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Several approaches have been used in an attempt to simplify and codify the events that
lead to adverse effects of chemicals including systems biology, ‘omics, in vitro assays and
frameworks such as the Adverse Outcome Pathway (AOP). However, these approaches
are generally not integrated despite their complementary nature. Here we propose to
integrate toxicogenomics data, systems biology information and AOPs using causal
biological networks to define Key Events in AOPs. We demonstrate this by developing
a causal subnetwork of 28 nodes that represents the Key Event of regenerative
proliferation – a critical event in AOPs for liver cancer. We then assessed the effects of
three chemicals known to cause liver injury and cell proliferation (carbon tetrachloride,
aflatoxin B1, thioacetamide) and two with no known cell proliferation effects (diazepam,
simvastatin) on the subnetwork using rat liver gene expression data from the
toxicogenomic database Open TG-GATEs. Cyclin D1 (Ccnd1), a gene both causally
linked to and sufficient to infer regenerative proliferation activity, was overexpressed after
exposures to carbon tetrachloride, aflatoxin B1 and thioacetamide, but not in exposures to
diazepam and simvastatin. These results were consistent with known effects on rat livers
and liver pathology of exposed rats. Using these approaches, we demonstrate that
transcriptomics, AOPs and systems biology can be applied to examine the presence
and progression of AOPs in order to better understand the hazards of chemical exposure.
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INTRODUCTION

Understanding and predicting the potential hazardous effects of chemicals is a major goal in current
efforts to protect the health of human and ecological receptors. As a result, numerous strategies have
been and continue to be developed to measure and assess chemical hazards. Recent efforts have
focused on moving away from traditional animal testing towards the use of in vitro assays, biological
pathways, and mechanisms of action with adverse outcomes to assess chemical hazards (National
Research Council of the National Academies, 2007; Cote et al., 2016). The development and
application of inexpensive high throughput and high content assays providing broad coverage of
biological effects has also been identified as a critical need in assessing the potential impacts of
chemicals (National Academies 2017). The Adverse Outcome Pathway (AOP) framework is one
approach that is gaining acceptance in linking biological pathways, represented by in vitro assays and
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other nontraditional toxicological data, to adverse outcomes
(Ankley et al., 2010). The AOP framework provides a useful
construct in which to document biological pathways and develop
predictive models for chemical hazards (Perkins et al., 2019).

The AOP framework is attractive as it creates linear biological
pathways composed of essential components, or Key Events (KE),
leading to an Adverse Outcome. As a result, AOPs are
simplifications of complex biological pathways where KE are
measurable biological events. Conversely, systems biology uses
detailed descriptions of biological networks (Edwards and
Preston 2008; Cote et al., 2016). Systems biology provides the
ideal context in which to interpret omics technologies, but its
complexity is problematic in a decision-making context (van
Ravenzwaay et al., 2017). While the AOP framework and systems
biology are complementary, they are generally not combined,
limiting the application of ‘omics in a decision-making context.

Since KE are often the result of interactions of several genes,
proteins, and/or metabolites, KE provide an opportunity to map
the biological networks of systems biology to AOPs in a relatively
discrete manner using causal biological networks. AOPs
themselves are considered to be linear causal networks where
the occurrence of one KE causes the next downstream KE to
occur and ultimately cause an Adverse Outcome to occur e.g. a
Molecular Initiating Event causes KE1 which causes KE2 which
causes an Adverse Outcome A causal subnetwork can also be
developed that represents the cascading biological events or
nodes required to cause a KE. In other words, the subnetwork
represents a network that is contained underneath, or within, a
KE. Using a KE causal subnetwork with causal network theory
allows one to use ‘omics data to infer the biological state or
activity of the overall KE network.

Causal networks can be used to understand the state of
individual KE using ideas of conditional dependence/
independence from causal network theory (Burgoon, et al.,
2017). In causal network theory, specifically the Markov
property, the state of a node is only dependent upon the
node(s) immediately preceding it, e.g. a predecessor or parent
with the causal effect either positive or negative. Building on that
is the idea of d-separation, which states that a node is
conditionally independent of another node if it is blocked by a
third node. As a result, the adverse outcome above would be
conditionally independent of the state of KE1 since it is blocked
by KE2. Therefore, the adverse outcome will not occur if only KE1
occurs, KE2 must also occur. Using this relationship, if KE2
occurs, then the adverse outcome will occur and can be sufficient
to infer the occurrence of an outcome in AOPs. If this can be
applied to causal networks representing the molecular events
essential for a KE to occur, then this concept may be useful in
applying omics to assess if individual KE are occurring in
toxicological studies. When combined with dose response
analysis, as proposed by Burgoon et al. (2017) causal networks
may be useful in a regulatory context to understand at what dose a
KE might occur. When applied to multiple KE, this approach
might be useful in assessing entire AOPs.

Here, we explore how transcriptomics and systems biology can
bemerged with AOPs to understand chemicals effect liver biology
through the use of causal subnetworks that depict KE in AOPs.

We examined the hypothesis that if chemicals are known to cause
an adverse effect, regenerative proliferation, and that adverse
effect is caused by upstream events (gene/protein activity), then
activation of upstream events adjacent to the adverse effect
should occur when animals are exposed to chemicals that
cause the adverse effect. To do this, we first developed a causal
subnetwork for the KE for regenerative proliferation in human/
rodent liver using literature-based experimental evidence. We
then examined the activation of nodes (genes) in the network in
relation to exposure to chemical known to cause regenerative
proliferation in rats using five case study chemicals including
three carcinogens (carbon tetrachloride, aflatoxin B1, and
thioacetamide) and two non-carcinogens (diazepam and
simvastatin) and data from the toxicogenomics database Open
TG-GATEs (Igarashi et al., 2015; https://toxico.nibiohn.go.jp/
english/). Our results suggest that the combination of ‘omics
and causal subnetworks could be a useful approach to examine
the activation of individual KE, and eventually collections of KEs,
to better understand the hazards of chemical exposure using the
AOP framework.

MATERIALS AND METHODS

Construction of a Causal KE Subnetwork
We developed a causal subnetwork for the Key Event of
Regenerative Proliferation (Figure 1) that describes how
repeated injury to liver tissue can activate Wnt (Wingless-
Type MMTV Integration Site Family) and/or hypoxia
signaling pathways to dysregulate the cell cycle and lead to
regenerative proliferation in the liver. The network was
constructed using subject matter expert knowledge driven
analysis based on all data available in the peer-reviewed
literature and existing pathways available for humans and
rodents in the KEGG (https://www.genome.jp/kegg/) and
Reactome (https://reactome.org/) databases. Only interactions
that where experimental evidence demonstrated causal
relationships were used to ensure essentiality in the network.
Our confidence that a particular relationship was essential was
based on the presence of experimental evidence that the upstream
event caused the downstream event to happen (e.g. where down
regulation, deletion or silencing of the upstream event blocked the
downstream event from happening or when over expression of a
gene caused the downstream event to happen). To simplify the
network, dose-response and time-dependence factors influencing
interactions were assumed to be incorporated into causal
linkages, that is, causal linkages incorporate sufficient stimulus
and time to needed to develop a full response/activity from the
nodes they effect (genes/proteins). The network is freely
accessible as the regenerative_proliferation network in the
AOP app available in Cytoscape 3 (https://cytoscape.org/;
http://apps.cytoscape.org/apps/aopxplorer).

Gene Expression Analysis
We examined the impact of three chemicals known to induce
liver cancer (carbon tetrachloride, aflatoxin B1 and
thioacetamide) and two non-carcinogenic compounds
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(diazepam and simvastatin). The effects of these chemicals on
livers of rats were assessed using datasets available at Open TG-
GATEs (Igarashi et al., 2015; https://toxico.nibiohn.go.jp/). For
carbon tetrachloride, gene expression data were analyzed from
livers of five rats exposed to a single dose of either 30, 100 or
300 mg/kg carbon tetrachloride and sacrificed 3, 6, 9 or 24 h after
exposure. For aflatoxin B1, gene expression data were analyzed
from livers of rats exposed to a single dose of either 1, 3 or
10 mg/kg aflatoxin B1 and sacrificed after 24 h of exposure. For
thioacetamide, gene expression data were analyzed from livers of
rats dosed daily with 4.5, 15 or 45 mg/kg thioacetamide until
sacrificed at 4, 8, 15, or 29 days of exposure. For diazepam, gene
expression data were analyzed from livers of rats dosed daily with
either 25, 75 or 250 mg/kg diazepam until sacrificed at 4, 8, 15, or
29 days of exposure. For simvastatin, gene expression data were
analyzed from livers of rats dosed daily with either 40, 120 or
400 mg/kg simvastatin until sacrificed at 4, 8, 15, or 29 days of
exposure.

All gene expression statistical analyses were performed in R
(3.4.3). The median probe intensity from single channel (green
channel) microarray data was normalized using robust quantile
normalization (PreprocessCore package version 1.38.1). A
Bayesian approach was used to identify differentially expressed
genes. We focused on expression of 25 genes representing each of
the 15 nodes in the regenerative proliferation subnetwork that
were detected on the arrays. These were Apc, Axin1, Axin2,

Ccnd1, Cdk4, Ctcf, Ctnnb1, Dvl1, Foxm1, Fzd1, Fzd2, Gsk3a,
Gsk3b, Lrp5, Lrp6, Myc, Psmd10, Rb1, Vh1, Wnt1, WNT2,
Wnt4, Wnt6, Wnt11, Wnt16. We used the rstan (version
2.7.3) package to interface with Stan (http://mc-stan.org/) to
perform the Bayesian analyses. For background on the use of
Bayesian approaches for gene expression analysis and use of Stan
see Jiménez-Jiménez et al., 2021.

We used a hierarchical analysis to estimate the treatment
effects:

y ~Normal(θ, σ)
θ � μ + τ p η
η ~Normal(0, 1)

Where y is the estimated treatment effects, σ is the estimated
error, and θ is our attempted estimate. We treat θ as a
transformed parameter with a default uninformative prior for
τ and an uninformative prior of Normal(0,1) for η. By using the
hierarchical analysis, we allow for some exchangeability of
information between the exposures, but not necessarily
complete exchangeability. This allows us to use information
from all of exposures to inform each other. Note that we are
not performing a hierarchical analysis across probes. We used the
posterior estimates of θ to identify differentially expressed probes.
Specifically, Stan performs a Markov Chain Monte Carlo to
estimate the posterior distribution for θ for each site and
control. We then calculated the difference of each posterior

FIGURE 1 | AOP and Key Event causal network leading to liver cancer. (A) AOP 220 Cyp2E1 activation leading to liver cancer. Solid arrows represent direct causal
relationships between Key Events (KE). Dashed arrows represent indirect relationships. (B) Causal subnetwork for KE regenerative proliferation in liver. Nodes represent
either genes, proteins or processes. Arrows represent protein activation, “T” sticks represent protein inhibition, ball and sticks represent transcriptional upregulation, and
numbers reference action described in main text.
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distribution to obtain the difference distribution. We applied the
decision rule stating that differences spanning from log2(1/1.5) to
log2(1.5) were functionally equivalent to no change – this is
equivalent to using a 1.5-fold-change cut-off – and labeled any
region meeting these criteria as a region of practical equivalence
(ROPE). If the highest or lowest 95% density interval for the
difference distribution is outside of the ROPE, then the probe is
differentially upregulated or downregulated, respectively. Else,
the probe is not differentially expressed. E.A. Woolard, alice@
unc.edu, will provide protocols on this approach upon request.

Tissue Level Effects of Chemicals
The pathology of rat livers at all exposure times as determined in
Open TG-GATEs was used to assess tissue level effects of carbon
tetrachloride, aflatoxin B1, thioacetamide, diazepam and
simvastatin and is available in the Supplemental Tables. In
addition to single dose carbon tetrachloride exposures used for
gene expression analysis, the pathology of repeated dose
exposures to carbon tetrachloride was also examined for
effects due to 29 days of daily dosing. For aflatoxin B1, data
was only available for the 24 h post exposure treatment groups.

RESULTS

Development of a Key Event Causal
Subnetwork for Regenerative Proliferation
Here, we describe a KE causal subnetwork of genes, proteins, and
processes that, when activated, can lead to regenerative
proliferation in humans and rodents. In this network, nodes
represent genes, proteins, or processes that are essential for
activating regenerative proliferation. In this simplified model,
nodes are either on/active or off/inactive and linkages reflect
experimentally determined causal relationships that incorporate
dose-response and time response relationships between a node/
event and its immediate downstream neighbor. All relationships
between events have been previously proven to occur and will
cause the downstream event to occur given sufficient stimulation
and/or time.

Event relationships in the network are numbered in Figure 1
and described below. The network begins with oxidative stress or
other mechanisms causing liver tissue injury (event component
action or relationship 1 in Figure 1) which in turn causes (2)
activation of macrophages and wound repair (Boulter et al.,
2012), (3) increased hypoxia through diminished blood supply
or activity of reactive oxygen species (Ju et al., 2016; Gonzalez
et al., 2018) and (4) increased expression of Wnt ligands (Okabe
et al., 2016). The activation of macrophages causes (5) activation
of Wnt proteins and Wnt signaling (Boulter et al., 2012; Vannella
and Wynn 2017). The activation and/or increased expression of
Wnt signaling ligands causes (6) binding of the Wnt ligand to the
co-receptors Frizzled (Fzd family) and (7) Low-density
lipoprotein receptor-related proteins 5 and 6 (Lrp5/6) which
then (8) recruit and phosphorylate Dishevelled (Dvl1) and the
scaffold protein Axin (Takigawa and Brown 2008).

The phosphorylation and recruitment of Axin (Axin1, Axin2)
(33) inhibits formation of the beta-catenin destruction complex,

composed of Axin1 or Axin2, adenomatosis polyposis coli (APC),
beta-catenin (Ctnnb1) and glycogen synthase kinase 3 (Gsk3),
which (10) targets beta-catenin for degradation. Inhibiting
formation of the destruction complex increases the amount of
available beta-catenin to (11) interact and complex with the
transcription factor 7 and lymphoid enhancer-binding factor
(Tcf/Lef) family of transcription factors (Tf7, Tcf7l1, Tcf7l2,
Lef1; Takigawa and Brown 2008). The Tcf/Lef:beta-catenin
complex then (12) activates transcription of Myc proto-
oncogene (Myc) and (13) cyclin D1 or Ccnd1 (Schuijers et al.,
2014; Katoh 2017). Activation ofWnt signaling (14) inhibits Gsk3
phosphorylation activity which then (15) represses forkhead box
M1 (Foxm1) activity, (34) causes increased turnover of Ccnd1
and (35) increases proteolysis of Myc (Katoh 2017). Activation of
Wnt signaling (14) inhibits Gsk3 phosphorylation activity which
(15) represses forkhead box M1 (Foxm1), (34) causes increased
turnover of Ccnd1 and (35) increased proteolysis of Myc
(Gregory et al., 2003).

Foxm1 activates (16) transcription of Myc and (17)
transcription of Mapk8, the mitogen-activated protein kinase
(also known as Jnk1; Wierstra and Alves 2007; Wang et al.,
2008). Transcriptional activation of Mapk8 then leads to (36)
transcriptional activation of Ccnd1 (Wang et al., 2008).
Transcriptional activation of Myc causes (18) transcription of
cyclin-dependent kinase 4 and 6 (Cdk4/6) which leads to (19, 20)
formation of a Cdk4/6 and Ccnd1 complex (Wang et al., 2011).
The cyclin-Cdk complex then (21) inhibits activity of the
retinoblastoma (Rb1) transcriptional corepressor 1 which (22)
negatively regulates the cell cycle (Burkhart and Sage 2008).
Dysregulation of G1/S transition by inhibition of Rb1 and/or
Foxm1 (23) leads to cell proliferation (Wierstra and Alves 2007;
Burkhart and Sage 2008).

Myc can also be activated via hypoxia signaling where an
increase in hypoxia (24) decreases the activity of oxygen sensor
hypoxia-inducible factor 1 alpha inhibitor (Hif1an) thereby
reducing the ability of Hif1an to (25) hydroxylate and inhibit
hypoxia-inducible factor 1 alpha (Hif1a) activity (Mahon et al.,
2001; Whyte et al., 2012). Hypoxia also can (26) inhibit activity of
the vonHippel-Lindau (Vhl) tumor suppressor protein which has
been shown to (27) hydroxylate Hif1a in an O2 dependent
manner marking Hif1a for degradation and inactivation in
addition to inhibiting expression of Hif1A (Mahon et al.,
2001). In stem cells, activated Hif1a (28) increases expression
of Tcf/Lef leading to increased expression of genes including Myc
(Whyte et al., 2012; Tiburcio et al., 2014).

The long noncoding RNAWSPAR is often highly expressed in
human hepatocellular carcinoma cells and has been found to (29)
activate expression of members of the Tcf/Lef family (Zhan et al.,
2017). Tcf/Lef transcription factors (30) increase transcription of
Axin2 and increase destruction of beta-catenin in aWnt signaling
negative feedback loop (Jho et al., 2002). Tcf/Lef transcription
factors form a negative feedback loop that inhibits Wnt signaling
by (31) activating transcription of the dickkopf Wnt signaling
pathway inhibitor 1 (Dkk1) which then (32) binds to the LRP co-
receptor (Takigawa and Brown 2008). Finally, cellular G1/S
transition can also be dysregulated by (35) phosphorylation of
Rb1 by the 26S proteasome non-ATPase regulatory subunit 10
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(Psmd10) which results in an increase in proteosomal
degradation of Rb1 (Higashitsuji et al., 2005).

Subnetwork Events Sufficient to Infer Regenerative
Proliferation
Identification of genes that can be used to infer that regenerative
proliferation is occurring would be valuable in determining if the KE
were activated and could cause hepatocellular carcinoma given
sufficient time and stimulus. Here we used the approach of
Burgoon et al. (2017) to identify a small set of genes that are
sufficient to identify that the KE is likely to occur. Sufficiency
was defined by Rothman (1976) as a “cause which inevitably
produces the effect.” In Rothmans’ sufficient-component cause
model, there are one or more of the network components that
are sufficient, either individually or jointly, to infer an outcome/
disease. Removal of one of these components is sufficient to stop
progression to an adverse outcome. In the causal subnetwork, if a
downstream event (e.g. regenerative proliferation) is affected by a
chemical, then the events upstreammust have happened. As a result,
if a sufficient event has been identified and the occurrence of this
event is sufficient to infer an outcome, (regenerative proliferation),
then if event occurs, we can infer that the outcome will occur.

Sufficient events were identified using the Markov property of
Causal network theory, which states that a node is only dependent
upon its predecessor or parent and using the idea of d-separation,
which states that a node is conditionally independent of another
node if it is blocked by a third node. For example, in our network,
Rb1 is dependent upon Cdk4/6 and Ccnd1 but is conditionally
independent of Myc (Figure 1). Using these criteria, we identified
Ccnd1, Rb1, Cdk4/6 and Psmd10 as sufficient events, measurable
with gene expression, that can infer dysregulation of G1/S
transition and ultimately regenerative proliferation in livers of
exposed animals (Figure 1).

This is validated by experimental and pathological evidence
demonstrating that if any of these four genes/proteins are
dysregulated, cell proliferation, and eventually cancer, will occur
given continued dysregulation. Ccnd1 gene expression is well
documented to control cell cycle progression and control cancer
development in humans and rodents (Marampon et al., 2016).
Moreover, silencing of Ccnd1 expression in human cell lines
suppresses cell proliferation (Ding et al., 2020). Loss of Rb1 has
been found to cause cell proliferation and tumor formation in
humans, while expression of Rb1 eliminates cell proliferation
caused by loss of Rb1 in humans cells and mouse models (Chicas
et al., 2010; Zhu et al., 2015; Doan et al., 2021). Inhibition of CDK4/6
has been shown to arrest cell-cycle progression in human hepatoma
cells and mice (Rivadeneira et al., 2010). PSMD10 levels are elevated
during human hepatocarcinogenesis and silencing of Psmd10
expression repressed cell proliferation and tumorigenicity in
human HepG2 cells (Jing et al., 2014).

Case Studies of Effects of Chemicals
Known to Cause Regenerative Proliferation
on Subnetwork in Rat Livers
The regenerative proliferation subnetwork represents essential
biological events that occur as liver cellular injury causes cellular

proliferation. As such, the network reflects the biology occurring
at the time of analysis and does not identify whether or not a
chemical is carcinogenic. To examine how the biological
subnetwork behaved as a result of liver damage, we examined
the effect of three chemicals well documented to cause
regenerative proliferation and two chemicals that do not cause
regenerative proliferation. When protein interactions were
depicted in the network, we used an increase in gene
expression as an approximate surrogate for protein activity in
the absence of other information with the recognition that
increased gene expression does not necessarily reflect protein
activity temporally or in abundance. Activated/inhibited genes/
proteins were assumed to cause downstream effects given
sufficient time/stimulation.

Carbon Tetrachloride
Carbon tetrachloride is a well-studied model toxicant known to
cause liver damage, resulting in fatty degeneration, cellular
necrosis, fibrosis, regenerative proliferation and, given

FIGURE 2 | Effect of carbon tetrachloride on expression of genes found
in the causal subnetwork for regenerative proliferation in rat liver. Gene
expression data was analyzed from livers of rats exposed to a single dose of
either low (30 mg/kg), medium (100 mg/kg) or high (300 mg/kg) doses
of carbon tetrachloride and sacrificed after 3, 6, 9 or 24 h of exposure. Gene
expression values significantly different from controls are denoted with
asterisks in the chart and by a box in the subnetwork diagram.
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sufficient time, cancer (Manibusan et al., 2007). Liver pathology
data was examined for evidence of liver injury, necrosis, steatosis,
cell proliferation and tumor formation (Supplementary Table
S1). At 24 h, pathology data indicates that the 300 mg/kg carbon
tetrachloride dose group had significant evidence of
inflammation (cellular infiltration), cellular injury
(hypertrophy) and steatosis (fatty degeneration); the
100 mg/kg group had a moderate (two of five animals)
incidence of cellular injuries and steatosis while the 30 mg/kg
treatment group had no effects. Effects on animals exposed to
repeated doses of 300 mg/kg for 29 days provides evidence of
long-term effects of carbon tetrachloride. At 29 days, livers of all
animals displayed inflammation, cellular injury, steatosis and
fibrosis.

Of all genes present in the regenerative proliferation
subnetwork and across all exposures, only expression of Ccnd1
was upregulated and only at 300 mg/kg with 24 h exposure
(Figure 2). In mice exposed to carbon tetrachloride,
McCracken et al. (2017) also found that Cnnd1 gene
expression was upregulated in livers before pathological
evidence of cell proliferation at the organ level changes was
detectable. Based on the sufficiency of Ccnd1, we can infer
that cellular proliferation is occurring consistent with the
known toxicity of carbon tetrachloride and the progression of
tissue level effects seen in exposed animals.

CCND1 is an essential protein that forms a complex with
Cdk4/6 which regulates cell cycle G1/S transition (Figure 1, event
component action 19–22). Ccnd1 is generally transcriptionally
regulated, with upregulation resulting in cell proliferation
(O’Leary et al., 2016). In the causal subnetwork, regenerative
proliferation is conditionally dependent upon CCND1, and
Ccnd1 d-separates regenerative proliferation from all other
nodes with the exception of the Cyclin-Cdk complex and Rb1
(Figure 1). We would not expect to see changes in Rb1 gene
expression as the protein, pRb, is generally post-transcriptionally
regulated, and cyclin D1 is the protein that regulates/signals the
destruction of pRb (Alao 2007). Therefore, measurement of
increased expression of Ccnd1 is sufficient to infer
dysregulation of G1/S transition and ultimately that
regenerative proliferation is likely to occur.

Aflatoxin B1

Aflatoxin B1 is the most potent hepatotoxic and
hepatocarcinogenic molecule of the aflatoxins, produced
naturally by Aspergillus molds (Rushing and Selim 2019). The
liver pathology of animals 24 h after exposure to a single dose of 1,
3 or 10 mg/kg aflatoxin B1 was examined for evidence of liver
injury, necrosis, steatosis, cell proliferation and tumor formation
(Supplementary Table S2). Animals exposed to 1 mg/kg
aflatoxin B1 displayed slight cell necrosis. At 3 mg/kg aflatoxin
B1 animals displayed a slight to moderate degree of inflammation
and necrosis. 24 h after 10 mg/kg aflatoxin B1 exposure, animals
displayed effects of inflammation, severe cell necrosis and a slight
degree of atrophy.

Gene expression results were consistent with pathology
results. Across all genes and all exposures, only Ccnd1, Rb1,
Lrp, and Vhl were differentially expressed. Expression of genes

increased/decreased with increasing dose of Aflatoxin B1 and
severity of tissue level response. Ccnd1 was upregulated in both
the medium 3 mg/kg and high 10 mg/kg treatment groups. Both
Lrp5 and Rb1 were downregulated while Vhl was upregulated in
the 10 mg/kg treatment group (Figure 3). Since Ccnd1 and Rb1
are sufficient to infer the outcome, we can infer cell proliferation
is occurring. This is consistent with pathology findings indicating
that cell injury and death at the tissue level is occurring, as these
precede manifestation of cell proliferation at the tissue level.

As described previously, CCND1 works with pRb to play an
essential role in regenerative proliferation. While not always
expected due to pRb being post-transcriptionally regulated, we
still see downregulation in the Rb1 gene at the highest aflatoxin B1
dose. The changes observed in these two genes are consistent with
the regenerative proliferation network we have developed.
Depending on oxygen availability conditions, VHl either
interacts with the Myc pathway or initiates angiogenesis
(Maxwell and Ratcliffe 2002). However, the high number of
intermediary events at the protein-level between VHl and G1/
S phase transition dysregulation preclude this gene change from

FIGURE 3 | Effect of aflatoxin B1 on expression of genes found in the
causal subnetwork for regenerative proliferation in rat liver. We analyzed gene
expression data from livers of rats exposed to a single low (1 mg/kg), medium
(3 mg/kg) or high (10 mg/kg) dose of aflatoxin B1 that were sacrificed
after 24 h of exposure. Expression of the gene Vhl is denoted by a hatched
column, Rb1 by a black column, and Ccnd1 by a grey column in the chart.
Gene expression values significantly different from controls are denoted with
asterisks in the chart. Upregulated genes are denoted by a solid lined box in
the subnetwork diagram and downregulated genes by dashed box.
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being causal in the regenerative proliferation pathway (Figure 3).
Likewise, though its downregulation has been associated with
chronic renal failure, Lrp cannot be causal due to its distance from
the key endpoint (Kim and Vaziri, 2005). While the dysregulation
seen in Lrp and Vhl is not causal in the described pathway, the
changes shown in Ccnd1 and Rb1 are sufficient to infer
dysregulation of G1/S transition, which yields regenerative cell
proliferation.

Thioacetamide
Thioacetamide is a synthetic compound used to replicate the
progression of liver disease in animal models due to its well-
characterized hepatotoxicity (Al-Bader et al., 2000; Ingawale
et al., 2014). The liver pathology of animals exposed daily for
4, 8, 15 or 29 days to 45 mg/kg was examined for evidence of

liver injury, necrosis, steatosis, cell proliferation, fibrosis and
tumor formation (Supplementary Table S3). After 4 days, all
animals displayed inflammation, cell injury, and cell necrosis.
After 8 days, all animals displayed nuclear alteration,
inflammation, cell injury, and minimal to slight degree of
cell necrosis. After 15 days, all animals displayed nuclear
alteration, cell injury, a minimal degree of oval cell
proliferation and two of five animals had a minimal degree
of cellular foci. After 29 days, all animals displayed a severe
degree of nuclear alterations, a slight to moderate degree of
cellular foci, a severe degree of eosinophilic granular
degeneration; a minimal degree of fibrosis, a moderate
degree of hypertrophy, a moderate degree of bile duct
proliferation and a slight degree of oval cell proliferation.
These observations indicate the development of liver injury,
necrosis, cell proliferation and fibrosis with increasing dose
and time of exposure to thioacetamide.

Across all genes and all exposures, only Ccnd1 and Myc
were affected (Figure 4). Expression of both Ccnd1 and Myc
increased with increasing exposure time. Ccnd1 was
upregulated in the 45 mg/kg dose at all four durations of
exposure. Myc was upregulated in the 45 mg/kg dose at 15
and 29-day durations of exposure. Activation of Ccnd1
indicates that cell proliferation is occurring in the rat liver
in response to thioacetamide beginning at day 4, preceding
evidence of cell proliferation at the tissue level, oval cell and
bile duct proliferation, beginning at day 15 (Fausto and
Campbell 2003; Sato et al., 2019).

Because CCND1 forms a complex with CDK4/6 that
regulates cell cycle G1/S transition (Wang et al., 2011),
regenerative proliferation is conditionally dependent upon
CCND1, and CCND1 d-separates regenerative proliferation
from all other nodes with the exception of the Cyclin-Cdk
complex and Rb1. pRb is generally post-transcriptionally
regulated, and cyclin D1 regulates/signals destruction of pRb
(Alao 2007). Therefore, measurement of increased
expression of Ccnd1 is sufficient to infer dysregulation of
G1/S transition and ultimately that regenerative
proliferation is likely to occur.

Diazepam
Diazepam is a benzodiazepine commonly used to treat anxiety,
and has no known relation to liver cancer progression (Diazepam
1996). Analysis of liver pathology of animals exposed daily to
either 25, 75 or 250 mg/kg diazepam for 4, 8, 15 and 29 days
indicated no effects at 25 mg/kg diazepam and that 75 mg/kg
caused no effects other than cell injury in two of five animals after
29 days exposure (Supplementary Table S4). For the 250 mg/kg
treatment group, all lengths of exposure displayed evidence of
increased cell size (hypertrophy) with the exception of one animal
that displayed a minimal degree of fatty degeneration at 4 days
exposure. Across all genes and all exposures, only Myc was
differentially expressed and only at 250 mg/kg and 29-day
exposure (Figure 5). Gene expression indicates that cell
proliferation is unlikely to be occurring, as no genes sufficient
to infer cell proliferation were affected and cell proliferation is
conditionally independent from Myc activity. This is consistent

FIGURE 4 | Effect of thioacetamide on expression of genes found in the
causal subnetwork for regenerative proliferation in rat liver. We analyzed gene
expression data from livers of rats exposed to a single low (4.5 mg/kg),
medium (15 mg/kg) or high (45 mg/kg) dose of thioacetamide and
sacrificed after 4, 8, 15, or 29 days of exposure. Expression of the gene
Ccnd1 is denoted by a white column and Myc by a black column in the chart.
Gene expression values significantly different from controls are denoted with
asterisks in the chart. Upregulated genes are denoted by a solid lined box in
the subnetwork diagram.
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with the liver pathology and known effects of diazepam on
the liver.

Simvastatin
Simvastatin is an HMG CoA reductase inhibitor commonly
prescribed to patients to treat high cholesterol and triglyceride
levels (Duarte et al., 2021). This compound has no documented
direct role in liver carcinogenesis. Analysis of liver pathology of
animals exposed daily to the highest dose of 400 mg/kg for 4, 8, 15 or
29 days (Supplementary Table S5) identified no pathological
features of liver steatosis, regenerative proliferation, or
hepatocellular carcinomas in animals exposed to simvastatin.
Histopathological features indicating injury (increased mitosis) or
inflammation (basophilic change, microgranuloma) were observed.
Across all genes and all exposures, no gene was differentially
expressed, and therefore there was no evidence for activation of
the regenerative proliferation pathway. This is consistent with the
liver pathology and known effects of simvastatin on the liver.

CONCLUSION

Here we propose the development of a simple systems biology,
causal subnetwork to represent critical events within a KE in
order to define and understand the state of a KE using omics and
systems biology approaches. It should be noted that we do not use
the causal network to predict if a chemical causes liver injury/
regenerative cell generation. We use the network to measure the
state of the tissue after exposure. By developing the causal
network, we were able to identify essential events leading from
tissue damage to dysregulation of cell division and genes/proteins
whose activity is sufficient to indicate activation of the KE
Regenerative proliferation.

We have intentionally focused only on events within an
individual KE rather interactions between KE to maintain the
hierarchy where an AOP organizes KE and KE organize
subevents/subnetworks. To illustrate how such a subnetwork
could be developed and applied, we developed a KE
subnetwork that describes the development of regenerative cell
proliferation due to repeated liver injuries from several
mechanisms including oncotic necrosis, chronic inflammation
and oxidative stress caused by electrophilic metabolites from
cytochrome p450 metabolism of xenobiotics (Smith et al.,
2016). The subnetwork represents a common KE in cancer
AOPs such as AOP220 Cyp2E1 activation leading to liver
cancer (https://aopwiki.org/aops/220; Figure 1). The
regenerative proliferation subnetwork (Figure 1) is composed
of 28 events (genes, proteins or processes). In this simplified
network model, events are considered either as on/active or off/
inactive, connections are causal (activate/promote, inactivate/
inhibit), dose-dependence and time dependence are inherent
characteristics of the causal linkage. However, dose-response
features could be incorporated into an event using point of
departure analysis of gene expression or assay activity as
described in Burgoon et al. (2017).

Several assumptions were made in applying the subnetwork.
Parent events have been shown to cause daughter event, therefore
if a parent event occurs the daughter event will also occur. Since
the effect of time and dose dependence is not explicitly accounted
for in network interactions but the linkage is causal, activated/
inactivated events were assumed to cause their nearest
downstream event given sufficient time and stimulus. To
demonstrate how omics, or transcriptomics, can be used to
monitor activity in the subnetwork, we used gene expression
as a surrogate to assess if a protein or gene changed levels/activity,
realizing that this does not necessarily reflect protein activity
temporally or in abundance and may not capture certain protein
interactions represented in the subnetwork.

The subnetwork was used to identify events (genes or
proteins) whose activity could be used to infer the occurrence
of the outcome (the KE regenerative proliferation) using causal
network theory. Five proteins were identified as sufficient to infer
regenerative proliferation events based on their proximity to cell
proliferation: Cyclin D1 (CCND1), RB transcriptional
corepressor 1 (pRb), proteasome 26S subunit, non-ATPase 10
(PSMD10) and Cyclin-dependent kinase 4 and 6 (CDK4/6).
These were confirmed in the scientific literature as sufficient

FIGURE 5 | Effect of Diazepam on expression of genes found in the
causal subnetwork for regenerative proliferation in rat liver. We analyzed gene
expression data from livers of rats exposed to a single low (25 mg/kg),
medium (75 mg/kg) or high (250 mg/kg) dose of diazepam and
sacrificed after 4, 8, 15, or 29 days of exposure. Gene expression values
significantly different from controls are denoted with asterisks in the chart and
by a box in the subnetwork diagram.
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to infer cell proliferation as removal of action (activation or
inhibition) of these proteins prevents the occurrence of cell
proliferation (Rivadeneira et al., 2010; Jing et al., 2014; Zhu
et al., 2015; Marampon et al., 2016; Ding et al., 2020; Chicas
et al., 2010; Doan et al., 2021). Activity of these genes/proteins
were used to infer whether or not regenerative cell proliferation
was occurring in liver tissue.

We examined the behavior of the subnetwork in conditions
that cause liver injury and promote regenerative cell
generation by examining livers of rats exposed to chemicals
with well characterized effects on liver injury and regenerative
proliferation (carbon tetrachloride, aflatoxin B1,
thioacetamide) and chemicals with no known effect on liver
injury and regenerative proliferation (diazepam and
simvastatin). The behavior of genes in the network were
consistent with liver pathology data for tissue level effects
related to hepatocellular carcinoma development and known
effects of the chemicals on liver. Genes sufficient to infer cell
proliferation were affected only where animals were exposed to
chemicals known to cause liver injury and cell proliferation.
Interestingly, gene expression sufficient to infer that cell
proliferation was occurring was detectable much earlier
than effects on the tissue levels. This is expected given that
changes at the gene expression levels frequently occur before
changes at the tissue level.

These analyses demonstrate that the combination of
transcriptomics and causal subnetworks could be used to
describe or infer the sate of a KE and provides a promising
approach to merge omics, systems biology and AOPs.
Measuring sufficient sets of genes in causal networks for Key
Events in AOPs or AOP networks can provide more efficient
and informative measurements related the toxicity or Adverse
Outcome of a chemical. Applying causal theory reduces the
uncertainty associated with measuring an event distal from the
adverse outcome and interfering communication from other
pathways. If combined with targeted sequencing,
transcriptomics-based point of departure and high
throughput assays this approach could greatly facilitate our
understanding of adverse effects caused by chemicals. Future
research into the utility and applicability of this approach
should test to see if evidence from in vitro liver cell systems
(and the causal network presented here) are accurate predictors
of damage/injury in whole organs/animals. Additional research
is needed to determine if combining the activity of sufficient
genes in reference chemical exposures with classification
modeling be useful in identifying chemicals that activate this
KE, if these causal subnetworks are sensitive and/or specific
enough to be used in screening for chemical effects and whether
or not the subnetworks serve to organize and explain existing
data rather than make prospective predictions of in vivo effects
using in vitro data.

SUPPLEMENTAL TABLES

Table 1. Liver pathology data for carbon tetrachloride exposures.
Low = 30 mg/kg, medium = 100 mg/kg and high = 300 mg/kg.

Data for individual rats are designated by glass image numbers
and highlighted by yellow or white rows.
Table 2. Liver pathology data for aflatoxin B1 exposures. Low =
1 mg/kg, medium = 3 mg/kg and high = 10 mg/kg. Data for
individual rats are designated by glass image numbers and
highlighted by yellow or white rows.
Table 3. Liver pathology data for thioacetamide exposures. Low =
4.5 mg/kg, medium = 15 mg/kg and high = 45 mg/kg. Data for
individual rats are designated by glass image numbers and
highlighted by yellow or white rows.
Table 4. Liver pathology data for diazapam exposures. Low =
25 mg/kg, medium = 75 mg/kg and high = 250 mg/kg. Data for
individual rats are designated by glass image numbers and
highlighted by yellow or white rows.
Table 5. Liver pathology data for simvastatin exposures. Low =
40 mg/kg, medium = 120 mg/kg and high = 400 mg/kg. Data for
individual rats are designated by glass image numbers and
highlighted by yellow or white rows.
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