial phenotype in breast cancer
and show that loss of AKAP8 is a characteristic of poor survival,
prompting us to explore the mechanistic roles of AKAP8 using
in vitro models of EMT and in vivo models of breast cancer
metastasis.
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Knockdown of AKAP8 promotes a mesenchymal phenotype.
The above observations suggest that AKAP8 protects an epithelial
state, so we sought to determine whether knockdown of AKAP8
accelerates EMT. We utilized a tamoxifen (TAM)-inducible EMT
system where human mammary epithelial cells were engineered
to ectopically express the transcription factor Twist fused to ER
(HMLE/Twist-ER, Ref. 8). We depleted AKAP8 in HMLE/Twist-
ER cells by two independent shRNAs and observed a marked
knockdown of the AKAP8 protein (Fig. 2a, Supplementary
Fig. 2a, b). With TAM induction, both the control and AKAP8

shRNA-expressing cells underwent morphological changes with
gradual loss of the cobble-stone-like epithelial clusters and gain of
expression of mesenchymal markers (Fig. 2a, b). The AKAP8
shRNA-expressing cells showed a more rapid transition to the
mesenchymal phenotype compared to controls. At Day 12 of
TAM induction, AKAP8 knockdown cells showed a more drastic
reduction of epithelial markers E-cadherin and γ-catenin and a
more pronounced increase in the mesenchymal marker N-
cadherin (Fig. 2a). Although control cells were still loosely packed
as clusters, the AKAP8 knockdown cells were fully transited to

c

a
BioID assay of

hnRNPM-interacting
proteins

Mass Spec analysis
to select 29 hnRNPM

binding partners

CD44v8 minigene
screen

d

Novel SF’s effect
on EMT/metastasis

b

f

H
N

R
N

P
M

R
B

M
10

R
B

M
X

H
N

R
N

P
R

K
H

S
R

P
R

B
M

6
S

F
1

F
U

B
P

1
H

N
R

N
P

A
2B

1
IL

F
3

Z
N

F
32

6
F

U
B

P
3

W
D

R
33

M
A

T
R

3
H

N
R

N
P

A
1L

2
D

D
X

5
X

R
N

2
H

N
R

N
P

D
L

S
Y

N
C

R
IP

R
B

M
12

D
D

X
17

S
U

G
P

2
R

B
M

12
B

R
B

M
14

H
N

R
N

P
A

3
R

P
R

D
2

H
N

R
N

P
F

A
K

A
P

8
P

T
B

P
1–6

–4

–2

0

2

4

Lo
g2

 (
C

D
44

v8
 In

cl
/S

ki
p)

Flag-
hnRNPM

RBMX

hnRNPF

AKAP8

PTBP1

IB

No RNase RNase

RBM10

hnRNPR

0 90 180 270 360
0.00

0.25

0.50

0.75

1.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

Time (month) LumA CLOW Basal

–6

–3

0

3

6

N
or

m
al

iz
ed

 A
K

A
P

8 
le

ve
l

P = 1.52e–8

P = 2.64e–13e

0 30 60 90 120 150 180
0.00

0.50

1.00

Time (month)

D
is

ta
l m

et
as

ta
si

s 
fr

ee
su

rv
iv

al
 p

ro
ba

bi
lit

y
P = 0.00059

P < 0.0001

AKAP8
High (815)

Low (943)

AKAP8
High (199)

Low (128)75 kDa

100 kDa
75 kDa
50 kDa

50 kDa

100 kDa

50 kDa

In
pu

t
In

pu
t

Ig
G IP

Ig
G IP

Flag
 IP

Flag
 IP

Fig. 1 Functional screening to identify AKAP8 as an hnRNPM-interacting protein. a A flow chart showing the experimental approaches to identify
hnRNPM-interacting proteins. b qRT-PCR analysis of the CD44v8 splicing reporter minigene screening for the candidate splicing factors. Data were plotted
as the Log2 transformed v8 exon inclusion versus skipping with mean ± s.d, n= 3. Incl: Inclusion. cWestern blot analysis showing the interactions between
hnRNPM and its candidate interacting proteins. A Flag-tagged hnRNPM cDNA was transfected into the 293 cells and immunoprecipitated with a Flag
antibody with or without RNase treatment. Antibodies recognizing specific candidates were used for western blot analysis. d Kaplan–Meier plot analysis of
breast cancer patient distal metastasis-free survival (GSE20685, n= 237) showing that higher levels of AKAP8 expression predict lower metastatic
potential. P value was calculated by log-rank test. e Kaplan–Meier plot analysis of the METABRIC breast cancer data set (n= 1758) showing that higher
expression of AKAP8 shows better patient survival probability. f Box and whiskers plots with jitters representing distribution of AKAP8 mRNA expression
levels in luminal A (LumA), claudin low (CLOW), and basal (Basal) breast cancers patients from the breast cancer METABRIC data set. The line within
each box represents the median. Upper and lower edges of each box represent 75th and 25th percentile, respectively. The whiskers represent the
maximum and minimum values within 1.5× the interquartile range. P values were calculated by two sample z test in e, f. Source data are provided as a
Source Data file.
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spindle-shaped mesenchymal cells (Fig. 2b) and nearly com-
pletely lost the adherens junction protein E-cadherin at cell
junctions (Fig. 2c). These results reveal that AKAP8 knockdown
accelerates EMT. To generalize the findings, we examined the
effect of AKAP8 knockdown in a different epithelial cell line,
HCT116 colon cancer cells, and observed that knockdown of
AKAP8 alone is sufficient to induce a loss of epithelial char-
acteristics, as demonstrated by the gain of elongated spindle-like
mesenchymal morphology and the decrease in expression of
epithelial markers (Fig. 2d, e). Re-expressing the AKAP8 cDNA
in the AKAP8 knockdown cells restored the decreased expression
of epithelial markers (Supplementary Fig. 2c). Together, these
results indicate that knockdown of AKAP8 promotes EMT.

AKAP8 inhibits breast cancer lung metastasis. As EMT is
essential for tumor metastasis, our finding that AKAP8 inhibits
EMT prompted us to determine whether AKAP8 inhibits breast
cancer metastasis. We used a patient-derived xenograft (PDX)
model HIM3 where the cells were derived from a patient triple-
negative breast tumor40. HIM3 maintains an epithelial phenotype
and expresses high levels of E-cadherin and AKAP8 (Fig. 3a).
Consistent with our observations shown in Fig. 2, knocking down
AKAP8 in the HIM3 cells resulted in a decrease in epithelial
markers E-cadherin, γ-catenin, and Occludin. To capture the
effect of AKAP8 on tumor metastasis, we inoculated NSG mice
with 1 × 105 control or AKAP8 knockdown cells through tail vein
injection and measured the potential of lung metastasis (Fig. 3b).
AKAP8 knockdown with two different shRNAs significantly

increased BLI signals compared with control, indicating the
enhanced ability of metastatic tumor formation in mice in
response to AKAP8 depletion (Fig. 3c, d). Our Hematoxylin and
Eosin (H&E) analysis support this observation, showing a sig-
nificant increase in the area of metastatic nodules in the lungs of
mice that were injected with cells expressing AKAP8 shRNAs
(Fig. 3e, f). We also noticed that the AKAP8 KD-2 cells showed
greater metastasis ability than the KD-1 cells, although the KD-2
shRNA was less potent in promoting the EMT phenotype than
the KD-1 shRNA. This observation could be in support of the
growing evidence that cells in a hybrid epithelial/mesenchymal
state tend to have a greater advantage in establishing metastatic
lesions41–44. Because the AKAP8 shRNA-expressing HIM3 cells
did not show a proliferation advantage compared with control
HIM3 cells (Supplementary Fig. 3a), these results demonstrate
that AKAP8 silencing promotes breast cancer metastasis to the
lung.

As a complementary approach, we ectopically expressed
AKAP8 in a lung metastatic breast cancer cell line LM2, a
derivative of MDA-MB-231 cells, and examined whether forced
expression of AKAP8 inhibits lung metastasis. Tetracycline-
induced expression of AKAP8 in LM2 cells promoted the
expression of epithelial marker and inhibited the levels of
mesenchymal markers (Supplementary Fig. 3b, c). These cells
also showed retardation of cell migration in vitro (Supplementary
Fig. 3d, e). Interestingly, tail vein injection of the AKAP8-
expressing LM2 cells in mice resulted in a drastic decrease in
metastatic nodule formation as indicated by the luminescent
signals and the H&E stains of lung sections (Fig. 3g-j). Taken
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together, these gain-and-loss of function analyses of AKAP8
demonstrate that AKAP8 prevents breast cancer metastasis to
the lung.

AKAP8 antagonizes the splicing activity of hnRNPM. Having
established the function of AKAP8 in inhibiting tumor metas-
tasis, we next sought to determine its underlying mechanisms. As
hnRNPM promotes EMT and breast cancer metastasis by sti-
mulating CD44 exon skipping10, we hypothesized that AKAP8
antagonizes the splicing activity of hnRNPM. To test this, we co-
transfected the CD44v8 splicing minigene construct (Supple-
mentary Fig. 1b) that contains CD44 variable exon 8 flanked by
introns and two constitutive exons with the AKAP8 cDNA into
293FT cells. We found that AKAP8 promotes exon inclusion of

the v8 exon in a dose-dependent manner (Supplementary Fig. 4a)
and that the effect of hnRNPM on inhibiting CD44v8 exon
inclusion was dampened in the presence of AKAP8 (Fig. 4a and
supplementary Fig. 4b). These results suggest that AKAP8
antagonizes hnRNPM’s activity and were recapitulated using
another splicing minigene reporter that contains the CD44 vari-
able exon 5 (Fig. 4b, c and Supplementary Fig. 4c). We further
found that, when AKAP8 is silenced, hnRNPM elicited a more
drastic effect on exon skipping in both CD44v8 and CD44v5
minigenes (Figs. 4d, e, Supplementary Fig. 4d). Conversely,
siRNA-mediated silencing of hnRNPM showed a moderate but
not significant increase of the AKAP8’s splicing activity (Sup-
plementary Fig. 4e, f). Taken together, these data indicate that
AKAP8 abrogates hnRNPM’s activity on exon skipping.
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Previous work indicated that hnRNPM mediates CD44 exon
skipping via binding to consensus GU-rich sequences in introns
downstream of exons v5 and v810. Thus, we examined whether
AKAP8 precludes hnRNPM from binding to its intronic
consensus sequences by RNA pull-down assay (Fig. 4f, g). We
used two sets of RNA oligos, I-5 and I-8, that contained
hnRNPM-binding motifs in the introns downstream of the v5
and v8 exons, respectively. Interestingly, the binding signal of
hnRNPM to both I-5 and I-8 RNA oligos was enhanced in
AKAP8 knockdown epithelial cells (compare lane 4 to lane 3 in
Figs. 4f, g, left panels), whereas remained the same in AKAP8
knockdown mesenchymal cells (Fig. 4f, g, right panels). These
results suggest that AKAP8 diminishes the ability of hnRNPM to
bind to its RNA targets in an epithelial cell state-specific manner.
Surveying the expression level and localization of AKAP8 and
hnRNPM in the context of EMT showed no obvious differences
between epithelial and mesenchymal cells (Supplementary Fig. 4g,
h), suggesting that other mechanisms may be involved in
contributing to this epithelial cell state-specific activity. These
possibilities could include post-translational modification of

AKAP8 and/or hnRNPM, changes in levels of other hnRNPM-
binding partners identified in Fig. 1, and changes in expression of
the previously reported splicing regulator ESRP1, which serves as
an antagonist of hnRNPM’s splicing activity9,10.

AKAP8 promotes epithelial state-associated alternative splicing.
AKAP8 was only recently reported as an RNA-binding protein
capable of binding to and regulating alternative splicing45. Given
our observation that AKAP8 interacts with hnRNPM and reg-
ulates CD44 minigene splicing, we sought to interrogate whether
AKAP8 regulates global alternative splicing, especially EMT-
related alternative splicing. Thus, we performed deep RNA
sequencing using the HMLE/Twist-ER cell lines that express
control or AKAP8 shRNA in both epithelial and mesenchymal
states. We identified AKAP8-regulated splicing alterations total-
ing 144 and 228 alternative splicing events in epithelial (Fig. 5a,
top panel) and mesenchymal states (Fig. 5a, bottom panel),
respectively (FDR < 0.05, |ΔPSI| ≥ 0.1, average junction reads per
cassette event ≥ 20). Classification of the AKAP8-mediated
alternative splicing showed that the majority of the events were
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cassette skipped exon (SE) events, the most common form of
alternative splicing (Fig. 5b, c). Note that the gene expression
levels of these AKAP8-mediated splicing events were not altered
in response to AKAP8 knockdown in either the epithelial or
mesenchymal state (Supplementary Fig. 5a, b).

As SEs represent the vast majority of AKAP8-regulated
alternative splicing events, we next overlapped AKAP8-
regulated SEs with those regulated during EMT. The latter were
obtained from the differential splicing events in control HMLE/
Twist-ER cells that are in either the epithelial state or the
mesenchymal state. Our results revealed that more than half of
AKAP8-regulated SEs in epithelial cells are also altered during
EMT (58 overlapping events out of 104 AKAP8-regulated SEs).
Remarkably, the vast majority (96.6%) of the 58 common events
are regulated in a discordant direction, indicating that AKAP8
antagonizes EMT-associated alternative splicing (Fig. 5d, left
panel). This inverse direction of regulation by AKAP8 is unique
to the epithelial state. In mesenchymal cells, 52 out of the 151
AKAP8-regulated events overlapped with the SEs that are altered
during EMT. However, they showed roughly equal concordant
(46.2%) and discordant (53.8%) directions compared with EMT-
associated SEs (Fig. 5d, right panel). The fraction of discordantly
regulated events in the epithelial state is significantly higher than
that in the mesenchymal state (Fig. 5e, P < 0.0001 by Fisher’s
exact test). These data show that AKAP8 strongly suppresses
EMT-associated alternative splicing in a manner that is epithelial
state-specific. This dichotomy is supported by the fact that only
10 SEs were found to be regulated by AKAP8 in both the
epithelial and mesenchymal states (Supplementary Fig. 5c). These
10 overlapping events are all regulated in the same direction
(Supplementary Fig. 5d). Interestingly, 7 out of the 10 events
overlapped with the EMT-associated SEs and all showed
discordant regulation with the EMT-associated SEs (Supplemen-
tary Fig. 5e). These results imply that AKAP8 antagonizes a set of
EMT-associated SEs in both cell states. Experimental RT-PCR
validation of SEs that are regulated by AKAP8 knockdown and
during EMT showed that AKAP8 knockdown-mediated splicing
alterations are consistent with the direction of splicing changes
during EMT (Supplementary Fig. 5f). Further supporting the role
of AKAP8 in inhibiting EMT came from Gene Set Enrichment
Analysis (GSEA). Comparing the transcriptome of control and
AKAP8 knockdown cells, we found that genes that are
upregulated during EMT show increased expression upon
AKAP8 knockdown in the epithelial state, whereas genes that
are downregulated during EMT show decreased expression in the
AKAP8-silenced mesenchymal cells (Fig. 5f). Together, these
results show that AKAP8 antagonizes EMT-associated alternative
splicing across the transcriptome to maintain an epithelial
cell state.

AKAP8 binds to RNA with a consensus motif. To identify high-
confidence binding sites for AKAP8 across the transcriptome, we
performed single-nucleotide resolution enhanced cross-linking
and immunoprecipitation (eCLIP). Two AKAP8 eCLIP biological
replicates were performed in each of the epithelial and
mesenchymal cell states and showed a high degree of correlation,
highlighting the reproducibility of our assay (Supplementary
Fig. 6a, b). By normalizing IP signal with size-matched input
eCLIP libraries, we obtained quantitative estimates of AKAP8-
binding intensity, resulting in 21,665 and 26,228 high-confidence
AKAP8-binding sites in the epithelial and mesenchymal state,
respectively (log2FC(IP/Input) ≥ 2 per replicate, −log(adjusted
P value) ≥ 3, per replicate). Mapping the location of AKAP8-
binding sites across the gene body revealed that the majority of
binding sites are located in distal introns > 500 nucleotides from

splice sites (Fig. 6a). Interestingly, although AKAP8 showed less
binding to distal introns in the epithelial state compared with the
mesenchymal state (Fig. 6b, P= 9.38e−174 by Fisher’s exact test),
it binds to proximal intronic regions more significantly in the
epithelial state (Fig. 6b, P= 6.60e−116 by Fisher’s exact test).
These results suggest that AKAP8 regulates alternative splicing
more directly in epithelial states through binding to pre-mRNA
proximal intron regions. Differences in binding to other gene
regions in the 5′ and 3′-UTR or the coding region showed no
statistical differences (Fig. 6b).

Metagene analysis to assess AKAP8-binding intensity across all
human introns and exons revealed significantly more frequent
binding of AKAP8 to introns compared with exons (Fig. 6c).
Interestingly, AKAP8 intronic binding in the epithelial state
appears skewed towards the 5’ splice site while binding in the
mesenchymal state is distributed more evenly across the intron
(Fig. 6c, compare top and bottom plots in left panel).
Quantification of the binding ability in the proximal introns
revealed significantly higher binding in the epithelial state
(Fig. 6d), reinforcing our observations that AKAP8 binds more
frequently (Fig. 6b) and more strongly (Fig. 6c) to proximal
intronic regions in the epithelial state.

Using the single-nucleotide precision of eCLIP, we identified
AKAP8 high fidelity binding motifs. We took the center of each
AKAP8-binding interval and extended the length 100 nucleotides
upstream and downstream of each center. The AKAP8-binding
motifs contain guanine stretches of at least three nucleotides
flanked by one or two uridine or adenine nucleotides (Fig. 6e),
and AKAP8 shares very similar recognition motifs in epithelial
and mesenchymal states. We identified 16 and 20 SEs that are
both bound by AKAP8 within 1000 bp of the variable exon and
regulated by AKAP8 in epithelial and mesenchymal cell states,
respectively (Supplementary Table 2). We did not observe a
relationship between AKAP8-binding topology and direction of
SE regulation.

Screening the AKAP8-binding peaks near the CD44v8 exon
indicated one significant peak located upstream of the v8 exon
containing two AKAP8 motifs with guanine stretches flanked by
adenine (Supplementary Fig. 6c). AKAP8’s binding was validated
by RNA pull-down assay with an RNA oligo, AK, which was
derived from the core of this peak (Supplementary Fig. 6d). The
most enriched AKAP8-binding site is located at the upstream
proximal intron of CLSTN1 variable exon 11 containing four
AKAP8 motifs. AKAP8 binds in both epithelial and mesenchymal
states but with a greater than twofold binding intensity in the
epithelial state (Fig. 6f). Because CLSTN1 exon 11 inclusion
increased during EMT and in AKAP8 knockdown epithelial cells,
these results suggest that AKAP8 binds to CLSTN1 and inhibits
EMT-mediated CLSTN1 exon inclusion, a regulatory axis which
may block EMT.

Depletion of the CLSTN1 short isoform promotes EMT. To
experimentally test the role of AKAP8-mediated CLSTN1
splicing during EMT, we examined the binding of AKAP8 to
the above eCLIP-predicted CLSTN1-binding motifs by RNA
pull-down experiments. We found that AKAP8 binds to the
consensus sequences in both 293FT cells and HMLE/Twist-ER
cells (Fig. 7a, bottom panel), but not the mutated sequences
(Fig. 7a).

CLSTN1 is a member of the calsyntenin family and was
reported to function in cargo trafficking along neuronal axons.
Thus far, the role of CLSTN1 or its isoforms in EMT has not been
reported. We designed isoform-specific shRNAs to silence either
the CLSTN1-L or CLSTN1-S individually (Fig. 7b, top panel) and
achieved specific isoform knockdowns without showing decreased
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expression of the non-targeted isoforms (Fig. 7b, bottom panel).
TAM induction of EMT in the HMLE/Twist-ER control and
CLSTN1-S shRNA-expressing cells showed that silencing
CLSTN1-S-accelerated EMT significantly within 8 days (Fig. 7c).
These cells also switched expression from epithelial markers to
mesenchymal markers (Fig. 7d) and displayed loss of E-cadherin
at the cell junctions (Fig. 7e). By contrast, control cells at this

stage were largely maintained in the epithelial state (Fig. 7c–e).
These results reveal that silencing CLSTN1-S promotes EMT.

Although silencing CLSTN1-L did not show an overt difference
compared with control cells, it caused significant cell death after
the TAM induction for 4 days (Supplementary Fig. 7a), implying
that CLSTN1-L is required for cell survival during EMT. As
CLSTN1 transcripts levels remain relatively consistent in
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epithelial and mesenchymal cells (Supplementary Fig. 7b), these
results indicate that isoform switching from CLSTN1-S to
CLSTN1-L has an important role for cells to undergo EMT.

We then analyzed the levels of CLSTN1 isoforms using the
TCGA breast cancer patient RNA-sequencing data, and found
that higher fractions of CLSTN1-L, represented by high PSI
values, were associated with higher levels of the mesenchymal
marker vimentin in patient breast tumors, especially in luminal
breast cancer (Fig. 7f and Supplementary Fig. 7c), These
CLSTN1-L high patients also showed worse survival compared
with those patients with lower levels of CLSTN1-L (Fig. 7g).
Interestingly however, CLSTN1 expression did not correlate with

patient survival (Supplementary Fig. 7d). These results show that
CLSTN1 alternative splicing, rather than its gene expression, is
significantly associated with breast cancer patient survival.

Discussion
As an essential step in gene expression, alternative splicing con-
tributes significantly to an ever-growing number of human dis-
eases, especially to cancer12,15. In this study, we identified an
RNA-binding protein AKAP8 as an alternative splicing mod-
ulator to inhibit cells from undergoing an EMT transition.
AKAP8 was originally identified as a kinase anchoring protein
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that recruits protein kinase A to nuclear matrix and chromatin
structures46–49. It was later reported to function as a DNA-
binding protein50 as well as an RNA-binding protein that influ-
ences RNA stability and pre-mRNA splicing45,51,52. Our study
provides a functional role for AKAP8 in RNA metabolism and
connected it further to a tumor metastasis suppression pheno-
type. We show that AKAP8 is capable of inhibiting the splicing
activity of hnRNPM, perturbing hnRNPM-mediated alternative
splicing that occurs during EMT. AKAP8 is able to bind its own
RNA consensus sequences and prevent the EMT-associated
alternative splicing. Functionally, AKAP8 inhibits EMT and
breast cancer metastasis to the lung. High levels of AKAP8
expression predicts a better survival of breast cancer patients.
Thus, these results nominate AKAP8 as a splicing regulator for
EMT-associated alternative splicing and for inhibition of EMT
and tumor metastasis, highlighting the importance of RNA-
binding protein in regulating cancer progression.

The identification of AKAP8 in suppressing EMT and cancer
metastasis was through a biochemical approach to capture pro-
teins that interact with hnRNPM, previously shown to promote
EMT and tumor metastasis by regulating alternative splicing of
CD44. AKAP8 interacts with hnRNPM and antagonizes
hnRNPM’s splicing activity on CD44 exon skipping. One inter-
esting observation was that the AKAP8-hnRNPM interaction
became stronger upon RNase treatment, which led us to speculate
that AKAP8 binding to hnRNPM blocks hnRNPM from binding
to its RNA targets. Supporting this view, depletion of AKAP8
promoted hnRNPM’s ability to bind its consensus RNA
sequences and to stimulate exon skipping. Previous character-
ization of AKAP8 showed that the N-terminal region of AKAP8
mediates its protein interactions with other splicing factors, such
as hnRNPM45. The C-terminal domain of AKAP8 mediates pre-
mRNA binding through two zinc finger domains. These results
are congruent with our findings that AKAP8 interacts with
hnRNPM, which in turn, inhibits hnRNPM-mediated splicing.
AKAP8 is also capable of binding RNA and directly regulates
alternative splicing. As both AKAP8 and hnRNPM share some-
what similar but not completely overlapping binding motifs, it is
likely that they compete on binding to a subset of RNAs. Notably,
the opposite splicing regulatory roles of AKAP8 and hnRNPM in
co-regulation of EMT-associated splicing events provides
increasing evidence that the complex interplay among RNA-
binding proteins tightly controls alternative splicing9.

Functionally, we used both a PDX model of tumor metastasis
and a highly metastatic cell line LM2 and showed that AKAP8
knockdown promotes breast cancer lung metastasis and ectopic
expression of AKAP8 inhibits metastasis. These results comple-
ment our previous findings showing that depletion of the CD44s
splice isoform inhibits breast cancer metastasis. In this study, we
have provided evidence on the role of AKAP8 in suppressing
metastasis using immune-compromised mice. As tumor micro-
environment plays important roles in both inhibiting and pro-
moting tumor metastasis, future validation of these results in
immune-competent mice will be needed to better understand the
role of the RNA metabolism in metastasis.

Our transcriptome-wide RNA-sequencing analysis demon-
strated that AKAP8 regulates alternative splicing with pre-
dominant regulation of SEs. Most of the AKAP8-regulated
alternative splicing events in the epithelial state show opposite
directions of splicing regulation compared with those occurring
during EMT, suggesting a functional role of AKAP8 in antag-
onizing EMT-associated alternative splicing. In addition to
AKAP8, there are a handful of RNA-binding proteins that have
been functionally implicated during EMT, including hnRNPM,
ESRP1, RBFOX2, QKI9,10,29,32,53–56. In the AKAP8 knockdown
cells, we did not identify any drastic changes in expression of

these RNA-binding proteins, suggesting again that AKAP8 has a
direct role in regulating alternative splicing, resulting in inhibition
of EMT.

The eCLIP analysis of AKAP8 binding revealed the binding
sites of AKAP8 across the transcriptome. AKAP8 preferentially
binds to introns and less frequently binds to the coding regions or
5′- or 3′-UTRs. Our eCLIP results resolved a short 5–6-mer
consensus motif consisting of guanine stretches of at least three
nucleotides long preferentially flanked by adenine or uridine
nucleotides. The top motifs were many orders of magnitude more
significant than secondary motifs identified by the de novo motif
analysis pipeline and were consistent in both epithelial and
mesenchymal cells, suggesting that AKAP8 binds a similar motif
regardless of cell state and that our motif analysis method is
reproducible. A previous study45 reported an AKAP8 motif
through de novo motif analysis, where three relatively disparate
sequences of 12-mer motifs were obtained. Although these motifs
are longer than the ones we report, our findings are somewhat
consistent with an AGGAGGA sequence identified in one of the
motifs in that study. This commonality notwithstanding, we
speculate that the motifs derived from our study resolved a more
precise AKAP8 motif with a higher level of statistical significance
provided by the single-nucleotide resolution of the eCLIP meth-
odology and the integration of input normalization into our
AKAP8-binding site calling compared with the less-precise RIP-
seq method used in the aforementioned study. Furthermore, we
resolved the motifs using a background control of shuffled human
introns, the gene region AKAP8 binds the most abundantly.

We have experimentally characterized one of the newly iden-
tified AKAP8 splicing targets, CLSTN1. CLSTN1 is a trans-
membrane protein and belongs to the calsyntenin family, a subset
of the cadherin superfamily57. CLSTN1 was found mainly par-
ticipating in neural axon trafficking and branching as well as
acting as a mediator of virus replication58–60. This study made an
unexpected functional connection between CLSTN1 alternative
splicing and EMT. We showed that silencing of the CLSTN1-S
isoform, a product of AKAP8-regulated splicing, accelerates
EMT, suggesting that the CLSTN1-S splice isoform is critical for
maintaining an epithelial state. By contrast, knockdown of the
CLSTN1-L isoform resulted in cell death, suggesting a necessity of
this isoform for cells to undergo EMT. Furthermore, as the
CLSTN1 splice isoform levels, but not its transcription level,
correlates with patient survival, we speculate that tipping the
AKAP8 downstream target from CLSTN1-L to CLSTN1-S may
be an effective strategy for the treatment of breast cancer. Future
studies on the role of CLSTN1 splice isoforms in breast cancer
metastasis will be necessary to determine whether this splice
isoform switch is functionally important for metastasis, as we
previously uncovered for the CD44 splice isoform switch8,26.

In conclusion, this work has led to the identification of a new
role of the RNA-binding protein AKAP8 in suppressing EMT and
breast cancer metastasis. We demonstrated that the CLSTN1-S
splice isoform, generated by AKAP8-mediated alternative spli-
cing, inhibits EMT and shows an inverse correlation with breast
cancer progression. Our results reveal the complex regulation of
alternative splicing by RNA-binding proteins in cancer and
suggest the power of studying alternative splicing to uncover a
new layer that regulates tumor metastasis.

Methods
Cell cultures and EMT induction. Human embryonic kidney cell line 293FT
(ATCC), colorectal carcinoma cell line HCT116 (ATCC), breast carcinoma cell line
MDA-MB-231 derivative LM2 (from Dr. Yibin Kang at Princeton University), and
PDX-derived HIM3 (provided by Dr. Helen Piwnica-Worms at MD Anderson) cell
lines were cultured in DMEM supplemented with 10% FBS, L-glutamine, penicillin,
and streptomycin. HMLE/Twist-ER cells (from Dr. Jing Yang at UCSD) were
grown in Mammary Epithelial Cell Growth Medium (Lonza, USA). To induce
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EMT in HMLE/Twist-ER cells, a final concentration of 20 nM TAM was added to
its culture medium, and cells were split every other day until the mesenchymal
morphology was fully observed.

BioID pull down assay and mass spectrometry analysis. A full-length hnRNPM
cDNA was cloned into pQCXIP-BirA(R118G)-HA at Not1 and BamH1 site to
express an hnRNPM-BirA-HA fusion protein. An hnRNPM-BirA-HA expressing
stable cell line was generated in 293FT cells. BioID pull-down experiments were
performed according to a previously published method61. To describe, cells in a 15 cm
dish were pretreated with 50 μM biotin 24 hours prior to the collection. Cells were
washed three times with phosphate-buffered saline (PBS) and scraped directly in
900 μl lysis buffer (50mM Tris-HCl, 500mM NaCl, 0.2% PBS, 1mM dithiothreitol
(DTT), fresh added protease inhibitors) and a final concentration of 2% Triton X-100
was added, followed by sonication. After diluting the lysates with an equal amount of
pre-chilled 50mM Tris-HCl pH 7.4, a second round of sonication was performed.
The lysates were centrifuged and the supernatant was incubated with 150 μl strep-
tavidin beads at 4 °C overnight by rotation. After incubation, the beads were pelleted
by centrifugation and washed twice in buffer 1 (2% SDS); twice in buffer 2 (0.1%
deoxycholic acid, 1% Triton X-100, 1 mM EDTA, 500mM NaCl, 50 mM Hepes pH
7.5); twice in buffer 3 (0.5% deoxycholic acid, 0.5% NP-40, 1 mM EDTA, 250mM
LiCl, 10 mM Tris-HCl pH 7.4); twice in buffer 4 (2M urea, 10mM Tris-HCl pH 8.0).
The proteins were eluted in 90 μl elution buffer (2 × SDS sample buffer supplemented
with 20mM DTT and 2mM biotin) by boiling for 10min. 10% of the samples were
analyzed by silver stain and 90% were subjected to mass spectrometry analysis at the
Harvard Taplin Mass Spectrometry Facility.

Plasmids and shRNAs. Twenty-nine ORFs of splicing factors were obtained as
ORF entry clones. They were then cloned into a pLenti6.3 V5/Dest vector to
generate the destination clones by the gateway LR reaction (Invitrogen, USA).
The 29 splicing factors were selected based on the rank of the unique peptide
reads of Mass Spec and the availability of the clones in our cDNA library62,63. All
plasmid constructs were validated by DNA sequencing. The AKAP8 cDNA were
cloned into PCDH-CMV-MCS-EF1-Puro between XbaI and BamHI sites with a
Flag-tag fused at the C-terminal and were used in the CD44v8 splicing minigene
assay. The AKAP8 cDNA was also cloned into a DOX-inducible plasmid
pCW57-GFP-2A-MCS between MluI and BamHI sites and were used for over-
expression in LM2 cells in the in vivo metastasis assay. For AKAP8 reexpression
in the AKAP8 KD HCT116 cells, three synonymous mutations were introduced
to AKAP8 shRNA-1 targeting site (wt: GCCAAGATCAACCAGCGTTTG, mut:
GCCAAGATTAATCAACGTTTG), by Q5 Site-Directed Mutagenesis kit (NEB,
E0554S). All shRNAs were design using the ranidesigner program at Life Tech-
nologies and isoform-specific shRNAs were designed according to the described
principles64. ShRNAs were cloned into pLKO.1 vector. All shRNA sequences
were listed in Supplementary Table 1.

Immunoblotting assay. Cells growing in tissue culture dishes were washed twice
with cold PBS and collected in radioimmunoprecipitation assay buffer (20 mM
Tris-HCl, pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 1%
SDS, 1 mM EDTA, 1 mM NaF, 1 mM Na3VO4, 1 × protease inhibitor cocktail).
After incubating on ice for 15 min, lysates were clarified by centrifuge at 12,000
rpm for 10 min, 4 °C. Protein concentrations were quantified by bradford protein
assay (Bio-Rad, Catalog no. 500-0006) and boiled in final concentration of 1 ×
sodium dodecyl sulfate sample buffer. Equal amounts of protein were subjected to
electrophoresis and transferred to methanol activated PVDF membrane (Millipore,
#IPVH00010). Membranes were blocked in 5% non-fat milk in TBST (Tris-HCl
buffer, pH 7.4, supplemented with 0.1% Tween-20) for 1 hour at room temperature
and followed by primary antibody incubation overnight at 4 °C. Antibodies used in
this study and their dilutions were listed at respective dilutions: Flag (Sigma, F1804,
1:2000), RBM10 (One World Lab, 1:1000), hnRNPR (One World Lab, 1:1000),
RBMX (Cell signaling, 14794, 1:1000), hnRNPF (Santa Cruz, sc-390048, 1:200),
AKAP8 (Abcam, ab72196, 1:500), PTBP1 (One World Lab, 1:1000), E-cadherin
(Cell Signaling, 3195, 1:1000), γ-catenin (Cell Signaling, 2309, 1:1000), Occludin
(Abcam, ab168986, 1:500), FN1 (BD, 610077, 1:2000), N-cadherin (BD, 610920,
1:1000), hnRNPM (Origene technologies, TA301557, 1: 50,000), GAPDH (EMD
Millipore, MAB374, 1:10000), β-actin (Sigma, A5441, 1:10000). Then, membranes
were washed with TBST for three times, 5 min each and incubated at corre-
sponding HRP-conjugated secondary antibodies for 1 hour at room temperature.
After four times washing with TBST, the targeted bands were developed with ECL
(ThermoFisher, PI32106) and detected either with film or ChemiDoc Imaging
Systems. All uncropped scans were provided in the Source Data file.

CD44 splicing minigene assay. CD44 splicing minigene assay were carried out in
293FT cells. In all, 2.25 × 105 cells were plated in each well of a 24-well plate 24
hours prior to transfection, and were co-transfected with RNA-binding protein
plasmids and CD44v8 or CD44v5-splicing minigene reporter using Lipofectamine
2000 (Invitrogen). Cells were collected 24 hours after transfection for RNA
extraction (Omega Bio-Tek) and reverse transcription, followed by qRT-PCR or
semi-qPCR to examine spliced isoforms. For qRT-PCR analysis of splicing,
isoform-specific primers were used to detect the inclusion and skipping isoforms,

respectively. The ratio of the inclusion to skipping was calculated and compared.
Because PCR from two primer sets can give rise to different amplification effi-
ciency, we avoid taking the sum of the values of two PCR products as a
denominator for calculating the percent spliced in (PSI). For semi-qPCR experi-
ments, a same set of primers was used to amplify both the inclusion and skipping
products, which were resolved by agarose gel electrophoresis.

Immunoprecipitation assay. 293FT cells overexpressing Flag-hnRNPM-HA were
lysed in CoIP lysis buffer (20 mM Tris-HCl pH 7.5, 137 mM NaCl, 10% glycerol,
1% NP-40, 2 mM EDTA, 20 mM NaF, 1 mM NaVO3, and 20 mM β-
glycerophosphate with fresh PI added). After centrifugation, lysate protein con-
centration was quantified. The lysate was pre-cleared with sepharose beads and
incubated with corresponding antibodies at 4 °C overnight with rotation. Next day,
protein A beads were added to capture the antibody–protein complexes and
rotated at 4 °C for 3 hours. Beads were washed with lysis buffer for three times,
followed by protein elution in 2 × sodium dodecyl sulfate sample buffer and boiled
for 10 min. Samples were analyzed by western blot for testing IP efficiency and
interacting proteins with corresponding antibodies.

RNA pull-down assay. RNA oligonucleotides labeled with biotin at the 5’-end were
synthesized by Integrated DNA Technologies. The RNA sequences used in this study
were listed in the following, I-8: GCUUUGGUGGUGGAAUGGUGCUAUGUGG,
I-5: UGGCGGUCGGCAGUUCUGGGUUAGAUGA, AK: GGUUGGUAAGGGGG
AGG GGAUAAAAUGGUG, NC: GCUUUGAUGAUGAAAUGA, CI10-WT: AGA
AGCCU GGGGUUGGGGGUGGUAAAGU, CI10-MUT: AGAAGCCUGCGCUUG
CGCGUGG UAAAGU. In all, 400 pmol Biotinylated RNA oligos were conjugated
with 50 μl of streptavidin beads (50% slurry; ThermoFisher) in a total volume of 300
μl of RNA-binding buffer (20mM Tris, 200mM NaCl, 6 mM EDTA, 5mM sodium
fluoride and 5mM β-glycerophosphate, PH 7.5) at 4 °C in a rotating shaker for 2
hours. After three times wash with RNA-binding buffer, RNA-beads conjugates were
incubated with 100 μg of nuclear extracts in 500 μl RNA-binding buffer at 4 °C in a
rotating shaker overnight. Beads were then washed with RNA-binding buffer for
three times and the RNA pull-down samples were eluted with 2 × SDS loading buffer
for western blot analysis.

Immunofluorescence assay. Cells plated on coverslips were fixed with 4% par-
aformaldehyde in PBS for 10 min at room temperature, followed by permeabili-
zation with 0.2% Triton X-100 for 5 min. Cells were blocked with 1% BSA in PBS
and incubated with primary antibody overnight at 4 °C (1:100 dilution for E-
cadherin, 1:100 for AKAP8, and 1:500 for hnRNPM). After three times wash with
PBS, secondary goat anti-rabbit AlexaFluor 488 or goat anti-mouse AlexaFluor 568
(ThermoFisher, 1:500 dilution) were added for 1 h incubation at room tempera-
ture. After four times wash with PBS, coverslips were mounted with ProLong Gold
anti-fade (ThermoFisher Scientific). Images were captured on Zeiss LSM 880
Confocal Microscope for E-cadherin using × 40 oil objective and Echo Revolve
Microscope for AKAP8 and hnRNPM using × 20 objective.

RNA-sequencing and data analysis. Three biological replicates for control
HMLE/Twist-ER with and without TAM treatment, three biological replicates for
AKAP8 knockdown HMLE/Twist-ER without TAM treatment, and two biological
replicates for AKAP8 knockdown HMLE/Twist-ER with TAM treatment cells were
collected in 1 ml TRIzol for a 10 cm dish. RNAs were extracted followed by the
TRIzol Reagent kit from Invitrogen. The purified RNAs were submitted to
Genomic Facility at University of Chicago for RNA quality validation, poly(A)
selected RNA-seq library generation and paired-end sequencing on a HiSeq 4000.
RNA-seq reads were aligned to the human genome (GRCh37, primary assembly)
and transcriptome (Gencode version 24 backmap 37 comprehensive gene anno-
tation) using STAR version 2.6.1a65 with the following non-standard
parameters–outFilterMultimapNmax 1–outSAMstrandField
intronMotif–outFilterType BySJout–alignSJoverhangMin
8–alignSJDBoverhangMin 3–alignEndsType EndToEnd. Only uniquely aligned
reads were retained for downstream analysis.

Differential alternative splicing was quantified using rMATS version 4.0.266

with the following non-default parameters–readLength 100–cstat 0.01–libType fr-
secondstrand. To identify significant differential splicing events, we set up the
following cutoffs: FDR < 0.05, ΔPSI ≥ 0.1, and average junction reads per event per
replicate ≥ 20. Differential gene expression analysis was performed by counting
reads over genes from the same annotation as alignment using featureCounts
version 1.5.0 with the following non-default parameters -s 2 -p -C -B. Differential
gene expression analysis was conducted using DESeq2 performed on genes with
read abundance larger than 10 counts over the smallest library size of all samples
analyzed67. Significantly regulated genes were defined as genes with an | log2FC | >
1 and FDR < 0.05. GSEA was conducted using the GSEA pre-rank method where
differentially expressed genes were ranked by log2FC before conducting GSEA
analysis using gene set level permutation 10000 times68,69.

eCLIP assay and data analysis. AKAP8 single-end eCLIP was performed in
HMLE/Twist-ER cells without or with TAM treatment. Experiments were done in
two biological replicates, following the protocol previously published70. Specifically,
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input and AKAP8 antibody IP-ed fractions were run on an SDS-PAGE. Protein-
RNA complexes between 95 kDa and 180 kDa were collected for RNA isolation
followed by library generation. eCLIP libraries were sent to Genomic Facility at
University of Chicago for single-end sequencing. eCLIP data processing was
conducted using the public eCLIP pipeline version 0.2.1a (https://github.com/
YeoLab/eclip/releases/tag/0.2.1a) and public merge-peaks pipeline version 0.0.6
(https://github.com/YeoLab/merge_peaks/ releases/tag/0.0.6), derived from the
previously published eCLIP pipeline70. High-confidence eCLIP peaks for each cell
state were called by selecting AKAP8-binding peaks with a minimum log2FC IP/
Input signal > 2 among the replicates and an adjusted p value < 0.001, resulting in
21,668 and 26,230 AKAP8-binding peaks in the epithelial and mesenchymal states,
respectively. These were the peaks used for downstream analysis. De novo motif
analysis was conducted by extending 100 nt on either side of the center of the peaks
using HOMER v4.10 findMotifsGenome.pl script with the following non-default
parameters -p 4 -rna -S 10 -len 4,5,6 -size 100 -chopify. De novo motifs were
computed compared to a background of shuffled human introns. Metagenes and
other analyses were computed using custom R and python scripts.

In vivo metastasis assay. All animal procedures were performed with approval
from the Institutional Animal Care and Use Committee at Baylor College of
Medicine. In total, 1 × 105 HIM3 control and AKAP8 knockdown cells or 2 × 105

LM2 control and AKAP8 OE cells were injected into 6–8 weeks old NSG nude mice
by tail vein. Cell amount injected was quantified by D-luciferin injection and IVIS
spectrum imaging (Caliper LifeScience), immediately after the injection as a
reference signal. For the LM2 cells with tet-ON AKAP8 overexpression, mice were
fed with DOX water (2 mgml−1) at all time through the experiment. The lung
metastasis BLI signals were monitored every week till the tumor burdens were
intolerable. Mice were euthanized and lungs were collected by 4% paraformalde-
hyde perfusion, followed by fixation and H&E staining to analyze the metastasis
nodules. The areas of lung metastases were quantified by image J.

Cell proliferation and wound healing assay. For cell proliferation assay, 15,000
HIM3 control and AKAP8 knockdown cells were plated into a well of 96 well
plates. Six hours later, cells were attached to the bottom, and the plates were loaded
into the IncuCyte Zoom Live-content imaging system (Essen Bioscience). The cell
confluences were scanned every 8 hours for a 4-day duration. Cell confluences were
calculated for proliferation curve analysis.

For wound healing assay, 1 × 106 LM2 control or AKAP8 OE cells were seeded
in each well of a six-well plate. In all, 24 hours later, a scratch was created in each
well with a 200 µl tip and floated cells were washed way with PBS, and medium was
refreshed into Dulbecco's Modified Eagle Medium (DMEM) without serum. The
plates were placed into the IncuCyte Zoom Live-content imaging system for
scanning at a 4 hour interval for 24 hours to collect scratch images. Percentage of
wound healed was quantified by Image J.

Patient data analysis. AKAP8 expression levels downloaded from METABRIC
database were Z score transformed and compared in different breast cancer sub-
types, including Luminal A (LumA), Luminal B (LumB), HER2, Claudin low
(CLOW), Basal, ER positive (ER+) and ER negative (ER−). AKAP8 expression
correlation with breast cancer patient overall survival was separated by AKAP8
mean expression (n= 1758) from the METABRIC data set. The correlation
between AKAP8 expression level and the distal metastasis-free survival was cal-
culated using microarray data from a breast cancer cohort (GSE20685, n= 327), by
setting online Kaplan–Meier plotter tool for optimal cutoff for separation of
patients into high- and low-gene expression groups38,71.

To examine the correlation between CLSTN1 splice isoform expression and
breast cancer patient survival outcome, CLSTN1 exon 11 PSI values in patient
samples were calculated according to previous analysis9. Kaplan–Meier survival
analysis was conducted between the high PSI and low PSI groups, defined by k-
means clustering (k= 2), using overall survival. P values were computed using log-
rank tests. CLSTN1 gene expression correlation with patient survival was calculated
within the same patient cohort using k-means clustering (k= 2).

Statistical analyses. All data were presented as mean ± standard deviation, unless
specifically indicated. Statistical significance was determined by two-tailed Stu-
dent’s t test, unless specifically indicated. P value < 0.05 was considered statistically
significant. P < 0.05 (*), P < 0.01 (**), P < 0.001 (***) were indicated.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA-sequencing and eCLIP data have been deposited in the Gene Expression
Omnibus database under the accession code GSE139074 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE139074). The METABRIC data referenced during the study
are available in a public repository from the cBioPortal website (http://www.cbioportal.
org/). The distal metastasis-free survival of a breast cancer cohort (GSE20685) was
downloaded from the Kaplan–Meier plotter website (https://kmplot.com/ analysis/index.

php?p= service&cancer= breast). The TCGA gene expression data set is available at
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944). The TCGA
alternative splicing data set is available at (https://gdc.cancer.gov/about-data/
publications/PanCanAtlas-Splicing-2018). The source data underlying Figs. 1b–c, 2a, e,
3a, c, e, g, j, 4a–g, 5e, 6d, 7a, b, d and Supplementary Figs. 2a, c, 3a–c, e, 4a–h, 5e, 6a–d, 7b
are provided as a Source Data file. All other data supporting the findings of this study are
available within the article and its supplementary information files and from the
corresponding author upon reasonable request.
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